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Abstract

Background: Systemic approaches offer a different point of view on the analysis of several types of molecular
associations as well as on the identification of specific gene communities in several cancer types. However, due to
lack of sufficient data needed to construct networks based on experimental evidence, statistical gene co-expression
networks are widely used instead. Many efforts have been made to exploit the information hidden in these
networks. However, these approaches still need to capitalize comprehensively the prior knowledge encrypted into
molecular pathway associations and improve their efficiency regarding the discovery of both exclusive subnetworks
as candidate biomarkers and conserved subnetworks that may uncover common origins of several cancer types.

Methods: In this study we present the development of the Informed Walks model based on random walks that
incorporate information from molecular pathways to mine candidate genes and gene-gene links. The proposed
model has been applied to TCGA (The Cancer Genome Atlas) datasets from seven different cancer types, exploring
the reconstructed co-expression networks of the whole set of genes and driving to highlighted sub-networks for
each cancer type. In the sequel, we elucidated the impact of each subnetwork on the indication of underlying
exclusive and common molecular mechanisms as well as on the short-listing of drugs that have the potential to
suppress the corresponding cancer type through a drug-repurposing pipeline.

Conclusions: We have developed a method of gene subnetwork highlighting based on prior knowledge, capable
to give fruitful insights regarding the underlying molecular mechanisms and valuable input to drug-repurposing

pipelines for a variety of cancer types.

Keywords: Random walks, Network inference, Network analysis, Gene subnetworks, Molecular mechanisms, Drug

repurposing, Cancer types

Background

Some of the most devastating forms of cancer have genetic
similarities, even though they appear to different tissues and
organs of the body. For example, one type of breast cancer
presents genetic mutations very similar to the ones found in
ovarian cancer, while colon cancers often have mutations
found in breast cancer. Also, according to several studies,
the most aggressive form of endometrial cancer affecting the
uterine lining is similar to more grave forms of breast and
ovarian cancer [1, 2]. Such similarities between different
cancer types make our understanding on them a challenging
and fascinating task.
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Despite the rapid increase in human cancer-associated
gene discovery, a large proportion of specific cancer-
associated genes is still unknown [3]. Network-based
approaches support the study of interactions among
relatively large number of genes, aiming to propose lists
of statistically significant genes for each human cancer
type [4]. The majority of these approaches utilize the
protein-protein interaction (PPI) network or prior know-
ledge to highlight significant genes. However, due to the
lack of functional characterization for a significant num-
ber of genes, these approaches are not as informative as
expected. In order to overcome this limitation, many
network inference methods have been adopted to recon-
struct co-expression networks based on gene expression
data regarding certain diseases [5-8].

So far, many methods have been employed for disease-
specific gene-mining, using molecular networks to
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perform local and global distance measurements, clus-
tering methods, diffusion kernels and random walks with
restarts [9-12]. Among these, random walks have shown
promising results in prioritizing disease genes, finding
distances between correlated nodes and highlighting
genes related to specific diseases [13, 14]. However, these
methods are limited because they examine only the
topology of the networks and the weights of the edges
without including functional information of genes.

In this study, we developed a method called Informed
Walks, based on random walk theory with restarts by
incorporating information from molecular pathways, in
order to mine important genes and gene-gene links
related to seven different cancer types. Specifically, we
have used all the available mRNA gene expression
microarray datasets retrieved from The Cancer Genome
Atlas - TCGA (http://gdac.broadinstitute.org/runs/
stddata__latest/samples_report/) and we have recon-
structed co-expression networks for seven different can-
cer types using the whole set of genes. We applied the
Informed Walks model in the co-expression networks
and we concluded to a highlighted sub-network for each
cancer type. Analyzing each sub-network, we identified
specific mechanisms significant for each cancer type
while the significant genes derived from each sub-
network were used in a drug repurposing pipeline,
revealing drugs that have the potential to suppress each
cancer type. Finally, common and exclusive mechanisms
as well as the impact of the repurposed drugs were
investigated across the different cancer types.

Results

The networks identified for each cancer type, as gener-
ated by merging each walker’s pathways, have edges with
weights that are proportional to the frequency of passage
through the corresponding edge. To simplify the
resulted subnetworks, the edges with the top 500 higher
weight values were retained for each cancer type
highlighting subnetworks with 574 genes-nodes in the
case of breast cancer (Fig. 1a), 547 genes-nodes in the
case of colon cancer (Fig. 1b), 593 genes-nodes in the
case of colorectal cancer (Fig. 1c), 523 genes-nodes in
the case of rectum (Fig. 1d), 585 genes-nodes in the case
of ovarian cancer (Fig. 1le), 544 genes-nodes in the case
of glioblastoma (Fig. 1f) and 536 genes-nodes in the case
of glioma (Fig. 1g). Common and exclusive genes for
each cancer type were further investigated (Fig. 1h). The
overlap between the seven subnetworks is available in
Additional file 1: Table S1.

In total, 70 common genes were identified among the
seven cancer types. By using the Enrichr web-based
software (http://amp.pharm.mssm.edu/Enrichr/) [15], we
found that these genes were involved in several
important mechanisms for carcinogenesis and cancer
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progression. More specifically, 17 out of 70 genes
(HIST1H4K, HIST1HA4L, MAOA, GNGI12, HIST1H4A,
NRAS, HIST1H4B, HIST1H4H, CALMS3, HIST1H4J,
HIST1H4C, CALMI1, CALM2, HIST1H4D, HRAS,
HIST1H4E and HIST1H4F) are involved in alcoholism
pathway. Based on extensive reviews of research studies,
there is a strong scientific consensus of an association be-
tween alcohol drinking and several types of cancer [16, 17].
Furthermore 16 out of 70 genes are involved in viral car-
cinogenesis pathway (CDKN1A, CDKN1B, HIST1H4K,
HIST1H4L, HIST1H4A, NRAS, HIST1H4B, CASP3,
HIST1H4H, HIST1H4J, HIST1H4C, HIST1H4D, TP53,
HRAS, HIST1H4E and HIST1H4F) and 17 in pathways in
cancer (CDKN1A, CDKNI1B, TGFB1, EGE ADCYS,
GNG12, NRAS, FGF9, AKT2, CASP3, AKT1, PLCB1, BID,
WNT1, TP53, HRAS and FGF23).

We have found 221 exclusive genes related to breast
cancer. The most important mechanism based on these
genes was found to be hepatitis b. HBV was positively
associated with breast cancer as patients undergoing
chemotherapy for breast cancer have higher rate of HBV
reactivation than other cancer patients [18]. As HBV is
inactive in these patients, this association may reflect an
immune response signature.

We have also revealed 172 exclusive genes for colon
cancer and 179 for colorectal cancer. One of the most
important pathways that were found based on the exclu-
sive genes of colon and colorectal cancer is the pathway
of proteoglycans in cancer. It has been found that pro-
teoglycans may play a pivotal role as potential microen-
vironmental biomarkers for colon cancer diagnostics
and treatment [19]. Furthermore, our analysis highlights
200 exclusive genes for rectum and 228 for the ovarian
cancer. RNA transport and spliceosome were found to
be important mechanisms in the case of rectum whereas
proteasome and ether lipid metabolism were highlighted
respectively in the case of ovarian cancer. It has been
reported that some lipid metabolic enzymes are overex-
pressed in ovarian cancer [20].

Finally, 73 and 69 exclusive genes were found for
glioblastoma and glioma respectively. The most
important molecular mechanism that was found
from the 73 exclusive genes of glioblastoma is the
antigen processing and presentation pathway. Alter-
ations of this pathway have been found in glioblast-
oma [21]. Fc gamma R-mediated phagocytosis and
adipocytokine signaling pathway were found as the
most important pathways from the exclusive genes
in the case of glioma.

The significant pathways from the common and
exclusive genes of the seven cancer types are
presented in Additional file 1: Table S2, Table S3,
Table S4, Table S5, Table S6, Table S7, Table S8 and
Table S9.
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Fig. 1 Top 500 edges for the subnetworks of each cancer type. The node size and color correspond to the degree centrality (higher values are
represented by bigger and darker nodes). The edge size and color correspond to the edge betweenness (higher values are represented by
bigger and darker edges). a) Breast cancer subnetwork b) colon cancer subnetwork c) colorectal cancer subnetwork d) rectum subnetwork e)
ovarian cancer subnetwork f) glioblastoma subnetwork g) glioma subnetwork h) representation of common and exclusive genes between the

seven subnetworks

Underlying mechanism discovery

We used the Enrichr web-based software in order to re-
veal the underlying significant biological pathways de-
rived from the genes of each sub-network. From the
seven cancer types we highlighted the significant
pathways (p-value <0.05) (Additional file 1: Table S10,
Table S11, Table S12, Table S13, Table S14, Table S15
and Table S16). Common and exclusive mechanisms of
each cancer type were further investigated (Additional file 1:
Table S17). Following pathway analysis of the seven cancer
types, we have found ten common cancer — related path-
ways (Fig. 2) such as axon guidance, cell cycle checkpoints,
signaling by FGFR, DNA repair, DNA replication, opioid
signaling, HIV infection, cell cycle, mitotic signaling by
NGE and signaling by EGFR. DNA repair processes and
cell cycle checkpoints have been intimately linked with can-
cer due to their functions regulating genome stability and
cell progression, respectively. Furthermore, cancer and
mitosis are closely related to each other. Without the
process of mitosis there would be no cancer. Mitosis is the
process by which cells reproduce. Without mitosis cancer-
ous cells wouldn’'t be able to form tumors and spread
through the body. Mistakes that occur during DNA replica-
tion can lead to the generation of cells with mutated genes.
Accumulations of mutations can lead to the development
of cancer. There are several cancer types that are associated
specifically with the breakdown of the repair processes that

normally function during DNA replication. Moreover it has
been reported, that axon guidance pathway plays a pivotal
role in tumorigenesis [22, 23]. It has been also reported that
aberrant FGER signaling contributes to carcinogenesis [24].
Opioids promote angiogenesis, tumor growth, and metasta-
ses, and shorten survival in animal models [25]. Moreover,
people infected with HIV have a substantially higher risk
on some types of cancer compared to uninfected people of
the same age [26]. In the case of NGF signaling pathway, it
has been shown to alter cell death and survival in various
cancer cells [27]. Finally, several different review articles
have been published on the role of EGER in the pathogen-
esis of human carcinoma and it was proposed as a potential
novel therapeutic target [28].

In the case of breast cancer, we have found three
exclusive pathways, including Cdc20: phospho-APC/C
mediated degradation of cyclin A, regulation of beta-cell
development and biological oxidations. Cdc20 may func-
tion as an oncoprotein. Several studies have shown that
Cdc20 is highly expressed in various types of human
tumors. It has been reported that Cdc20 is over-
expressed in breast cancer cells compared to normal
mammary epithelial cells [29]. Finally, the progression of
breast cancer has been associated with the oxidative
stress from several studies [30].

For the cases of colorectal, glioma and ovarian cancer,
there have been found exclusive pathways including the
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membrane trafficking pathway for the colorectal, inhib-
ition of HSL for the glioma and wnt signaling pathway
for the ovarian cancer, respectively. Membrane traffick-
ing proteins constitute novel targets in the treatment of
metastatic colorectal cancer [31]. Wnt plays an import-
ant role in ovarian cancer and it has been proposed as a
potential target in the development of new drugs for
ovarian cancer as a single agent and in combination with
chemotherapy or other targeted agents [32].

Informed walks and drug repurposing

The highlighted sub-networks produced with the
Informed Walks method were further processed in order
to investigate their contribution to the discovery of po-
tential drugs for the different cancer types. Actually, the
genes that constitute the sub-networks from each cancer
type were divided into up and down regulated, based on
their fold change from the initial statistical analysis of
the TCGA datasets. The up and down regulated genes
formed disease signatures that were queried in the well-
established drug repurposing pipeline LINCS-L1000,
The Library of Network-Based Cellular Signatures
(http://www.lincscloud.org/), currently replaced by Clue
(https://clue.io/). This pipeline is the advanced version
of Connectivity Map (cMap) [33] with significantly in-
creased number of drug treatments, cell types and gene
signatures based on L1000 high throughput technology.
We used the LINCS-L1000 detailed report and we
collected the top 20 drugs for each cancer type with the
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most negative enrichment scores. The negative score
suggests that the drugs are considered to be inhibitors.
Common and exclusive drugs of each cancer type were
further investigated (Additional file 1: Table S18).

One repurposed drug - Idarubicin was found as com-
mon (Fig. 3) in four out of seven cancer types (breast
cancer, colorectal cancer, ovarian cancer and rectum).
Idarubicin is a chemotherapy drug used to treat some
types of cancer including acute myeloid leukemia and
advanced breast cancer. Furthermore, two repurposed
drugs, fulvestrant and amsacrine, were found as
common in three cancer types of the same family (colon
cancer, colorectal cancer and rectum) as well as in
ovarian cancer.

It has been reported that basal-like or triple negative
breast cancer subtype and serous ovarian cancer have
important genomic similarities. The mutation spectrum
(the types and frequencies of genomic mutations) was
largely the same in both cancer types. Further analyses
identified several additional common genomic features,
such as gene mutation frequency, suggesting that diverse
genomic aberrations can converge into a limited number
of cancer subtypes (http://www.cancer.gov). Pyrazoles,
an organic compound, was found as a common
repurposed drug against both ovarian and breast cancer.
Furthermore, two repurposed drugs (trichostatin-a and
vorinostat) were found as common in four out of seven
cancer types (colon cancer, glioblastoma, glioma and
rectum). It has been found that the MCM-2 target gene
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of trichostatin-a is a novel therapeutic target in colon
cancer cells [34]. Moreover, three cancer types from the
same family (colon cancer, colorectal cancer and rectum)
share a common repurposed drug — diphenyleneiodo-
nium. It has been reported that diphenyleneiodonium
have therapeutic potential for NADPH oxidase-
containing human colon cancers in vivo and that at least
part of their antineoplastic mechanism of action may be
related to targeting Nox1 [35].

As shown in Fig. 3, six common repurposed drugs
were found as common for glioma and glioblastoma
(devazepide, PHA-793887, 4-[6-(Adamantan-1-yl)-7-hy-
droxy-2-naphthyl]benzoic acid, 5H-quino[8,7-c] [I,
2]benzothiazine 6,6-dioxide, XMD11-50, BI-2536).
Among these common repurposed drugs, BI-2536 is a
PLK1 inhibitor and it has been reported that PLK1 level
is elevated in glioblastoma multiforme (GBM) and its
inhibition restricts the growth of brain cancer cells [36].

In the case of exclusive repurposed drugs, 17 were
found as exclusive for breast cancer, 9 for colon cancer,
8 for colorectal cancer, 6 for rectum, 10 for ovarian
cancer, 9 for glioblastoma and 7 for glioma. From these
drugs, hinokitiol and etoposide were found as exclusive
for ovarian cancer. Hinokitiol is a natural compound
which may act as an anti- asculogenic mimicry agent,
and it has been reported that may be useful for the
development of novel breast cancer therapeutic agents
[37]. Moreover, treatment with etoposide is generally
effective and well-tolerated in platinum-resistant ovarian
cancer patients [38].

Furthermore, ruxolitinib, a drug for the treatment of
intermediate or high-risk myelofibrosis, was found as an
exclusive repurposed drug for breast cancer. An ongoing
clinical trial (October, 2015) has compared the overall
survival of women with advanced (Stage III) or meta-
static (Stage IV) HER2-negative breast cancer who
received treatment with capecitabine in combination
with ruxolitinib versus those who received treatment
solely with capecitabine (https://clinicaltrials.gov) [4].
Moreover, an exclusive breast cancer repurposed drug,
rottlerin, was found that leads to the apoptosis in breast
cancer stem cells [39].

In the case of colon cancer, Amino-purvalanol A was
found as an exclusive repurposed drug. Amino-
purvalanol A is a cell-permeable cyclin-dependent kinase
inhibitor that arrests cell cycle at G2/M boundary
(IC50 = 1.25 uM) and induces apoptosis at concentra-
tions greater than 10 pM. A very similar compound,
purvalanol A, potently suppresses the anchorage-
independent growth of c-Src-transformed cells as well as
HT-29 and SW48 human colon cancer cells [40].
Moreover, irinotecan, an exclusive repurposed drug that
was found in the case of colorectal cancer, in combin-
ation with fluorouracil and leucovorin benefits patients
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with metastatic colorectal cancer [41]. From the rectum
analysis, mitoxantrone is one out of six exclusive drugs
that were found. Mitoxantrone is used to treat certain
types of cancer, mostly metastatic breast cancer, acute
myeloid leukemia, and non-Hodgkin’s lymphoma.

In the case of glioblastoma, MG-132 is found as an
exclusive repurposed drug. This is a proteasome inhibi-
tor, it has been reported that induces selective apoptosis
in glioblastoma cells through inhibition of PI3K/Akt and
NFkappaB pathways, mitochondrial dysfunction and
activation of p38-JNK1/2 signaling [42]. Finally, brazilin,
a repurposed drug that was found as exclusive for
glioma, it has been reported that inhibits growth and
induces apoptosis in Human glioblastoma Cells [43].

Informed walks and functional performance

We tried to compare our method with other methods
based on the network topology and more specifically on
the centrality measures. More specifically, the top 1000
genes (using LIMMA R package [44] with p-value <0.05
and sorted based on the absolute value of their log Fold
Change) were used in order to construct a co-expression
network for each cancer type. Using the igraph R pack-
age, we calculated the degree, the betweenness and the
closeness centrality of the top 1000 genes for each
cancer type. In order to have the same number of genes
to compare with the Informed Walks, the top 574 genes
for breast cancer, top 547 for colon cancer, top 593 for
colorectal cancer, top 523 for rectum, top 585 for ovar-
ian cancer top 544 for glioblastoma and top 536 genes
for glioma based on the three centrality measures were
used for further analysis.

For each cancer type, the four different ranked lists,
namely the lists from the Informed Walks, the degree
centrality-based ranking, the betweenness centrality-
based ranking and the closeness centrality-based
ranking, were used as input in the ToppGene Suite
(https://toppgene.cchmc.org/prioritization.jsp)  [45], a
one-stop portal for gene list enrichment analysis and
candidate gene prioritization based on functional anno-
tations and protein interactions network. ToppGene,
works by taking as input a training and a test set of
genes and it computes a similarity score between the
two sets based on semantic annotations. In our analysis
we used as training set the most related genes to each
cancer type according to the Malacards human disease
database (http://www.malacards.org) [46] and as test set
each ranked gene list from the Informed Walks method
and the network centralities. We used 3 categorical
terms: pathway, interactions and co-expression to
prioritize the genes for each test set. Table 1 presents
the average similarity score for the 3 categorical terms
for each method and cancer type and the number of sig-
nificant genes (p-value < 0.05) of the test set, derived by
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Table 1 Functional scores of gene lists derived from Informed Walks and network centrality measures

Prioritization based on
Degree centrality

Prioritization based on
Informed Walks

Prioritization based on
Closeness centrality

Prioritization based on
Betweenness centrality

Average of Number of Average of Number of Average of Number of Average of Number of
Functional significant genes  Functional significant genes  Functional significant genes  Functional significant genes
Similarity Score Similarity Score Similarity Score Similarity Score

Breast 0.968 186 0.949 92 0.947 97 0.941 100

Colon 0.771 179 0.682 84 0.683 76 0673 80

Colorectal 0983 153 0939 63 0.948 56 0957 56

Rectum 0.566 41 0.381 8 0402 12 0.392 15

Ovarian 0914 252 0.873 131 0873 112 0.866 116

Glioma 0.875 284 0.861 75 0.829 102 0.823 106

Glioblastoma  0.905 287 0873 118 0.870 113 0.869 100

random sampling from the whole genome. It is notable
that both the maximum average functional similarity
score and the maximum number of significant genes, for
all cancer types, were achieved by Informed Walks.

Discussion and conclusions

In this work we presented the Informed Walks method
and applied the corresponding model to gene co-
expression networks of seven different cancer types in
order to examine the contribution of this approach to
the identification of significant genes and gene-gene
links related to each cancer type. We further analyzed
each derived sub-network, in order to investigate poten-
tial mechanisms and drugs specifically for breast cancer,
colon cancer, colorectal cancer, rectum, ovarian cancer,
glioblastoma and glioma. As described in the previous
section, we have found 10 common pathways for the
seven different cancer types including axon guidance,
cell cycle checkpoints, signaling by FGFR, DNA repair,
DNA replication, opioid signaling, HIV infection, cell
cycle, mitotic signaling by NGF and signaling by EGFR.
These mechanisms have a pivotal role in cancer develop-
ment and tumorigenesis and may be potential thera-
peutic targets (signaling by EGFR). We have also found
exclusive pathways for each cancer type. In the case of
breast cancer, we have found three exclusive pathways,
including Cdc20: Phospho-APC/C mediated degradation
of cyclin A, regulation of beta-cell development and bio-
logical oxidations. It has been reported that Cdc20 and
securin are promising candidates for clinical applications
in breast cancer prognostication, especially in the chal-
lenging prognostic decisions of triple negative breast
cancer. Membrane trafficking has been found as an
exclusive pathway for colorectal cancer. It has been re-
ported that membrane receptors constitute novel targets
during current treatment of metastatic colorectal cancer
(CRC) due to the fact that their aberrant expression/ac-
tivity favors cancer cell properties [31]. Inhibition of
HSL and Wnt signaling pathways, have been found as

exclusive for glioma and ovarian cancer respectively. It is
widely known that the Wnt/p-catenin signaling pathway
has been considered to be a factor in the development
and progression of ovarian cancer [47].

The derived sub-networks were also analyzed by
means of LINCS drug repositioning pipeline, proposing
potential anticancer drugs for each cancer type. Based
on the analysis, we concluded to 17 exclusive out of 20
repurposed drugs for breast cancer, 9 for colon cancer, 8
for colorectal cancer, 6 for rectum, 10 for ovarian cancer,
9 for glioblastoma and 7 for glioma. As described above
in the case of breast cancer, one exclusive drug (ruxoliti-
nib), is on an ongoing clinical trial in combination with
capecitabine for the survival of women with advanced
(Stage III) or metastatic (Stage IV) HER2-negative
breast. Moreover, entinostat in combination with nivolu-
mab and ipilimumab is on a clinical trial (recruiting par-
ticipants) for the examination of their ability in treating
patients with solid tumors that are metastatic or cannot
be removed by surgery or locally advanced or metastatic
HER2-negative breast cancer (ClinicalTrials.gov). In the
case of colon cancer, the exclusive repurposed drug selu-
metinib has been examined in a clinical trial in Phase I
in combination with MEDI4736 in order to investigate
the safety, tolerability, pharmacokinetics and anti-
tumour activity of ascending doses in patients with
advanced solid tumors(ClinicalTrials.gov). Irinotecan has
been found as an exclusive drug for colorectal cancer.
An ongoing clinical trial (Phase 1) has evaluated the
low-dose irinotecan and stereotactic body radiotherapy
to treat colorectal cancer with limited liver metastasis.
Finally, fluvastatin (found to be an exclusive drug for
glioblastoma), is examined for its safety in low and high
grade optico-chiasmatic gliomas (ClinicalTrials.gov).

Despite using the whole spectrum of genes (17,814)
instead of a subset with disease specific genes (i.e. top
1000), Informed Walks model managed to highlight can-
cer specific sub-networks, as well as mechanisms and
genes that are already associated with cancer types in
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the literature. Furthermore, its contribution in the inves-
tigation of repurposed drugs was quite high, as several
drugs are already in ongoing clinical trials.

Finally, the dominance of Informed Walks is profound
in the analysis of the functional performance of the
derived gene lists for each cancer type, compared to the
functional performance of the gene lists derived from
network centrality analysis.

The action of the remaining mechanisms and drugs
proposed by the LINCS may be further investigated,
since they have been derived from genes significantly
related to each cancer type.

We would like to highlight that, in a future direction,
our method could provide even deeper information if it
were applied to single cell analysis data. Actually, at this
stage, the analysis is performed on a group of various
cell types in each tissue sample under the assumption
that all cells of a particular type are identical. It is worth
to note that individual cells within the same population
may significantly differ (a percentage of them could be
non-cancerous) and these differences can have an
impact to the resulted mechanisms.

Methods

Datasets and preprocessing

TCGA mRNA (microarray) gene expression data for
seven cancer types have been obtained from Firehose
(http://gdac.broadinstitute.org/). More specifically, we
collected all the available datasets with both normal and
tumor mRNA gene expression data (Table 2). At the
period (March 2016) of data retrieval from the above
website, only seven cancer types were containing mRNA
gene expression data from tumor and normal patients.
Each dataset contains expression data of 17,814 genes.
The seven distinct TCGA datasets were statistically ana-
lyzed with the LIMMA (Linear Models for Microarray
Data) R package in order to find the Differentially
Expressed Genes (DEGs) in tumor samples compared to
the normal ones [44].

Table 2 TCGA datasets with normal and tumor samples

Cancer Types Total Normal Disease
Samples  Samples  Samples
Breast Invasive carcinoma 587 61 526
Colon Adenocarcinoma 172 19 153
Colorectal Adenocarcinoma 244 22 222
Glioblastoma multiforme 512 10 502
Glioma 539 10 529
Ovarian serous cystadenocarcinoma 580 8 572
Rectum adenocarcinoma 72 3 69
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Network reconstruction

A network inference method, based on mutual informa-
tion, was used in order to reconstruct a co-expression
network for each cancer type using 17,814 genes by
means of MRNETB (Maximum Relevance Minimum
Redundancy Backward) algorithm- an improved version
of the network inference algorithm MRNET (Maximum
Relevance Minimum Redundancy) [48]. MRNET applies
a forward selection strategy to identify a set of neighbors
for every variable. However, forward selection methods
suffer in performance if the first neighbor is chosen
incorrectly. On the other hand, MRNETB implements a
combination of backward elimination and a sequential
replacement procedure keeping the same computational
cost [48]. The selected method is implemented in R
package. Specifically, we used the PARMIGENE
(PARallel Mutual Information calculation for GEne
NEtwork reconstruction) R-package which provides a
parallel estimation of the mutual information based on
entropy estimates from k-nearest neighbors distances
[49], in order to calculate the mutual information and
the MINET (Mutual Information NETworks) R-package
[50] for the MRNETB algorithm.

Subsequently, we applied an edge filtering scheme to
each of the reconstructed networks in order to remove
the low weighted gene - gene links. More specifically, we
iteratively filtered the networks, by removing a percent-
age of the weakest edges compared to the maximum
weight for each network, until the maximum fully
connected sub-network was generated. Finally, we
concluded to 7 sub-networks containing the whole set of
genes (17,814 genes-nodes) and a number of edges of
the order of ~ 10 million.

Informed walks

When randomly walking on a network, even with
restarts, there are some issues that may trap the agent
(random walker) or make the agent’s reporting unim-
portant. Specifically, if the agent’s walk is defined only
by the network characteristics then the agent’s reporting
will be, at the very best, a good approximation of the
network topology that is already known. However, it will
be impossible for the agent to provide any evidence
regarding the hidden functionality within the walked
subnetworks. Further to this, the agent may be
entrapped to walk in dense neighborhoods in the
network without being capable to select a way-out to
other, more isolated, neighborhoods. Trying to overcome
these limitations, we used random walks with restarts
incorporating information from a molecular pathway
network. The latter was generated by connecting path-
ways that share common genes incorporating the
Reactome pathways with their corresponding genes
(Fig. 4) from the ConsensusPathDB database (http://
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v

Select new gene
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Fig. 4 Flowchart presenting the Informed Walks procedure
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consensuspathdb.org/) [51]. The walkers scuff in the co-
expression network using a map that contains informa-
tion regarding pathway associations. More specifically,
the walkers switch from one node to another by examin-
ing if two nodes/genes are involved in the same pathway.
Then they use the shortest path in order to switch from
a node/gene to another. To avoid the entrapments in
certain neighborhoods we used the concept of Levy
flights [52]. Following this approach, the walker investi-
gates the nearby area by sampling from a power law dis-
tribution and, depending on the derived sample, the
walker jumps or not to another area in the network by a
number of steps defined from the sampling.

Deepening in detail, initially the algorithm selects a
random gene from the co-expression network and a
pathway from the pathway network (starting points).
Subsequently, the algorithm identifies all the genes that
are involved in the specific pathway. The shortest paths
from the initial gene to each gene of the same pathway
are calculated and the walker moves to the gene with
the minimum shortest path. The next pathway is
selected through a Monte Carlo decision that favors
(with a 70% probability) the pathways that contain more
common genes with the current pathway. However,
there is a 30% probability to choose a pathway with no

Fig. 5 The layout of the Informed Walks model. Starting from a randomly selected gene and pathway (Starting Points), the algorithm identifies all
genes that are involved in the specific pathway. The shortest paths from the starting point/gene (yellow color) to each gene of the pathway (red
color) are calculated and the walker moves to the gene with the minimum shortest path
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common genes with the current one or even choose
again the same pathway with random sampling.

Usually, the walker searches for genes that are involved in
the starting pathway and moves to the gene/node with the
smallest shortest path from the current gene/node. How-
ever, driven by a power law distribution sampling, the
walker is able to perform Levy flight by moving to another
area of the co-expression network by a sampled number of
steps away from the starting gene, preferably passing from
the edges with the highest weight each time. The total
number of genes (N) in the network defines the various
thresholds and constraints of this Levy flight. Finally, by
integrating each walker’s passing edges, a new network is
derived having the same nodes/genes as the initial gene co-
expression network. Nevertheless, the edges of this network
represent the total passage frequency of all the walkers
between each pair of nodes. From this network, we derived
a subnetwork with the top 500 edges for each cancer type.
The flowchart of the methodology and the visualization of
the Informed Walks procedure are presented in Figs. 4
and 5 respectively.

The Informed Walks model has been implemented in
R programming language. The input files were the co-
expression network for each cancer type and the path-
way network. More specifically, the Informed Walks
model was applied to the large-scale gene co-expression
network that contained 17,814 node/genes and ~ 10 mil-
lion edges. For each cancer type, the Informed Walks
algorithm was executed for 1000 iterations with 300
restarts (walkers). The demanding computations were
performed on ‘ARIS’ National High Performance
Computing Infrastructure of the Greek Research and
Technology Network. Specifically, each walker was
allocated to run in parallel in 20 separate nodes, each one
processing 15 different tasks and requiring 48GB of RAM.

Additional file

Additional file 1: Table S1. Common and Exclusive genes between
the seven subnetworks for each different cancer type. Table S2.
Significant pathways for the case of common genes between the seven
cancer types. Table S3. Significant pathways for the case of the exclusive
breast cancer genes. Table S4. Significant pathways for the case of the
exclusive colon cancer genes. Table S5. Significant pathways for the case
of the exclusive colorectal cancer genes. Table S6. Significant pathways
for the case of the exclusive rectum genes. Table S7. Significant
pathways for the case of the exclusive ovarian cancer genes. Table S8.
Significant pathways for the case of the exclusive glioma genes. Table S9.
Significant pathways for the case of the exclusive glioblastoma genes.
Table S10. Significant pathways for the case of breast cancer. Table S11.
Significant pathways for the case of colon cancer. Table $12. Significant
pathways for the case of colorectal cancer. Table S13. Significant pathways
for the case of rectum. Table S14. Significant pathways for the case of
ovarian cancer. Table S15. Significant pathways for the case of
glioblastoma. Table S16. Significant pathways for the case of glioma.
Table S17. Common and Exclusive mechanisms between the seven
different cancer types. Table S18. Common and exclusive
repurposed drugs of each cancer type. (DOCX 52 kb)
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