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Abstract

Background: Cellular behaviors are governed by interaction networks among biomolecules, for example gene
regulatory and signal transduction networks. An often used dynamic modeling framework for these networks,
Boolean modeling, can obtain their attractors (which correspond to cell types and behaviors) and their trajectories
from an initial state (e.g. a resting state) to the attractors, for example in response to an external signal. The existing
methods however do not elucidate the causal relationships between distant nodes in the network.

Results: In this work, we propose a simple logic framework, based on categorizing causal relationships as sufficient or
necessary, as a complement to Boolean networks. We identify and explore the properties of complex subnetworks
that are distillable into a single logic relationship. We also identify cyclic subnetworks that ensure the stabilization of
the state of participating nodes regardless of the rest of the network. We identify the logic backbone of biomolecular
networks, consisting of external signals, self-sustaining cyclic subnetworks (stable motifs), and output nodes.
Furthermore, we use the logic framework to identify crucial nodes whose override can drive the system from one
steady state to another. We apply these techniques to two biological networks: the epithelial-to-mesenchymal
transition network corresponding to a developmental process exploited in tumor invasion, and the network of
abscisic acid induced stomatal closure in plants. We find interesting subnetworks with logical implications in these
networks. Using these subgraphs and motifs, we efficiently reduce both networks to succinct backbone structures.

Conclusions: The logic representation identifies the causal relationships between distant nodes and subnetworks.
This knowledge can form the basis of network control or used in the reverse engineering of networks.

Keywords: Boolean networks, Biological networks, Regulatory functions, Signal transduction network, Attractor,
Stable motif, Network model, Sufficient and necessary conditions

Background
Dynamics at the cellular level are governed by vari-
ous interaction networks among biomolecules, including
signal transduction, metabolic and gene regulatory net-
works. The nodes of these networks are different types
of biomolecules: proteins, mRNAs and small molecules,
while the edges signify biochemical reactions, protein-
protein interactions or transcriptional regulation via
directional mass or information flow. Many cellular func-
tions involve numerous nodes and interactions, hence
these networks are large and complex. Various model-
ing techniques, involving different levels of detail and

*Correspondence: ppm5104@psu.edu
1Department of Physics, The Pennsylvania State University, 16802 University
Park, PA, USA
Full list of author information is available at the end of the article

necessitating knowledge of varying amounts of biological
information, have been developed to analyze these net-
works [1–14]. A lot of quantitative information can be
obtained from continuous models formulated as differen-
tial equations, construction of which needs knowledge of
the values of chemical kinetic parameters, reaction rates,
etc [3–6]. In contrast, discrete dynamic models give a
good qualitative understanding of the system using only
the inhibiting or activating nature of the interactions with-
out the use of any kinetic parameters [7–14]. The simplest
discrete dynamic framework, called a Boolean model,
characterizes each node with two states: 1 (ON, meaning
above-threshold expression or activity) or 0 (OFF, mean-
ing below-threshold expression or activity) [15–18]. In
this model, the future state of a node is determined by a
logic function of the current states of its regulators. This
logic function is called a Boolean regulatory function and
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usually written as fNode. The network dynamics can be
understood by starting from a suitable initial state and
successively evaluating the Boolean regulatory function of
each node to find its next state. The resulting system tra-
jectories can be summarized as a state transition graph
whose nodes are states of the system and whose edges rep-
resent state transitions [18, 19]. If a state in this state tran-
sition graph does not have an outgoing edge to another
state, it is a fixed point (also called steady state). If the
transition graph contains a cycle or a strongly connected
component of certain states, and if there are no transitions
that go out of this strongly connected component, the
respective states form a complex attractor. Often, Boolean
networks are too large and complex to be analyzed by
exhaustive simulations of the system trajectories. An effi-
cient alternative is to identify so-called stable motifs [20],
generalized positive feedback loops which when stabilized
in a certain state maintain that fixed state of the con-
stituent nodes. Successive identification and reduction of
stable motifs can be used to identify the steady states of
the system, or the partial steady states wherein a frac-
tion of the nodes stabilize and the remaining nodes may
oscillate [20–22]. Similarly, oscillating motifs, i.e., feed-
back loops where the constituent nodes’ states oscillate,
represent complex attractors of the network [23]. The suc-
cession diagram resulting from the iterative identification
and elimination of stable motifs reflects the points of no
return in the system’s dynamics and can be used as an
alternative of the state transition graph [20].
To complement these analyses of the network’s dynam-

ics and attractors, we propose a simple logic framework
for a deeper insight into the causal structures that ulti-
mately determine the system dynamics. This paper is
organized in two major parts, where the first part builds
up the theoretical formalism and the second part con-
tains two applications to published Boolean models. We
start with describing the proposed causal edge represen-
tation and the corresponding logic implications. Once
the edges are labeled with causal logic, we identify ways
to find paths and subnetworks that, in their complete-
ness, imply a particular logic. This is a rather strong
and useful implication. For example, if there is a node
X at a significant graph-theoretic distance from another
node Y, and X has a logical implication on Y, we can
predict the state of Y if we know the state of node X
without the knowledge of the states of any other nodes
of the network. The logic subgraphs and paths have
interesting properties and can be used to develop an
efficient network reduction technique. We also identify
feedback loops with logic implications that are equiva-
lent to stable motifs. We then develop a succinct rep-
resentation of the relationship between input signals,
the motifs and output (or sink) nodes. This representa-
tion intuitively expresses the network logic and indicates

which nodes can drive the network to a particular
steady state.
Using the causal logic framework, we analyze two intra-

cellular networks, one from humans and the other from
plants. The first network characterizes the epithelial-to-
mesenchymal transition (EMT), which is a developmental
process exploited by cancer cells to initiate metastasis and
tumor invasion. We summarized this 69 node EMT net-
work and its dynamics into a succinct 22 node backbone
graph. The second network corresponds to the opening
and closing of stomatal pores, which is critical for the
regulation of carbon-dioxide intake and water vapor loss.
In drought conditions, the phytohormone abscisic acid
(ABA) acts as a signal in an intracellular network that
induces stomatal closure for prevention of water loss. We
summarized the 80 node ABA-induced stomatal closure
network to a 14 node backbone structure.

Methods
The structure of a regulatory network expresses the rela-
tionship between two nodes (e.g. between a kinase and
its target protein) but the logical implication of the rela-
tionship is not completely specified; all we know from the
edge between the two nodes is whether the activity of the
source node influences that of the target node either in an
activating or in an inhibiting manner. The Boolean regu-
latory function of a target node describes the combined
effect of all of its regulators and does not separate the
effect of a single regulator. We propose a framework to
also express the individual logic effect of a regulator node
on a target node as a property of the edge between them
and hence communicate the exact relationship between
the regulator and the target node through the network
representation.We characterize edges as sufficient or nec-
essary, which tells whether the activity of the regulator
node is sufficient or necessary to activate (or de-activate)
the target. This means that if we know the state of a regu-
lator, depending on the edge type, we can have a definite
knowledge of the state of the target node irrespective of
the state of the rest of the network, as illustrated in Fig. 1.
This representation incorporates the edge logic into the
network structure. For consistency, we consider the case
of sustained (in)activity of the regulator node and focus
on the long-term steady state of the target node. Alterna-
tive situations are considered in the “Discussion” section.
For an activating regulator A that has a necessary edge to
a target node B, deactivating the regulator (fixing it in the
OFF state) ensures that the target is deactivated irrespec-
tive of the rest of the network, as shown in Fig. 1a. The
Boolean regulatory function for this target would include
an AND clause with this regulator. For example, in Fig. 1a,
fB = A AND x. On the other hand, if an activating regu-
lator node A is sufficient for a target node B, it means that
if A is ON, then B will also stabilize to ON, irrespective of
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Fig. 1 Causal relationship between two nodes expressed by the edge type. Edges ending in an arrow (→) signify activation and edges ending in a
bar (�) signify inhibition; node x signifies other regulator(s) of B. a A is necessary for B, meaning that whenever A is OFF, Bmust be OFF, regardless of
the state of x; b A is sufficient for B, which means that A being ON implies that B is ON, regardless of the state of x; c A is a necessary inhibitor of B, i.e.,
Amust be ON to inhibit B, implying that when A is OFF, Bmust be ON, regardless of the state of x; d A is sufficient to inhibit B, i.e., whenever A is ON,
Bmust be OFF, regardless of the state of x; e A is sufficient and necessary for B, i.e., B is always stabilized in the same state as A; f A is a sufficient and
necessary inhibitor for B, i.e., B is always stabilized in the state opposite of that of A. Blue edges represent necessary relationships, red edges
represent sufficient relationships and black edges represent a sufficient and necessary relationship i.e., when the target node has only one regulator.
The corresponding truth table of steady states for each edge type is on the right. States not specified by the logic relationship between A and B,
which therefore depend on x, are shown as question marks. The states of A shown in red are the causative states and the states of B shown in red are
the resultant states

the state of the rest of the network, as shown in Fig. 1b.
Consequently, in the Boolean regulatory function of B, A
is connected by an OR operator to the other regulator(s)
of B, i.e. fB = A OR x. To understand how this frame-
work realizes inhibitory edges, it is important to note that
inhibition implies the capability to deactivate something.
A necessary inhibitory edge, e.g., A � B in Fig. 1c, means
that the sustained activity of A is necessary to inhibit the
target node B, that is, if the regulator node is kept inactive
(A = OFF), then the target node would be activated (B =
ON) irrespective of the states of other regulators. This is
observed when the Boolean regulatory function of the tar-
get contains the OR NOT clause with this regulator, i.e.,
fB = (NOT A) OR x. A sufficient inhibitory edge, e.g.,
A � B in Fig. 1d, means that sustained activity of the reg-
ulator node (A) is sufficient to deactivate the target node
(fixes B = OFF) irrespective of the state of the rest of
the network. The Boolean regulatory function of B must

hence contain the AND NOT clause with the regulator,
i.e., fB = (NOT A) AND x. If an edge is both sufficient
and necessary then the source node is the only regulator of
the target node (Fig. 1e), so the Boolean regulatory func-
tion for B is: fB = A. When the target node has just one
regulator that is inhibitory, there is a sufficient and neces-
sary inhibiting edge as in Fig. 1f. The Boolean regulatory
function in this case is fB = NOT A.
A target node can only have certain combinations of

logical regulators. For example, if a regulator is directly
(through a single edge) sufficient for a target node, there
cannot be another regulator (independent of the first) that
is directly necessary for this target since the case where the
necessary regulator is OFF while the sufficient regulator is
ON yields contradictory specifications for the target node.
Sufficient regulators are only compatible with necessary
inhibitors (i.e. resulting in Boolean regulatory functions of
the type “A OR NOT B”), and necessary regulators can
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only be combined with sufficient inhibitors (in Boolean
regulatory functions of the type “A AND NOT B”). There
can be cases where a regulator is neither directly sufficient
nor necessary for the target but it has a logical implica-
tion when combined with other regulators. For example,
consider the following Boolean regulatory function: fD =
A OR (B AND C). Here, A is sufficient for D while B is
neither sufficient nor necessary for D. The combination
(B AND C) is sufficient for D. We introduce mediator
nodes in the network to represent such cases of relation-
ships embodied by groups of nodes. The above example is
shown in Fig. 2 where M1 is a mediator node and fM1 =
B AND C. This implies that B is necessary for M1 while
M1 is sufficient for D with the equivalent Boolean regula-
tory function: fD = A OR M1. The use of mediator nodes
ensures that all activating edges incident on a node (or
a mediator node) have the same color (i.e. logic implica-
tion) while all inhibiting edges incident on the same node
are of the opposite color of activating edges. For simplic-
ity and optimization of this representation, we propose
that the Boolean regulatory functions be expressed either
in Conjunctive Normal Form (CNF) or in Disjunctive
Normal Form (DNF). In this work, we chose the form
(CNF or DNF) that minimizes the number of edges and
mediator nodes. We ensured that the chosen form of the
Boolean regulatory function covers all prime implicants.
Two consecutive edges can lead to a particular logical

implication (e.g. sufficient), thus defining the chaining of
edges. For example, two sufficient edges, such as A → B

Fig. 2 Example of a causal edge representation of a Boolean network.
Blue edges represent necessary relationships, red edges represent
sufficient relationships and the black edge represents a sufficient and
necessary relationship. NodeM1 (blue) is a mediator node. Node B is a
signal (source node) while node D is an output node. The Boolean
rules are: fA = B OR (NOT C); fC = B; fD = A OR (B AND C)

and B → C in Fig. 3, can be chained to yield a sufficient
relationship, i.e., A is sufficient for C. The B → C suf-
ficient edge can be chained with the sufficient inhibitory
edge C � D and yields a sufficient inhibitory relation-
ship, meaning that setting B ON stabilizes D to OFF
irrespective of the states of all nodes other than B, C
& D. By extension, a two-edge path (e.g. ABC) may be
chained with an edge to yield a logic implication of the
resulting three-edge path (e.g. the ABCD path is sufficient
inhibitory). If a linear path (succession of edges) has all its
edges chaining in a certain manner, then the path can be
attributed a particular logical implication (e.g., sufficient,
necessary). For example, if each edge in a linear path in
the network is sufficient (respectively, necessary) then the
path is also sufficient (respectively, necessary), see Fig. 3.
We determined all the cases of chaining of consecutive
edges or paths and expressed it in a chain function, sum-
marized in Table 1. With the help of this function, we can
determine the causal effect of a distant node on another.
For example, if a linear path is sufficient and we fix the first
node toON, then the last node will also stabilize to theON
state. As an additional example, if a sufficient inhibitory
path (e.g. ABCD in Fig. 3) is followed by a necessary path
(DEF), fixing the first node to ON would stabilize the tar-
get of the sufficient inhibitory path (D) to OFF and since
this target is the first node of the necessary path, it will
stabilize the last node of the combined path (F) to OFF.
This combination would hence result in the same effect as
a sufficient inhibitory path, as shown in Table 1.

Results
Subgraphs with causal logic implication
If there is no linear path of a particular causal implication
between a pair of nodes, there can still be a logic relation-
ship between them via the combination of multiple paths.
These combinations of multiple paths between a pair of
nodes, which we will refer to as subgraphs, can be used
to understand what can be achieved by fixing the source
(starting) node to a particular state. For example, having a
necessary subgraph implies that if we fix the source (start-
ing) node of the subgraph to OFF then the target (last)
node of the subgraph stabilizes in the OFF state irrespec-
tive of the state of the rest of the network (i.e. of the nodes
not contained in the subgraph).
We find that a sufficient subgraph is formed if there

are multiple necessary regulators (and no other types of
regulators) of the target node (e.g. G, F and C in Fig. 4
are necessary regulators of D) and the source is sufficient
for each of these necessary regulators. The source may
be sufficient for each of the necessary regulators via an
edge, a path (as is A for nodes G, F and C in Fig. 4),
or even a subgraph. Another possible architecture of a
sufficient subgraph is when there are multiple sufficient
inhibitory regulators (and no other types of regulators)
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Fig. 3 Possible logical linear paths. ABC is sufficient; ABCD is sufficient
inhibitory; DEF is necessary; DEFG is necessary inhibitory; ABCDEFG is
sufficient. Incoming arrows that have no starting points indicate
unknown additional regulators

and the source is a sufficient inhibitor of each of these
regulators. In this case, keeping the source ON stabilizes
all the regulators in the OFF state, allowing the target
to turn ON. Finally, these two types of relationships can
be mixed: if the target node has necessary and sufficient
inhibitory regulators (and no other regulators), and the
source is sufficient for the necessary regulators and a suf-
ficient inhibitor of the sufficient inhibitory regulators, the
source is overall sufficient for the target. For example, in
the sufficient subgraph from A to K in Fig. 4 the tar-
get node K has a necessary regulator, E, and a sufficient
inhibitory regulator, L. The source node A is sufficient for
E via a subgraph from A to D and then an edge from D
to E; while A is a sufficient inhibitor of L via a path (one

can quickly check from Table 1 that ANML is indeed a
sufficient inhibitory path). When A is fixed to the ON
state, the A − E sufficient subgraph ensures that E stabi-
lizes to ON as well, while the A − L sufficient inhibitory
path ensures that L stabilizes in the OFF state. Since the
Boolean regulatory function of K is fK = E AND NOT L,
the target node K stabilizes in the ON state, making the
A − K subgraph a sufficient subgraph. Generally, for each
logic implication between a source and a target there exist
multiple pairings of logic implications that may not be
defined for chaining of two paths but can yield the desired
logic implication if one of the pairings apply for each reg-
ulator of the target. Our previous example showed that
the pairing of sufficient with necessary, and the pairing
of sufficient inhibitory with sufficient inhibitory, yields a
sufficient subgraph. We hence propose a subgraph chain
function, in analogy to the chain function for paths, and
indicate it in Table 2. Figure 4 illustrates sufficient and
necessary subgraphs.
We implemented the path and subgraph chain func-

tions (Table 2) to find subgraphs between pairs of nodes
with one of the logical implications (sufficient, neces-
sary, sufficient inhibitor, necessary inhibitor, sufficient
and necessary, or sufficient and necessary inhibitor). The
algorithm (presented in more detail in Additional File 1)
takes as input a network with assigned edge logic implica-
tions (which in turn can be constructed from the Boolean
rules of each node), a start-node (S) and an end-node
(E). The first step of the algorithm is to create a list of
all simple paths from S to E. This list is obtained using
the networkx.all_simple_paths built-in function from the
Networkx graph library which uses a modified depth-first
search to generate the paths. For reducing computation
time, the list is sorted by increasing path length. The paths
are scanned one by one, starting with the shortest, until
we find a subgraph with a logical implication. For each
path, the algorithm tries to chain consecutive edges, i.e.,
obtain the cumulative logical implication of the consecu-
tive edges. During this chaining of edges, if a certain edge
(for exampleA → B) cannot be chained, i.e., the combina-
tion of the path from S to A chained with the edge A → B
yields “-” in the chain function in Table 1, then the algo-
rithm tries to find a subgraph from S to B by looking at
the logical implication of the start-node S on each of the
regulators of node B. So, the algorithm now scans paths
from S to other regulators of B. If the subgraphs/paths
from S to each of the regulators of B chain with the respec-
tive edges between each regulator and B, and yield the
same subgraph type as per the subgraph chain function
in Table 2, the corresponding implication is recorded and
the next edge in the path is scanned. If the same subgraph
type is not yielded, this means the path being scanned
does not have a logical implication hence we scan the next
path between S and E. If while scanning a path, we reach
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Table 1 The chain function: the rows represent the logic type of the preceding edge or path and the columns represent the type of
the succeeding edge or path; each cell indicates the type of the resulting path; “-” indicates that there is no particular logical
implication when such paths are chained

Succeeding suff necc suff & necc suff inh necc inh suff & necc inh

Preceding

suff suff - suff suff inh - suff inh

necc - necc necc - necc inh necc inh

suff & necc suff necc suff & necc suff inh necc inh suff & necc inh

suff inh - suff inh suff inh - suff suff

necc inh necc inh - necc inh necc - necc

suff & necc inh necc inh suff inh suff & necc inh necc suff suff & necc

“suff” stands for sufficient, “necc” for necessary, “suff & necc” for sufficient and necessary, i.e. only one regulator (activating), “suff inh” stands for sufficient inhibitory, “necc inh”
for necessary inhibitory and “suff & necc inh” for sufficient and necessary inhibitory, i.e., only one regulator (inhibiting)

the node E (i.e., the path is completely scanned) then the
resultant logical implication and the complete subgraph is
returned as output. If all the paths have unfinished scans
(i.e., none of them are a logic path or subgraph), the func-
tion reports no logic relationship between the given pair of
nodes. An illustration of the algorithm is provided in panel
B of Fig. 4, where the goal is to find the subgraph between
node A and node D of Fig. 4a. In this example, the target
nodeD has three necessary regulators:C, F andG, and the
source node A is sufficient for each of these regulators.

Properties of logic subgraphs
The causal logic representation allows the identification
of the conditions under which a cycle (feedback loop) can

intersect a logic path or subgraph. Here, intersection of a
cycle and a subgraphmeans that two ormore nodes and at
least one edge is shared by the cycle and the subgraph. We
find that a sufficient subgraph that does not contain any
inhibitory edges cannot intersect a necessary cycle. Anal-
ogously, we also find that a necessary subgraph without
any inhibitory edges cannot intersect a sufficient cycle.
A necessary cycle could intersect a sufficient subgraph

containing inhibitory edges only if the intersection follows
a sufficient inhibitory section of the subgraph. An exam-
ple is illustrated in Fig. 5, where the intersection CD of the
necessary cycle CDE with the subgraph (path) ABCDFG
follows a sufficient inhibitory section ABC. Analogously,
a sufficient cycle can intersect a necessary subgraph

a b

Fig. 4 Sufficient and necessary subgraphs. a JIAF is a necessary subgraph where I and A are sufficient regulators of the subgraph’s target, F, and the
subgraph’s source J is necessary for each of these. AHFBGCD is a sufficient subgraph where G, F and C are the necessary regulators of the target
node D and the source node A is sufficient for each of these regulators. AHFBGDCNMELK is a sufficient subgraph where E is a necessary regulator and
L is a sufficient inhibitory regulator of the target node K and the source A is sufficient for E while it is sufficient inhibitory for L. b Flowchart illustrating
the application of the algorithm to identify the sufficient subgraph AHFBGCD from the network in panel A. The abbreviations used for causal logic
implications are as follows: s-sufficient; n-necessary; si-sufficient inhibitor
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Table 2 The subgraph chain function: The rows represent the
logic type of the preceding edge or path and the columns
represent the type of the succeeding edge or path; each cell
corresponds to the type of subgraph that may exist if there is a
pairing of the preceding relationship with the succeeding
relationship

Succeeding suff necc suff inh necc inh

Preceding

suff - suff - suff inh

necc necc - necc inh -

suff inh suff inh - suff -

necc inh - necc inh - necc

A subgraph exists only if this chain function gives the same result (the same values
in the corresponding cells) for all regulators. “-” indicates that there is a path, see
Table 1. “suff” stands for sufficient, “necc” for necessary, “suff & necc” for sufficient
and necessary, i.e. the only regulator (activating), “suff inh” for sufficient inhibitory,
“necc inh” for necessary inhibitory and “suff & necc inh” for sufficient and necessary
inhibitory, i.e., the only regulator (inhibiting)

containing inhibitory edges only if the intersection follows
a necessary inhibitory section of the subgraph. A detailed
proof for these properties is given in Additional file 2.
We also studied the case of two subgraphs that have

different starting (source) nodes but end in the same tar-
get node; we will refer to this situation as co-pointing
subgraphs. We find that if there are two co-pointing
subgraphs, one of which is necessary while the other
is sufficient, then they must intersect. If either of the
starting points is a signal node (with in-degree 0) then
the starting node of the other subgraph must lie in
the intersection. If the subgraph starting with a signal

Fig. 5 Necessary cycle intersecting with a sufficient subgraph.
ABCDFG is a sufficient path intersecting the necessary cycle ECD. The
intersection, i.e. the edge C → D, follows a sufficient inhibitory
portion of the sufficient subgraph (ABC)

node is sufficient, then this signal node must be suffi-
cient for the starting node of the necessary subgraph.
This situation occurs frequently when using genetic or
pharmacological knockout experiments to identify puta-
tive signal transduction mediators. The signal is, or at
least it is strongly expected to be, sufficient for a rele-
vant target node that expresses the outcome of the signal
transduction process (assuming the presence of molecules
generally necessary for life). Finding that this knockout
disrupts the signal transduction process and eliminates
the outcome even in the presence of the signal makes
the putative mediator necessary for the target node. Our
result formalizes and proves the implicit conclusion that
the knocked-out node is indeed a mediator of the process,
i.e. a connection from the signal to the knocked-out node
exists.

Stable motifs
If a subgraph of a particular logic implication forms a
cycle, i.e., the source (starting) node and the target (end-
ing) node of the subgraph are the same, we call it a cyclic
subgraph. Such cyclic subgraphs may correspond to stable
motifs. A stable motif is a strongly connected subnetwork
which maintains a fixed state of its constituent nodes
regardless of the rest of the network [20]. For a cyclic
subgraph to be a stable motif, it should be either suffi-
cient, necessary or sufficient and necessary for one of its
nodes when this node is considered as both the source and
the target of the subgraph. A stable motif represented by
a sufficient cyclic subgraph is illustrated in Fig. 6. A suffi-
cient cyclic subgraph is a stable motif because if the source
is activated, there is a path or subgraph from the source
to itself, which keeps it activated i.e. maintains its fixed
ON state. The starting (and ending) node of the cyclic
subgraph, when fixed to the state corresponding to the
stable motif, can drive the motif, i.e., stabilize all the nodes
in the motif. We refer to these nodes as driver nodes. We
also find that a given stable motif can have more than
one driver node if it corresponds to multiple cyclic sub-
graphs (same motif but different starting/ending nodes):
the starting/ending nodes of each of these cyclic sub-
graphs give us the set of driver nodes. In addition, there
may be a node external of the motif that can fix the state
of a driver node of the motif; we refer to such node as
external driver node.
Owing to the fact that cyclic subgraphs have the same

starting node and ending node, they are naturally denser
and typically more complex than a simple subgraph of
the same size, except for rare cases of self-loops and sim-
ple cycles. Hence, the identification of cyclic subgraphs or
stable motifs is a “worse-case” runtime of the algorithm.
To test the efficiency of our subgraph finding algorithm,
we searched for cyclic subgraphs in an ensemble of ran-
dom Boolean networks (RBNs). An RBN is a network
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Fig. 6 Illustration of a sufficient cyclic subgraph that corresponds to a
stable motif. In the ABCDE subgraph the target node E has two
necessary regulators, C and D, ABC is a sufficient path and A → D is a
sufficient edge, making the entire subgraph sufficient. In the
ABCDEGF subgraph the target node F has two regulators, E and G; the
A to E subgraph is sufficient while the A to G path is sufficient
inhibitory. Using the subgraph chaining function at node E, we chain
the sufficient subgraph ABCDE with the necessary inhibitory edge
E � F, giving us a sufficient inhibitory relationship (check Table 2).
Similarly, at node G, we chain the sufficient inhibitory path ADG with
the sufficient edge G → F which gives sufficient inhibitory (check
Table 1). Since the subgraph chaining for both regulators of the
target node F gives the same result, we have a sufficient inhibitory
subgraph from A to F. FHI is a necessary inhibitory path. Combining
subgraph ABCDEGF and path FHI, we have a sufficient subgraph
ABCDEGFHI with the source node A and target node I. Node A has two
necessary regulators, E and I and we know that A is sufficient for both
of these regulators, hence making A sufficient for itself. We thus have
a sufficient cyclic subgraph (i.e. a sufficient subgraph starting as well
as ending at the same node, A) which in effect is a stable motif. Nodes
with white background are in the ON state, while those with gray
background are in the OFF state in the stabilized state of the motif.
Node names marked in bold indicate driver nodes

randomly selected with equal likelihood from a set of all
possible Boolean networks with a given number of nodes
and edges. We analyzed RBNs with 20-60 nodes and in-
degree varying between 1.2-2.1 and observed that the run-
time was increasing exponentially with the in-degree (for
example, for RBNs of 20 nodes, t ≈ 10−9exp(7kin) sec).
Further detail on the analysis of RBNs and runtime com-
plexity plots are presented in Additional file 1.

Logic-based network reduction
Most complex networks have a large number of nodes
and edges, making their dynamic modeling difficult and
their state space vast. Network reduction methods are
often used to decrease the state space to a manageable
size [24]. Albert et al. in [25] devised two methods for
network reduction and showed their utility in construct-
ing a sparse equivalent network consistent with a set of
indirect experimental observations. The two methods are
Binary transitive reduction (BTR) and Pseudo-Vertex Col-
lapse (PVC) [26]. Binary transitive reduction (BTR) is the
removal of an edge between a pair of nodes if a path of
the same direction and sign exists. Edges known to cor-
respond to interactions, referred to as “critical” edges,
are never removed in the reduction process. As a tool to
reduce the number of nodes in a network, while maintain-
ing all the relationships between important nodes, certain
less important nodes (vertices) of the network are marked
as pseudo-vertices. In PVC, if two pseudo-vertices have
the exact same set of in- and out-neighbors with the cor-
responding signs (promoting or inhibiting) being equal,
then the two pseudo-vertices are collapsed to generate a
new pseudo-vertex with the neighbor set of either of the
two. PVC and BTR can be iteratively used to reduce a
larger and denser network.
In this work, we propose the logic-preserving versions

of BTR and PVC, which minimize the loss of informa-
tion incurred in the reduction process. We define logical
binary transitive reduction (l-BTR) wherein an edge is
deleted if there exists an alternate path with the same
direction, sign, and logical implication as the edge. In
l-BTR as well, we fix a set of critical edges.
In the logic preserving version of PVC, i.e., logical vertex

collapse (LVC), we collapse two vertices if they have the
same neighbor set with equal corresponding directions,
signs and logical implication (edge color). We note that
instead of designating less important nodes as pseudo-
vertices, we define a set of critical nodes and permit the
collapse of all other nodes with each other or with critical
nodes. Thus, l-BTR and LVC are stronger logical ver-
sions of BTR and PVC respectively. Iterative reduction
using these two methods gives a network with the same
causal logic information and hence closer to the entirety
of experimental evidence. In addition to the above two
methods for reduction, we also use edge collapse (i.e.,
collapsing two nodes into one) in case the source node
of the edge is the only regulator of the target node. If a
node is an only regulator of the target, the edge between
the two is sufficient and necessary and hence the Boolean
regulatory function is: ftarget = regulator. Since this work
deals with steady state analysis, the elimination of a time
delay does not have any negative implications, so we col-
lapse the regulator and the target to generate a new node
w such that all the incoming edges into the regulator are
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set as incoming into w while all the outgoing edges from
the target are set as outgoing from w. As illustrated in the
“Application I: logic subgraphs, stable motifs and logic
backbone of the EMT network” section, these three meth-
ods are greatly useful in reducing a large and dense
network while keeping its logic properties intact.

The logic backbone structure
In Boolean models of gene regulatory networks, stable
motifs offer a great insight into the system’s dynamic
repertoire and trajectories [20, 21]. Using the causal
logic representation, we propose the construction of a
logic backbone structure for the Boolean network, which
expresses the network in a very condensed form and gives
an intuitive idea of the system trajectories. This logic back-
bone, comprised of the signal(s), the stable motifs (cyclic
subgraphs) and the output(s), is a network expressing the
logic relationships between these elements. Specifically, a
sufficient edge from a signal to a motif means that the
sustained presence of the signal can stabilize the motif. A
sufficient edge from a stable motif to an output means that
the stabilization of the stable motif into its associated state
leads to the stabilization of the output in the ON state. A
logic backbone structure hence gives us an understanding
of which components of the network (signals or motifs)
can control which other components. The edges between
different elements in the backbone are a representation
of subgraphs or paths between them. We present the
logic backbones of two specific network models in the
“Application I: logic subgraphs, stable motifs and logic
backbone of the EMT network” and “Application II:
Logic subgraphs and logic backbone of the ABA network”
sections.
If a particular stable motif can drive the output or the

entire network to a steady state of biological importance,
then the driver nodes (and external driver nodes) of that
motif become crucial. These nodes act as control nodes
and a state change in one of them due to, for example, a
mutation could stabilize the entire network to a fixed state.
If a system is known to incur state-changing mutations,
we can estimate the probability that a mutation’s effects
will propagate by knowing the fraction of nodes that are
driver nodes. So, for a network with n nodes, of which nd
are driver nodes of motifs that can drive the system to the
attractor A, then a random state-changing mutation will
drive the system to the attractor A with probability nd/n
and the effects of the mutation will stay localized with
probability 1 − nd/n.

Application I: logic subgraphs, stable motifs and logic
backbone of the EMT network
Epithelial-to-mesenchymal transition (EMT) is a devel-
opmental process which is exploited by cancer cells to
initiate metastasis and tumor invasion [27, 28]. Steinway

et al. constructed a signal transduction network and
Boolean model of this transition in response to more
than 10 signals including transforming growth factor beta
(TGFβ), platelet-derived growth factor (PDGF) and Sonic
hedgehog (SHH). An important marker of the epithelial to
mesenchymal transition is loss of E-cadherin expression,
which is known to be mediated by seven transcription
factors which are reported by Steinway et al as SNAI1,
SNAI2, ZEB1, ZEB2, HEY1, FOXC2 and TWIST1 [21].
Steinway et al. include an output node, EMT, whose sole
and negative regulator is E-cadherin. The Boolean model
indicates that the system has two steady state attractors,
one almost the opposite of the other: one corresponding
to the epithelial state, when the output node is in the OFF
state, and one corresponding to the mesenchymal state.
Steinway et al. found that this network has eight stable
motifs (i.e., generalized feedback loops) and the stabiliza-
tion of any one of those can lead to steady states that
correspond to the mesenchymal state.
We analyze the EMT network and its features by trans-

forming it to a causal logic representation. We used the
network and Boolean regulatory functions constructed
from the literature by Steinway et al. [21]. Prior to the
analysis we reduced the 69-node EMT network to a 27
node network using logical vertex collapse, logical binary
transitive reduction, and edge collapse. The reduced net-
work is expressed in causal logic representation in Fig. 7.
We implemented the subgraph finding algorithm (see
Additional file 1) to find subgraphs in this network. To
find the stable motifs, i.e., the cyclic subgraphs, the algo-
rithm was modified to have the source node of the sub-
graph coincide with the target node. We found multiple
cyclic subgraphs which corresponded to seven of the eight
stable motifs reported by Steinway et al. Some of the
cyclic subgraphs found were a union of two or more sta-
ble motifs. This is because stable motifs were defined in
[20] as the smallest self-sustaining subgraphs, to enable
their combinatorial composition. We were however miss-
ing one stable motif (the one represented in Fig. 8). We
found that in addition to stable motifs representable by
cyclic subgraphs, there are some stable motifs which can-
not be stabilized by the sustained state of just one node
but instead need two or more nodes in a fixed state. These
stable motifs can be found by identifying subgraphs from
and to a group of nodes. In such a subgraph, which we will
refer to as extended cyclic subgraph, all the starting nodes,
which we will call collective driver nodes, need to be fixed
to a certain state in order to stabilize all the ending nodes
to a certain state. For example, the extended cyclic sub-
graph in Fig. 8 has two collective driver nodes: SMAD and
ERK. Extended cyclic subgraphs are explained in detail
in Additional file 3. All the stable motifs of the EMT
network, corresponding to cyclic subgraphs or extended
cyclic subgraphs, are shown in Additional file 4. We find
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Fig. 7 Reduced EMT network in the causal logic representation. Red edges are sufficient, blue edges are necessary and black means that the source
node is the only regulator of the target node. All the nodes with numbers (1-10) as labels are mediator nodes. The full names of the abbreviated
node names are given in Table 3 and in Supplemental Table 1 of [21]

multiple subgraphs, a few of which are shown in Fig. 9.
There is a sufficient subgraph from SNAI1 to SMAD,
depicted in Fig. 9a. Since there is a sufficient edge from
SMAD to SNAI1, combining this edge with the subgraph
in Fig. 9a yields a sufficient cyclic subgraph at SNAI1. This
subgraph is a crucial component of the TGFβ feedback
motif (shown in Additional file 4). Fig. 9b illustrates the
subgraph from RAS to E-cadherin, which is a necessary
inhibitory regulator of EMT (i.e., if E-cadherin expression
is lowered, EMT is activated, as can be seen in Fig. 7). E-
cadherin is downregulated if the 7 transcription factors
are ON, all of which can be upregulated by RAS since RAS
is sufficient for them. All the upstream signals in the first
row of Fig. 11 converge on the regulation of E-cadherin
through these transcriptional regulators [21]. This sub-
graph indicates that these transcriptional regulators, and
consequently EMT, can all be activated by upregula-
tion of RAS, as was also found by dynamic simulations
in [21].
Since it is only the driver nodes that can stabilize a stable

motif, we identified logic subgraphs from the network’s
signals (sources) to the motifs’ driver nodes. We also look
for subgraphs through which stable motifs can stabilize
each other, and for subgraphs from any node in the motifs
to the output node (EMT). We find that all of these sub-
graphs signify sufficient relationships. For example, all the

stable motifs converge on the regulation of E-cadherin,
and thus of the output node EMT, through the seven
transcriptional regulators [21].
Figure 10 illustrates different ways by which motifs can

stabilize each other. As the Wnt/β-catenin feedback loop

Fig. 8 Extended cyclic subgraph with two collective driver nodes
corresponding to a stable motif. There is a sufficient subgraph
starting from SMAD and ERK collectively and ending at them. Hence,
SMAD and ERK form a set of collective driver nodes. Nodes with white
background are in the ON state, while those with gray background
are in the OFF state in the stabilized state of the motif. Node names
marked in bold and starred refer to collective driver nodes
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a b

Fig. 9 Interesting subgraphs from the EMT network. a Sufficient
subgraph from SNAI1 to SMAD (SNAI=ON => SMAD=ON); b
Sufficient inhibitory subgraph from RAS to E-cadherin (RAS=ON =>

E-cadherin=OFF). Nodes with white background go into the ON state,
while those with gray background go to the OFF state when the
source node is fixed in the ON state

is stabilized, each of the nodes in this motif stabilize to
its corresponding fixed state, denoted by the background
color of the node (white for ON, grey for OFF). The node
GSK3β stabilizes in the OFF state. The SMAD/MAPK
crosstalk motif is essentially a necessary cyclic subgraph
in which GSK3β is the starting and the ending node, that
is, GSK3β=0 is a driver node of this motif. Thus, the sta-
bilization of theWnt/β-catenin feedback loop leads to the
stabilization of the SMAD/MAPK crosstalk motif. The
RKIP feedback loop and SMAD/MAPK crosstalk have
two common driver nodes:MEK and ERK. Stabilization of
either of the motifs implies the stabilization of these two
nodes and hence the stabilization of the other motif. This
is denoted by the double arrow between these two motifs.
The Wnt/β-catenin motif has only one driver node - β-
catenin nucleus which has three regulators, Destruction
Complex, β-catenin membrane and the mediator node 3.
To stabilize β-catenin nucleus to the ON state (which is its
state corresponding to the stabilizedmotif ), the regulators

must be fixed to their corresponding states in the motif,
as denoted by the node background color in the top panel
of Fig. 10. When the motif SMAD/MAPK crosstalk stabi-
lizes, the node GSK3β is fixed to the OFF state and the
necessary subgraph formed by GSK3β , 1, 2, Destruction
Complex ensures that one of the regulators of β-catenin
nucleus is stabilized to the corresponding fixed state of
the motif. Stabilization of the SMAD/MAPK motif fixes
the node RAS to the ON state and the sufficient inhibitory
subgraph from RAS to E-cadherin (Fig 9b) ensures that
E-cadherin is stabilized to the OFF state. This stabiliza-
tion of E-cadherin fixes β-catenin membrane to the OFF
state (E-cadherin is necessary for β-catenin membrane)
and node 3 to the ON state (E-cadherin is a neces-
sary inhibitor of node 3). This way, stabilization of the
SMAD/MAPK crosstalk motif fixes all the regulators of
β-catenin nucleus to their stable states, hence stabilizing
the β-catenin nucleus node itself to the ON state. Since
β-catenin nucleus is the driver node of theWnt/β-catenin
feedback loop, we can conclude that the SMAD/MAPK
crosstalk motif is sufficient to stabilize the Wnt/β-catenin
feedback loop.
We represented the subgraphs starting from signals or

stable motifs and ending in stable motifs or the output
node as edges of the logic backbone network. All of these
edges are of the same type (sufficient), thus for simplic-
ity we do not separately label them. We find that the logic
backbone contains a path from each of the sources to each
of the stable motifs and to the output. Also, there is an
edge or a path from each of the stable motifs to the output.
Thus this logic backbone is an orientation of a complete
graph. For clarity, we apply l-BTR to the backbone net-
work prior to presenting it in Fig. 11. As all the edges of
the logic backbone are sufficient, upregulation of any one
of the signals or stabilizing any one of the motifs leads
to the output node EMT=ON (mesenchymal state). This
suggests that the EMT transition is a very robust outcome
that can be brought on by external as well as internal
drivers.
If the system is in the epithelial state, there are mul-

tiple ways to reach the mesenchymal state, e.g., through
the presence of a signal or through a stabilized motif. For
example, even when all the signals are absent from the
system, it may reach the mesenchymal state if a random
mutation or dysregulation stabilizes the state of a certain
node in the opposite of its epithelial state. Interestingly,
almost half of the 56 non-signal nodes are driver nodes.
Hence the probability for a random node mutation lead-
ing to the mesenchymal state is p = 27/56 = 0.48. Also,
the probability that the effects of a random mutation die
out without stabilizing a motif is given by p′ = 1 − p =
0.52. The driver nodes of the EMT network are shown in
Additional file 5. Many of these nodes are observed to be
dysregulated in cancer patients (i.e. they are constitutively
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Fig. 10 Different kinds of relationships between the stable motifs of the EMT network. The Wnt/β-catenin feedback loop (top) can stabilize the
SMAD/MAPK crosstalk motif (bottom left) since it fixes the state of the node GSK3β which is a driver node of the SMAD/MAPK crosstalk motif. This
crosstalk motif can in turn stabilize the Wnt/β-catenin feedback loop motif since they share the GSK3β node and there is a subgraph from one of its
nodes, RAS, to E-cadherin, a member of the Wnt/β-catenin feedback loop (see Fig 9b). The RAS → E-cadherin sufficient inhibitory subgraph is
detailed in Fig 9b. The SMAD/MAPK crosstalk motif and the RKIP feedback loop (bottom right) can stabilize each other since they share the driver
nodes MEK and ERK. Nodes with white background are in the ON state, while those with gray background are in the OFF state in the stabilized state
of the motif. The names of the driver nodes are shown in boldface

active or otherwise fixed in the functional state corre-
sponding to the mesenchymal state of the node) [29–41].
The details of these literature evidences are specified in
Additional file 6. This is consistent with our finding that
the stabilized mesenchymal state of these nodes can lead
to EMT, the first step toward cancer metastasis.

Application II: Logic subgraphs and logic backbone of the
ABA network
Stomatal pores, responsible for the intake of carbon diox-
ide and the inevitable water loss through transpiration, are
crucial for maintaining the water level in a plant. The clos-
ing and opening of stomata is regulated by the turgidity
of the guard cells that surround the pores; this turgidity
is controlled by signaling networks that respond to mul-
tiple environmental factors such as light, carbon dioxide
and humidity. In drought conditions, plants synthesize
the phytohormone abscisic acid (ABA), which leads to
the closure of stomata to prevent further water loss. The
ABA signaling process has been studied by extensive
experimental investigation and also by modeling analysis
[42–45]. In particular, a recent Boolean model of ABA

induced closure identifies the stable motifs of the ABA
network and identifies the interventions and system tra-
jectories that lead to the attractor associated with stomatal
closure [46].
We used this latter model (i.e., the same Boolean regula-

tory functions and assumed states for unregulated nodes)
to find the logic subgraphs and logic backbone structure of
the ABA induced closure network. Two interesting logic
subgraphs found in the analysis are illustrated in Fig. 12.
The sufficient subgraph in Fig. 12a shows that in the sus-
tained presence of ABA, the node pHc will also stabilize in
theON state. The target node pHc hasmultiple regulators,
including Vacuolar Acidification, ABI1, ABI2 and OST1,
which together regulate the mediator node M2 which in
turn is sufficient for pHc . The signal ABA is sufficient for
the node Vacuolar Acidification via a path. ABA is a suf-
ficient inhibitor of ABI1 and ABI2 through RCARs. ABA
is sufficient for OST1 through the sufficient subgraph that
includes ABA, RCARs, ABI1, ABI2, M1, OST1. Accord-
ing to the subgraph chain function detailed in Table 2,
the path (or subgraph) from ABA to each of these reg-
ulators and the edge from the corresponding regulator
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Fig. 11 The logic backbone structure of the EMT network. All signals and the output node EMT are in yellow while the motifs are in blue. All edges
represent sufficient logic relationships. An edge between a signal and a stable motif means that activating the signal can stabilize the motif. An
edge between two motifs means that stabilizing one stabilizes the other. An edge from a stable motif to the output (EMT) means that the stable
motif can activate the output

to node M2 can be chained and give the same outcome,
sufficient. Hence, ABA is sufficient for node M2, which
is a sufficient regulator of pHc. In Fig. 12b the target
node AtRAC1 has two regulators - ABI1 is sufficient while
ABA is a necessary inhibitor. The signal ABA is a suffi-
cient inhibitor of ABI1. The assumed sustained presence
of ABA is equivalent to a sufficient loop on ABA. Both the
sufficient inhibitory + sufficient and sufficient + necessary
inhibitory pairings lead to sufficient inhibitory as given in
the subgraph chain function in Table 2. Our causal anal-
ysis recovers the same four stable motifs associated to
ABA induced stomatal closure as the previous analysis.
The logic backbone of the ABA induced closure network
focusing on the case of sustained ABA signal is presented
in Fig. 13. In addition to the signal ABA and the four sta-
ble motifs, this logic backbone also highlights the node
describing the cytosolic Ca2+ level. An interesting feature
of this network is the feedback regulation of Ca2+ (includ-
ing positive feedback through CIS and negative feedback
through Ca2+ATPase), which yields transient increases
(oscillations) in Ca2+c in the presence of ABA. Neverthe-
less, even a single transient increase of Ca2+c can stabilize
three of themotifs independently and contribute, together
with ABA, to the stabilization of the PLDδ-ROS-RBOH-
PA motif. ABA is a sufficient regulator of one of the
processes that generates cytosolic Ca2+, CaIM. The stable

motifs and ABA regulate effector nodes corresponding to
ion and water flow, which lead to stomatal closure (see
Additional file 7).

Discussion
In this work, we presented a representation method that
incorporates all the information conveyed by Boolean reg-
ulatory functions and can serve as an alternative when full
Boolean regulatory functions are not available. In this rep-
resentation framework, we showed how to distill a rather
complex subnetwork into a more direct causal relation-
ship. We identified connectivity patterns that are allowed
and not allowed by the logic of the relationships. An
example of a pattern that is not allowed is having two
independent direct regulators of a node, one of which
is sufficient and the other necessary. In general, two co-
pointing subgraphs, one sufficient and the other necessary
for the same target node, must intersect and the source
node of either of the subgraphs must lie in the intersec-
tion. We devised an algorithm to chain consecutive edges
with different logical implications and search for paths
and subgraphs. By testing the algorithm’s efficiency on an
ensemble of random Boolean networks, we found that it
should work reasonably well on large and dense Boolean
networks. Further, we learnt that the algorithm is suited
to work for biological networks. For example, on networks
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a b

Fig. 12 Interesting logic subgraphs in the ABA network. a Sufficient
subgraph from ABA to pHc. The necessary (or sufficient inhibitory)
regulators Vacuolar Acidification, ABI1, OST1 and ABI2 are together
sufficient for pHc. The source node ABA is sufficient for Vacuolar
Acidification and for OST1 while it is a sufficient inhibitor of ABI1 and
for ABI2. b ABA has a sufficient inhibitory subgraph to AtRAC1. Along
with the necessary inhibitory edge from ABA to AtRAC1, ABA is a
sufficient inhibitor of the sufficient regulator of AtRAC1, ABI1. All
necessary regulators are together sufficient and all sufficient
regulators are together necessary unless otherwise specified via an
additional edge without a starting point

with 80 nodes and average in-degree 1.75, the observed
average runtime for the algorithm was 500 ms. In con-
trast, the ABA network with the same size and in-degree,
could be analyzed much faster – the runtime for the most
complex subgraph was 85 ms. This highlights the fact that
real biological networks usually have simpler and/or more
canalizing logic rules than rules selected at random (which
can include XOR type of rules which essentially never
happen in biological systems).
We explored subgraphs that intersect or form cycles,

and established the correspondence between cyclic sub-
graphs and previously introduced stable motifs. Identifi-
cation of stable motifs must follow an exhaustive method
(as it is based on determining and then filtering all cycles
in an expanded network that incorporates the Boolean
regulatory functions). In contrast, by searching for cer-
tain types of cyclic subgraphs, one can separately look for
single driver and collective driver motifs. Motifs that can
be driven by a single node stabilize more easily (e.g. by
the mutation of a single node). In addition, searching for

motifs driven by one node using the causal logic frame-
work has half the space complexity compared to using the
expanded network method. The driver nodes defined in
this work also form a control set of nodes that can alter
the system’s trajectory.
To exemplify the application of causal logic analysis to

biological systems, we constructed a succinct backbone of
two signal transduction networks. The logic backbone of
the EMT network highlights the robustness of the EMT
outcome. It shows that the presence of any one of the
signals can lead to the stabilization of at least one sta-
ble motif, which then, due to the causal inter-connectivity
of the motifs, leads to the stabilization of all motifs and
finally to the EMT node stabilizing to the ON state. Vari-
ous subgraphs in this network illustrate the strong causal
effect of a node on another, faraway node. For example,
the node RAS can indirectly control all the regulators of
E-cadherin, as shown in Fig. 9b.
Similarly, the backbone of the ABA network is highly

insightful as it illustrates the importance of feedback
mechanisms in regulating the ion flow processes (Anion
efflux and K+ efflux) that are the main effectors in ABA
induced stomatal closure. The node denoting the cytoso-
lic Ca2+ level participates in multiple feedback loops,
both positive and negative, and is an external driver node
of three stable motifs. Due to negative feedback regula-
tion, Ca2+ has a transient, potentially oscillating behavior
in the presence of ABA. Nevertheless, the motifs, once
reaching their corresponding stable states (e.g. in response
to an increase in Ca2+), are fixed in these stable states
despite the oscillating nature of Ca2+. The stable motifs
are sufficient for anion flow and the depolarization of
microtubules, which, coupled with ABA-drivenK+ efflux,
are sufficient for stomatal closure. A possible follow-up to
the causal logic analysis presented here is to consider the
cases wherein constitutive activity of certain network ele-
ments can lead to stomatal closure even in the absence
of ABA. The model of [46] can reproduce most of these
results by assuming an additional feedback. Constructing
the backbone structure corresponding for the interven-
tions that can lead to closure, with or without the newly
predicted interaction, may lead to additional insights and
predictions.
Here we focused on the logic implication of a sus-

tained state of a source node on a target node. While
this is the most frequently encountered example, the
interplay between the complex dynamics and functional
importance of Ca2+ in the ABA network suggests that
elucidating the causal implications of oscillatory states
is an interesting topic for future theoretical exploration.
We propose that one can attribute a logic implication to
an edge in the non-stationary case as well if the time
delay introduced by the edge (i.e. the time difference
between the state change of the regulator and the state
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Fig. 13 The logic backbone of the ABA network. The backbone structure contains the signal ABA, the four stable motifs, the external driver node
(Ca2+ , marked in bold and italic) of the stable motifs, the output node Closure and its key regulators. The edges are representative of logic paths or
subgraphs in the Boolean model. The signal ABA and the output node Closure have yellow background while the motifs are in blue background.
Multiple necessary regulators incident on the same node are together sufficient and multiple sufficient regulators incident on the same node are
together necessary (i.e. their simultaneous inactivity leads to the inactivation of the target node)

change of the target) is sufficiently short compared to the
time scale of the changes in the source node’s state. The
identification of the constraint on the time delays that
makes the identification of logic relationships possible is a
topic of future work.

Conclusion
We have presented a condensation technique for Boolean
networks, which ultimately yields a logic backbone that
expresses the relationship between external/internal sig-
nals and output nodes in an easy to understand manner.
The causal logic framework can also be used for other
network studies. In this work, we started from known
Boolean regulatory functions to obtain the logic prop-
erties of edges. One can also do the converse, use the
experimental information on causal relationships to infer
the Boolean regulatory functions consistent with them.
In cases when there is insufficient information to infer

unique Boolean functions, we can still conclude certain
relationships. For example, as knockout experiments are
more prevalently conducted than constitutive activation
experiments, we are more likely to know all necessary
regulators than all sufficient regulators of a certain node.
Even if not all sufficient regulators are known, all the
conclusions on linear paths and most sufficient subgraphs
(and hence stable motifs formed by the sufficient cyclic
subgraphs) would still be valid. Furthermore, we can also
use the knowledge of subgraphs to fit newly-emerging
evidence into the network structure. For example, con-
sider that we experimentally know that a source node
is sufficient for a target node (in the presence of all the
molecules necessary for life), and this is realized via a sub-
graph in the network. If a new necessary regulator of this
target node is discovered, we can use our result on co-
pointing subgraphs to infer that the source is sufficient for
this new regulator.
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Table 3 List of abbreviated network node names for the EMT
network and the ABA network

Abbreviation Full name (Gene name/ official name)

EMT network:
EMT Epithelial to Mesenchymal Transition
TGFβ Transforming growth factor beta
PDGF Platelet derived growth factor
SHH Sonic Hedgehog
SNAI1 snail homolog 1 (Drosophila)
SNAI2 snail homolog 2 (Drosophila)
ZEB1 zinc finger E-box binding homeobox 1
ZEB2 zinc finger E-box binding homeobox 2
HEY1 hairy/enhancer-of-split related with YRPWmotif 1
FOXC2 forkhead box C2 (MFH-1, mesenchyme forkhead 1)
TWIST1 twist basic helix-loop-helix transcription factor 1
ERK mitogen-activated protein kinases 1 & 3
RAS v-Ha-ras Harvey rat sarcoma viral oncogene

homolog
miR200 microRNA 200b
RKIP phosphatidylethanolamine-binding protein 4;

RAF1 the inhibitory protein
MEK mitogen-activated protein kinase kinases 1 & 2
CHD1L chromodomain helicase DNA binding protein 1-like
IGF1 Insulin-like growth factor 1
EGF epidermal growth factor
HGF hepatocyte growth factor
FGF fibroblast growth factor 2
Wnt wingless-type MMTV integration site family,

member 1
NFκB nuclear factor of kappa light polypeptide gene

enhancer in B-cells 1
βTrCP beta-transducin repeat containing E3 ubiquitin

protein ligase
H1F1α hypoxia inducible factor 1, alpha subunit

(basic helix-loop-helix transcription factor)
FGFR fibroblast growth factor receptor 1
PDGFR platelet-derived growth factor receptor, alpha

& beta polypeptides
SOS/GRB2 son of sevenless homolog 1 (Drosophila) and

growth factor receptor-bound protein 2
GSK3β glycogen synthase kinase 3 beta
Dest_complex Destruction complex
β-catenin_nuc nuclear β-catenin (cadherin-associated protein)
β-catenin_memb membrane-bound β-catenin

(cadherin-associated protein)
GLI GLI family zinc finger 1 & 2
DSH dishevelled, dsh homolog 1
SUFU suppressor of fused homolog (Drosophila)
NOTCH_ic NOTCH (Drosophila) Homolog 1
E-cadherin cadherin 1, type 1, E-cadherin
TCF/LEF a basic helix-loop-helix transcription factor &

lymphoid enhancer-binding factor 1
RAF v-raf-1 murine leukemia viral oncogene homolog 1
ILK integrin-linked kinase
AKT v-akt murine thymoma viral oncogene
EGR1 early growth response 1
c-fos FBJ murine osteosarcoma viral oncogene homolog
CsI recombination signal binding protein for

immunoglobulin kappa J region

Table 3 List of abbreviated network node names for the EMT
network and the ABA network (Continued)

Abbreviation Full name (Gene name/ official name)

ABA network:

ABA Abscisic acid

pHc Increase of the cytosolic pH level

AtRAC1 small GTPase RAC1

ABI1 ABA (abscisic acid)-insensitive 1

ABI2 ABA (abscisic acid)-insensitive 2

Ca2+c Cytosolic calcium

Ca2+ ATPase Ca2+ ATPases and Ca2+/H+ antiporters responsible

for Ca2+ efflux from the cytosol

PLDδ Phospholipase D δ

ROS Reactive oxygen species

RBOH NADPH oxidases AtRBOH D and F

PA Phosphatidic acid

PI3P5K Phosphatidylinositol 3-phosphate 5-kinase

PtdIns(3,5)P2 Phosphatidylinositol 3,5-bisphosphate

V-PPase vacuolar proton pyrophosphatase

RCARs Regulatory Components of ABA Receptor

OST1 protein kinase OPEN STOMATA 1

CaIM Ca2+ influx across the plasma membrane

CIS Ca2+ influx to the cytosol from intracellular stores

AnionEM Anion efflux through the plasma membrane

K+ Efflux K+ efflux through the plasma membrane

H2O Efflux water efflux through the plasma membrane

MPK 9/12 Mitogen-activated protein kinases 9 and 12

CPK 3/21 Calcium-dependent protein kinases 3 and 21

SLAC1 Slow Anion Channel- associated 1
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