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Abstract

Background: Identification of driver genes related to certain types of cancer is an important research topic. Several
systems biology approaches have been suggested, in particular for the identification of breast cancer (BRCA) related
genes. Such approaches usually rely on differential gene expression and/or mutational landscape data. In some cases
interaction network data is also integrated to identify cancer-related modules computationally.

Results: We provide a framework for the comparative graph-theoretical analysis of networks integrating the relevant
gene expression, mutations, and potein-protein interaction network data. The comparisons involve a
graph-theoretical analysis of normal and tumor network pairs across all instances of a given set of breast cancer
samples. The network measures under consideration are based on appropriate formulations of various centrality
measures: betweenness, clustering coefficients, degree centrality, random walk distances, graph-theoretical distances,
and Jaccard index centrality.

Conclusions: Among all the studied centrality-based graph-theoretical properties, we show that a
betweenness-based measure differentiates BRCA genes across all normal versus tumor network pairs, than the rest of
the popular centrality-based measures. The AUROC and AUPR values of the gene lists ordered with respect to the
measures under study as compared to NCBI BioSystems pathway and the COSMIC database of cancer genes are the
largest with the betweenness-based differentiation, followed by the measure based on degree centrality. In order to
test the robustness of the suggested measures in prioritizing cancer genes, we further tested the two most promising
measures, those based on betweenness and degree centralities, on randomly rewired networks. We show that both
measures are quite resilient to noise in the input interaction network. We also compared the same measures against a
state-of-the-art alternative disease gene prioritization method, MUFFFINN. We show that both our graph-theoretical
measures outperform MUFFINN prioritizations in terms of ROC and precions/recall analysis. Finally, we filter the
ordered list of the best measure, the betweenness-based differentiation, via a maximum-weight independent set
formulation and investigate the top 50 genes in regards to literature verification. We show that almost all genes in the
list are verified by the breast cancer literature and three genes are presented as novel genes that may potentialy be
BRCA-related but missing in literature.
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Background

Cancer genes are involved in the dysfunction of a wide
range of cellular functions including cell proliferation,
angiogenesis, tumor invasion, DNA repair, chromosome
stability, cell-cell communication, cell-matrix interac-
tions, motility, metastasis, and apoptosis [1]. Much of
recent cancer research has been devoted to identifying
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genes related to cancer initiation and progression com-
putationally, and many different types of approaches have
been suggested to this end. A comprehensive recent sur-
vey on computational approaches for the identification of
cancer genes and pathways has been provided in [2].

One possible categorization of the computational
approaches for cancer gene identification is based on the
data they employ. Those employing mutations data to
extract candidate cancer genes are based on the presup-
position that driver genes can be identified via a thorough
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examination of recurrent mutations, whose observed fre-
quency in a large cohort of cancer patients is much higher
than expected. However usually a significantly low overlap
in alterations of the alternative driver genes is observed,
giving rise to what is known as mutual exclusivity. Several
approaches relying on mutations data thus have developed
specialized techniques to deal with the issue of exclusiv-
ity [3-7]. A second class of approaches consist of those
employing gene expression data in the form of expression
profiling, gene coexpression, or differential expression
analysis [1, 8-10].

Recent integrative approaches employ one or both types
of expression and mutations data together with interac-
tions network data in the form of genetic or protein-
protein interactions (PPI) [11-14]. Approaches combining
gene expression data with the relevant interactions data
in the context of long non-coding RNAs (IncRNA) have
shown promising results in identfying IncRNA-disease
associations [15-19]. Particularly, the interactome has
demonstrated its usefulness in explaining the observed
patterns of mutations either in healthy or in diseased
individuals [20]. Rather than identifying a set of cancer-
related genes, the goal of the integrative computational
approaches usually is to extract modules deemed cen-
tral to the cancer. HotNet2 employs a random-walk on
the PPI network distributing the mutation frequencies of
genes throughout the network, giving rise to a directed
graph where the strongly connected components rep-
resent the output modules [21]. MEMCover combines
mutual exclusivity data of mutations across several tis-
sue types with the PPI network data to produce mod-
ules of cancer genes [22]. Although potentially useful
for pan-cancer analysis, such approaches have limited
use for specific cancer types where relatively small num-
ber of samples does not provide adequate information
in the form of mutual exclusivity of the mutations. Fur-
thermore they focus on the discovery of cancer modules
rather than prioritizing individual genes as cancer drivers.
By contrast, a recent cancer gene prioritization method,
MUFFINN, applies a network-centric analysis of mutation
data thereby integrating mutational information for indi-
vidual genes and their neighbors in functional/interaction
networks. It is suggested that MUFFINN’s cancer gene
prioritization has good performance even in the setting
where only data from a limited number of samples is
employed [23].

We employ mutations data, gene expression data, as
well as network data in the form of PPI networks, to
identify individual driver genes related to breast can-
cer. The general framework consists of a comparative
analysis of graph-theoretical measures. It is based on
differential identification of breast cancer genes via a
pairwise comparison of the values attained for a spe-
cific graph-theoretical measure applied on a normal and a
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tumor tissue sample over all available samples. Although
recent studies comparing normal and tumor samples with
regards to changes in genetic data including those in the
form of mRNA expression, miRNA expression, or methy-
lation alterations have beeen suggested, our study extends
these approaches by introducing a network aspect and
several common graph centrality measures, into the com-
parison [24-26]. We note that graph centralities have
been employed in the context of identifying breast cancer
genes in the past [27]. Such an approach has been revis-
ited recently and an extension employing two different
machine learning classifiers on computed centrality scores
have been suggested [28]. However rather than incorpo-
rating gene expression and mutations data, as is done in
our study, these approaches are limited to gene signatures;
a set of centrality measures have been applied to PPI net-
works limited to genes already known to be related to
breast cancer, to assign a degree of importance. Further-
more, our framework involving a comparative analysis of
network centralities in pairs of graphs generated from nor-
mal and tumor tissue samples introduces a novelty that
enables a differential analysis of genes involved in breast
cancer.

Methods

We summarize the overall methodology in Fig. 1. Three
main components consist of data preparation, algorith-
mic computations, and analysis and evaluation of results.
Data preparation involves necessary preprocessing of gene
expression, mutations, and network data. This is followed
by the algorithmic computations step involving several
graph-theoretical distance measures. The output consist-
ing of lists ordering genes with respect to their degrees
of involvement in breast cancer is evaluated in the final
step. This involves ROC and precision/recall analysis as
compared to two golden standard databases, COSMIC
and NCBI BioSystems, and gene ontology analysis with
respect to the GO database, in addition to these two
golden standard datasets. The output list of the best per-
forming measure is further filtered and a detailed review
of its top genes is done through literature verfication.

Input data sets and data preparation

We gather the breast cancer data from The Cancer
Genome Atlas Project (TCGA). There are 99 instances;
each instance contains data in the form of expression lev-
els of genes in the normal and tumor tissue samples of
a patient, and relevant mutation information regarding
the tumor samples. For gene expression, we consider the
RPKM (Reads per kilo base per million mapped reads)
normalization which includes a gene length normaliza-
tion of RNA-seq data and apply a threshold of 1 to
assign a gene as expressed. All somatic mutations other
than those marked as silent are taken into account. In
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Fig. 1 Flowchart summarizing the overall methodology. Flowchart summarizing the overall methodology. The first step depicted in part-a consists
of data processing and necessary filtrations of the input databases TCGA and IntAct. The second step depicted in part-b involves generation of pairs
of normal/tumor graphs based on expression, mutations, and interactions data. Measures based on graph-centralities are employed on resulting
graphs. Ten lists of genes, eight from centrality measures and two from control measures, ordering genes with respect to their computed weights
are provided as output. The final step depicted in part-c consists of analyzing the ten lists with regards to ROC, precision/recall (P/R), and GO
consistencies (GOC). Two datasets, NCBI BioSystems [37] and COSMIC [38] are employed in all three analysis, whereas for the GOC analysis an
additional database, the GO database [39] is also employed. Among all tested centrality-based measures My, provides the best performance in all
three analyis. The My, list is further analyzed in more detail by filtering it based on a maximum weight independent set (MWIS) formulation, and the
top genes from the resulting filtration go through a final literature verification step. a Data preparation, b Algorithmic computations, ¢ Analysis and

evaluation

addition, we employ the H. Sapiens protein-protein inter-
action network of the the October, 2016 version of the
IntAct database [29]. The PPI network is filtered so that
each interacting pair is a protein and each interaction is a
physical interaction.

Graph-theoretical framework

Let H be the H. Sapiens PPI network. Employing the
TCGA data, for each instance i of the available 99
instances, we create a pair of graphs, N;, T}, corresponding
to normal and tumor graphs respectively. The graph N; is
the subgraph of H induced by the node set correspond-
ing to the set of genes expressed in the normal instance
of i, whereas T; is the subgraph induced by expressed
and non-mutated genes in the tumor instance of the same
sample .

Let P be a list of pairs of graphs such that P =
(N1, T1),...,(Ny, Ty), where each N;,T; corresponds
respectively to normal and tumor graphs of the instance
i.LetV = Vy,U...UVN UVp U...UVr, where
Vi denotes the node set of a graph G. A measure M,
is a function defined on P that orders the nodes in V,
according to some graph-theoretical property x. The per-
formance of a measure depends on how well the position

of each gene in this ordering matches its revelance to
the cancer under study. The measures we consider are
based on the following graph-theoretical properties com-
monly employed in network analysis studies: betweenness
centrality, random walk distances, graph-theoretical dis-
tances, clustering coefficient, degree centrality, and Jaccard
indices. All of these measures are defined on the nodes of a
graph. According to the traditional classification of graph-
theoretical properties, the first three are global measures,
whereas the last three are local measures. A global mea-
sure defined on a node is a function of the whole graph
globally, whereas a local measure defined on the node usu-
ally is a function of some locality centered around the
node. For the purposes of this study, we introduce a novel
classification, that of unlabeled versus labeled measures.
A measure of the former type on a node considers all the
rest of the graph as unlabeled; the topology of the net-
work matters but not the relationships between specific
node pairs. For the latter, the node labels are impor-
tant as well as the network topology. The betweenness
centrality, the clustering coefficient, and the degree cen-
trality are unlabeled measures, whereas the random walk
distance, the graph-theoretical distance, and the Jaccard
index based neighborhood overlaps are labeled measures.
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Once an ordering of the nodes with respect to a measure
is determined, we apply a filtering based on maximum
weight independent sets (MWIS) to select a subset of cru-
cial nodes deemed important for the cancer under study.

Unlabeled graph-theoretical measures
In what follows we provide detailed descriptions of the
employed measures. For each measure we provide a node
weight assignment scheme, which defines the ordering
of the measure. For the following let G = (V,E) be an
undirected graph where V' denotes the node set and E
denotes the edge set of the graph G. We first provide the
definitions of four unlabeled graph-theoretical measures.
Myp,,: This measure is based on the betweenness central-
ity. Given G = (V, E), the betweenness of anode v € V is
defined as bwg(v) = ZVs,tevys#V# ”Sés(tv) where oy is the
number of shortest paths between nodes s, £ and oy (v) is
the number of such paths that go through the node v. This
value is divided by W for normalization. Note
that foranode v ¢ V, bwg(v) = 0 trivially. Our first mea-
sure My, sorts the nodes of V in non-increasing order of
the node weight function W}, defined for a node v as,

W) = >

Y(N;,T;)eP

|bwn, (v) — bwr, (v)] (1)

M,: This measure is based on the clustering coef-
ficient. For a node v in a graph G = (V,E)
the clustering coefficient of v, ccg(v) is defined as,
2|C|/ (degg(v)(degg(v) - 1)), where C is the set {(s,t) €
E: (v,8) € E,(v,t) € E}. We note that for a node v ¢ V,
ccg(v) = O trivially. The measure M. sorts the nodes
of V in non-increasing order of the weight function W,
defined for a node v as,

Wee (V) = Z

VN, T)eP

|cen, (v) = cer, ()] (2)

Myeg1, Meqo: These measures are based on the degree
centrality. Let Neg(v) denote the set of neighbors of v
in G and let NezG(v) denote the set consisting of Neg(v)
together with the neighbors of all nodes in Neg(v). The
measure Mge,1 sorts the nodes of V' in non-increasing
order of the node weight, defined for a node v as,

Waen () = Y [INex;(v)| — [Ne, ()| (3)
V(N;,T;)eP

whereas the measure Mg e employs the weighting
defined as,

Wap = > N0l - Nl @
Y(N;, T))eP

Labeled graph-theoretical measures
We provide the definitions of four labeled graph-
theoretical measures.
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M, We employ proximity matrices based on random
walks of the networks for this measure.

We note that similar methods have been employed in
many previous PPI network analysis studies [30—32]. Let
Ne‘GIr (v) = Neg(v) U {v}. Assuming the origin of the walk
is node u, let Pr;[ u, v] denote the probability that the ran-
dom walker is at node v after a certain number of time
steps and Prg[ i, v] denote the same probability after one
more time step. Initially Pri;[u, u] = 1, Prg[u,v] = 0 for
v # u. Prglu,v] is computed from Prg[u,s] for s e
Ng (v). The contribution of a neighbor s of v to Prg[ u, v]

. Pr&[u,s] .
N GIESE A small constant € is decremented from

this contribution to increase the chances of the walker
remaining close to the origin. Each probability is normal-
ized by dividing it with ), Prg[u, v]. The procedure is
repeated until the sum of the differences of probabilities
with those of the previous time step does not exceed a pre-
defined constant threshold. Prg[ p, q] = O trivially, ifp ¢ G
or g ¢ G. The measure M,,, based on random walk dis-
tances sorts the nodes of V in non-decreasing order of the
node weight W,,,, defined for a node v as,

Z PCC(PrNi[_;V]yPrTi[_)V]) (5)
V(N,',T,’)EP

where Prg[ —, v] denotes the column vector correspond-
ing to v in the random walks-based proximity matrix Prg
and PCC(x, y) denotes the Pearson correlation coefficient
of the vectors x, y. Prg[ p, q] = O trivially, ifp ¢ Gorg ¢ G.

Mge: Our next measure Mgy is based on graph-
theoretical distances and is defined in exactly the same
way as the previous measure M,,, except now an entry
Prg[u,v] of the proximity matrix Prg defines the graph
theoretical distance between nodes u,v in G, that is the
length of the shortest path between u, v.

Mj1, Mj: We define two measures based on Jaccard
indices with respect to neighborhood overlaps. The mea-
sure M;; sorts the nodes of V in non-decreasing order of
the node weight, defined for a node v as,

Waw = ),

V(Nl',Tl')EP

|Ne;, (v) N Ner,(v)]

(6)
|New;, (v) U Ner,(v)]

whereas the measure Mj; employs the weighting defined
as,

‘Nejz\,i () NNe2, (v)‘

Wpm) = Y

V(N;, T))eP ‘N€12\[l. Uy N€2Tl. (V)‘

Filtering based on maximum weight independent sets

The graph-theoretical measures of the previous subsec-
tions provide a node weight assignment scheme in a way
that the weight of a node represents the importance of the
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protein corresponding to the node regarding the cancer
under study. However due to the network influence-based
nature of some of these measures, they maybe suscep-
tible to guilt by association; a node may end up with a
large weight designating it a crucial protein, only because
some of its neighbors have large weights. This is espe-
cially evident in measures based on betweenness cen-
trality, random-walks, or graph-theoretical distances, as
the weight of a node is dependent on the weights of its
neighbors in the PPI network. In order to alleviate this
issue and produce only a small set of crucial proteins, we
apply a filtering on the node-weighted PPI network. The
network consists of all the proteins involved in all nor-
mal, tumor instances under study and the node weights
are assigned as those resulting from applying one of the
mentioned graph-theoretical measures. Given a node-
weighted graph G, the maximum weight independent set
(MWIS) of G, is the set of nodes with maximum total
weight such that no two nodes are neighbors in G. We
note that the computational problem is NP-complete [33].
Several greedy heuristics have been investigated in [34].
The GWAMINZ2 heuristic which selects the node u in the
conflict graph C that maximizes W(u)/ ZveNér(u) W),

where Nér (1) denotes the neighborhood of u in C together
with the node u itself, provides better results than the rest
of the known heuristics [35]. Furthermore it provides a
theoretical guarantee that the weight of the output inde-

pendent set is at least Zuevc [)/V(u)2 /Zvel\lg(u) W) ],
where V¢ denotes the vertex set of the conflict graph
C. Therefore the filtration step is implemented via the
GWMIN?2 heuristic for the MWIS problem.

Results and discussion

We implemented the described measures in C++ using the
LEDA library [36]. We show that in determining the qual-
ity of a graph-theoretical measure for identifying genes
related to breast cancer, the labeled/unlabeled classifica-
tion is more important than the traditional local/global
classification of the measures. Furthermore we show that
under this classification, the unlabeled measures perform
better than the labeled measures in extracting breast
cancer genes via comparison of normal/tumor network
instance pairs— contrary to the intuition that the latter
employs more information in the form of labeled net-
works. Our evaluations indicate that the measure based
on betweenness centrality is the best performer in terms
differential identification of breast cancer genes across all
normal/tumor samples.

Evaluations with respect to known cancer databases

Comparing against known cancer databases taken
as golden standards, we measure the performances
based on Receiver Operating Characteristic (ROC) and
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Precision/Recall (PR). As the golden standard to compare
against the gene list of each of the graph-theoretical
measures under study, we employ two separate databases.
One is the integrated breast cancer pathway from the
NCBI BioSystems database [37] and the other is the
cancer Gene Census of the COSMIC database [38]. We
note that whereas NCBI BioSytems data is specific to
breast cancer, the COSMIC database covers genes rele-
vant to all types of cancer. Thus we can evaluate how well
each of the defined measures can identify both breast
cancer-specific genes and cancer genes not specific to any
certain type.

Every evaluated measure is designed so that it orders
the genes from most relevant to the least. We extract the
top k% genes from the list of each of the defined graph-
theoretical measures, for every k between 1 and 100 at
the increments of 1. In addition to the measures under
study, we introduce two additional control measures. The
first one is the expression difference (ED) measure which
orders the genes with respect to the ED values. ED(v) for
a gene v is defined as the absolute value of the difference
between the number of normal and tumor samples includ-
ing v as an expressed gene. The second control measure is
the mutation frequency (MT) which orders the genes with
respect to the number of tumor samples including them
as mutated genes.

Figure 2 provides the ROC curves of all the employed
graph-theoretical and control measures. In the left plot,
the true positives and false positives are computed based
on the comparison of the top k% genes of the output list
of each measure against the NCBI BioSystems database,
whereas in the right plot the reference database is COS-
MIC. The respective PR curves are provided in Fig. 3.
The corresponding AUROC and AUPR values are pro-
vided in Table 1. With respect to the ROC/PR curves
and the AUROC/AUPR values the best performing mea-
sure is Mp,,. The AUROC value of the My, list as com-
pared to the NCBI BioSystems dataset is 0.77 and its
AUPR value in the same setting is 0.042. With regards
to the COSMIC dataset the AUROC value of the My,
list is 0.709, whereas its AUPR value is 0.091. It is clear
that the rest of the unlabeled measures also perform
better than the labeled measures for most values of k.
It is interesting to note that a measure as simple as
degree differentiation between normal and tumor sam-
ples across all samples, that is M., provides a better
recognition of cancer-related genes than those of the
more complicated measures making use of extra infor-
mation in the form of labels, such as graph-theoretical
distances or Jaccard index based measures. Note also
that all the unlabeled measures perform consistently bet-
ter than the control measures ED and MF with respect
to both of the employed golden standard cancer gene
databases.
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ROC Curves of Employed Measures
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Fig. 2 ROC Plots ROC curves for the measures under consideration for k changing from 1 to 100 at the increments of 1. True positive, false positive
rates are with respect to the NCBI database (left) and the COSMIC database (right)

Evaluations based on gene ontology

An additional database is employed in setting up the next
evaluation; the Gene Ontology (GO) database [39]. The
GO database annotates proteins from several species with
appropriate GO categories organized as a directed acyclic
graph (DAG). In order to standardize the GO annota-
tions of proteins, similar to the evaluation methods of
[40-42], we restrict the protein annotations to level 5 of
the GO DAG by ignoring the higher-level annotations
and replacing the deeper-level category annotations with

their ancestors at the restricted level. For a node u € V,
let GO(u) indicate the set of standard GO annotations
of the protein corresponding to u. For a given list T of
genes to be tested and a reference list R, we define a GO
Counsistency (GOC) score as,

2ter 2rer |GO®) N GOM)|/IGO() U GO(r)|
IR| ’

The list T consists of the top k% of the genes provided by
one of the graph-theoretical measures under study or one
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Precision Recall Curves of Employed Measures
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Fig. 3 PR curves PR curves for the measures under consideration for k changing from 1 to 100 at the increments of 1. Precision and recall are with
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Table 1 AUROC and AUPR values for all the defined graph-theoretical measures and the control measures

Reference database Measurement Mpw Maeg Maeg2 Mece My Mgt Mj M ED MF

NCBI Bio systems AUROC 0.770 0.740 0.702 0.703 0.606 0.569 0.603 0577 0.597 0.563
NCBI Bio systems AUPR 0.042 0.037 0.027 0.020 0.015 0.013 0.014 0.013 0.014 0.014
COSMIC AUROC 0.709 0.695 0.664 0.641 0.635 0.611 0.611 0.601 0.586 0.567
COSMIC AUPR 0.091 0.089 0.075 0.061 0.056 0.053 0.050 0.051 0.047 0.055

The first two rows are with respect to the NCBI BioSystems database and the last two rows are with respect to the COSMIC database



Dopazo and Erten BMC Systems Biology (2017) 11:110

of the two control measures (ED, MF), and R corresponds
to one of the two golden standard datasets. Small values
of k are of more interest, since the output candidate list
of genes are usually intended for further detailed inspec-
tion. The results for k upto 25 are presented in Fig. 4.
We only show the plot when the golden standard list R is
the NCBI BioSystems pathway; the plot resulting from the
GOC evaluations with respect to the COSMIC database
is almost the same. It is clear that the performance trends
of the evaluated measures are almost the same as those of
the previous metrics based on ROC and PR, although with
less emphasized differences.

Further detailed simultaneous inspection of the top two
lists, Mp,, and Myee1, and the GO consistency analysis
with respect to the NCBI BioSystems data reveals that the
top contributors to the corresponding GOC scores show
significant overlap. At k = 5, that is when the top 5% of the
gene lists are considered, the four genes contributing most
to the GOC score in both lists, My, and Meg1, are IGFIR,
RAF1, YWHAB, and MYC. Note that none of these are
directly listed in the golden standard gene list of the
NCBI BioSystems. Among the notable GO categories they
commonly or independently share with those associated
with the golden standard genes are GO:0008284 (positive
regulation of cell proliferation), GO:0009890 (negative
regulation of biosynthetic process), GO:0016310 (phos-
phorylation), GO:0031325 (positive regulation of cellular
metabolic process), and GO:0010648 (negative regulation
of cell communication). Same analysis with respect to the
COSMIC database provides CTBP2, ATF3, FHL2, NFKB2
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as shared top contributors in both lists Mp,, and M. It
is worth emphasizing that other than the last one, none of
these genes is listed in the COSMIC database itself.

Evaluations with rewired networks

Employing the criteria of the previous subsections, that is
the criteria based on the ROC analysis and the GO con-
sistency analysis with respect to the two golden standards,
we further tested the two best-performing measures, My,
and M1, on different networks. The networks under
consideration are again based on the IntAct PPI network
but modified with the introduction of varying degrees
of random error via rewirings: r% of the existing edges
are removed randomly and the same number of edges
are inserted between random pairs of nodes not adjacent
in the original network. This procedure is repeated four
times giving rise to four randomly rewired networks for
each value of = 5,10, 15, 20. For each rewired network
the rest of the framework is the same; a pair of normal
and tumor networks is generated based on the expression
and mutation information of each instance by taking the
induced subnetwork of the rewired network, and the rel-
evant functions Mp,,, Mgee1 are computed throughout all
the networks. Thus, considering the induced graphs of all
the samples, 99 normal and 99 tumor, in total 3168 graphs
are generated and the suggested measures execute on all
these graphs. The experiments on the rewired networks
serve also the purpose of testing how sensitive the sug-
gested graph-theoretical measures are to the noise in the
network data.
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We present the resulting AUROC and AUPR values
in Table 2. Note that the true positives, false positives,
precision, and recall values are computed as an average
of respective values attained in four randomly rewired
networks generated with the same ratio r. As expected
the general tendency for AUROC and AUPR values with
respect to both golden standard datasets is to decrease
as the random rewiring ratio r increases. The slight dis-
crepancies are due to the randomness in the rewirings.
It should be noted that even though there is a perfor-
mance decrease with growing random error in the net-
work, this degradation in the performance is relatively
small. For Mp,, the AUROC values decrease by only
4.5% and 4.9%, respectively, for the NCBI and COSMIC
databases, even with a 20% random rewiring of the orig-
inal network. The respective percetages of degradation
in the AUROC values of M1 are 2.2% and 3.3%. The
performance degradations with respect to the AUPR val-
ues are slightly higher; for Mj,, they are 7.1% and 9.9%,
and for Mg they are 8.1% and 6.7%. This is an indi-
cation that in addition to providing good performance,
the suggested measures for cancer gene prioritization are
also relatively robust to random noise in the interaction
network data. A closer comparative look at the rates of
degradation in performances in terms of AUROC, AUPR
values of My, and My, reveals that the former gets
more error-prone as the degree of noise in the network
increases.

The same phenomenon is also evident in the GO con-
sistency analysis. The plot of GOC values of prioritized
lists of My, and Myee1 on randomly rewired networks,
for each ratio r, with respect to the NCBI database is
provided in Fig. 5. Since the plot with respect to the
COSMIC database is almost the same we do not present
it. Note again that the plotted values are those aver-
aged over the values resulting from experimental runs of
four randomly rewired networks, for each r. As with the
ROC analysis, it is clear that My, and Mge1 are both
quite resilient to noise in the interaction network sim-
ulated via random rewirings, with M., even more so
than Mp,,.

Page 9 of 17

Comparisons against an alternative gene prioritization

We compare the results of the two measures perform-
ing the best, My, Myeg1 against an alternative method
for cancer gene prioritization. MUFFINN is similar to the
gene prioritization methods suggested in this study both
in terms of the employed data and the goal of disease gene
prioritization in the presence of data from a limited num-
ber of patient samples [23]. In terms of input datasets,
it also employs mutation data from patient samples and
network data in the form of functional networks or inter-
action networks. The underlying hypothesis of MUFFINN
is that a gene is more likely to represent a true cancer
driver if it is functionally associated with other genes in
an interaction network. For such a network-based muta-
tion data analysis, they consider two ways to take into
account mutational information among direct neighbors
in the network. One is to consider mutations in the most
frequently mutated neighbor and the second is to consider
mutations in all direct neighbors with normalization by
their degree connectivity. We call the former MUFFIN ;45
and the latter MUFFIN,,;,,.

We executed both MUFFIN,;,,, and MUFFINj,,, with
the same data employed in this study, that is the inter-
action network is the same IntAct network and the sam-
ples are the same TCGA samples as those used by our
graph-theoretical prioritization methods. We extract the
top k% genes from the list of each of the prioritization
methods under comparison Mp,, M geg1 and MUFFIN gy,
MUFFINyy,,, for every k between 1 and 100 at the incre-
ments of 1. We then apply ROC and precision/recall
analysis. In the left plot of Fig. 6 the true positives and false
positives are computed based on the comparison of the
top k% genes of the output list of each method against the
NCBI BioSystems database, whereas in the right plot the
reference database is COSMIC. The numbers in paranthe-
ses indicate the AUROC values of the relevant methods.
The respective PR curves are provided in Fig. 7 and the
numbers in parantheses indicate the corresponding AUPR
values.

Our proposed graph-theoretical measure My, provides
the largest AUROC and AUPR values with respect to

Table 2 AUROC and AUPR values for My,, (multicolumns in the middle) and Mgeg1 (multicolumns on the right) on randomly rewired
networks with rewiring ratio r = 5%, 10%, 15%, 20%. For a fixed ratio r, each value is computed as an average of four randomly rewired

networks

Reference database Measurement 0% 5% 10% 15% 20% 0% 5% 10% 15% 20%
NCBI Bio systems AUROC 0.770 0.756 0.746 0.734 0.735 0.740 0.733 0.726 0.730 0.724
NCBI Bio systems AUPR 0.042 0.041 0.041 0.040 0.039 0.037 0.036 0.036 0.035 0.034
COSMIC AUROC 0.709 0.698 0.690 0.679 0.674 0.695 0.688 0.683 0.676 0.672
COSMIC AUPR 0.091 0.088 0.086 0.082 0.082 0.089 0.087 0.086 0.085 0.083

The columns marked with 0% indicate the corresponding results for the original network. The results listed in the first two rows are with respect to the NCBI BioSystems

database and those listed in the last two rows are with respect to the COSMIC database
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Fig. 5 GO Consistency Evaluations on Rewired Networks The results of the GO Consistency evaluations on rewired networks, with regards to the
NCBI BioSystems data, for k changing from 1 to 25 at the increments of 1. The plot only shows GOC values for k > 15, since the previous values are
mostly convergent. The numbers in parantheses indicate the ratio r. For each ratio r, the experiments are run on four randomly rewired networks
and an average GOC value is taken

both of the golden standard datasets. Even our second
best measure M e provides better results than those
of both MUFFIN,,,,, and MUFFINy,,,. Note that the
AUROC and AUPR values of My, and M, are slightly
different from those provided in Table 1. This is due
to the fact that MUFFINN uses only genes in Con-
census CDS. We filtered the reference golden standard
databases to remove the rest of the genes not consid-
ered by MUFFFINN for a fair comparison, which led to
slight differences in the values attained in the tests of
My, and M geg1 .

Filtering the Mp,, list

Since Mp,, is the best performer among all the employed
measures, we employ a detailed inspection of its output.
The top 50 genes with respect to My,, are listed in Table 3
in descending order of their weights, as shown in the W},
column. We first apply the MWIS heuristic on the node-
weighted PPI network to implement the filtration. The
rows of Table 3 that are marked with bold correspond
to filtered nodes, that is they are in the MWIS output.
The column marked with N provides the number of nor-
mal samples including the gene as an expressed gene,
the column marked with T provides the corresponding
number for tumor samples, the column marked with M
provides the number of tumor samples the gene occurs as
mutated, the column marked with GS; indicates whether
the gene is listed in the first golden standard dataset, NCBI

BioSystems, the column marked with GSy provides the
analogous information regarding the COSMIC database,
and finally the last column provides the list of genes
presented in the table that are in the MWIS of the Wj,, -
weighted PPI network and that are neighbors of the given
gene in the network. As a sample Fig. 8 provides the neigh-
borhood subgraphs of the top four MWIS genes of the list.
Each subgraph is induced by the protein corresponding
to the center node and its neighbors in the PPI network.
Nodes are weighted with corresponding W}, values. The
labeled nodes in the periphery are those in the top 50 list,
but are filtered out from MWIS since the central node is
included in MWIS.

A literature review of the proteins resulting from fil-
tration that are marked in bold in the table reveals that
almost all of them play significant roles in breast cancer.
We provide a review of each such protein not verified by
either of the employed golden standard datasets. IKBKE
has been shown to be a breast cancer oncogene via inte-
grative genomic approaches [43]. More recently, Sang
Bae et al. have shown that CK2/CSNK2A1 phosphory-
lates SIRT6 and is involved in the progression of breast
carcinoma [44]. MDFI is considered a candidate tumor
suppressor gene involved in cellular and viral transcrip-
tional regulation [45]. TK1 is a widely accepted biomarker
for cancer [46]. Roosmalen et al. have suggested SRPK1
as a breast cancer metastasis determinant via tumor cell
migration screen [47]. The relationship between MAP3K1
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and breast cancer detailing the possible mechanisms
MAP3K1 mutations affect pathways important in breast
carcinoma has been discussed in [48]. The role of PTN
in the malignant progression of breast cancer is well
established since early work [49]. The role of TNFRSF1B
in triple-negative breast cancer (TNBC) has been stud-
ied in [50]. It is suggested that MAP3K3 contributes to
breast carcinogenesis and MAP3K3 may prove to be a
valuable therapeutic target in patients MAP3K3-amplified
breast cancers [51]. KDM1A/LSD1 is suggested as a

predictive marker for breast carcinogenesis and a novel
attractive therapeutic target for treatment of ER-negative
breast cancers. PIK3R3 is identified as one of the cru-
cial genes for regulating triple negative breast cancer cell
migration [52]. It is shown that HLA class I expres-
sion, including HLA-B, in breast cancer was significantly
associated with nodal metastasis, TNM, lymphatic inva-
sion, and venous invasion [53]. Furlan et al. have shown,
in vitro and in vivo, an unsuspected facet of ETSI in
breast tumorigenesis. They show that while promoting
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malignancy through the acquisition of invasive features,
ETSI1 also attenuates breast tumor cell growth and could
therefore repress the growth of primary tumors and
metastases [54]. Due to the NR4A1l-dependent regula-
tion of TGF B signaling, NR4A1 is considered to promote
breast cancer invasion and metastasis [55]. It is shown that
PLSCR1 binds to onzin, a negative transcriptional regu-
latory target of c-Myc regulating cell proliferation which
potentially implicates the role of PLSCRI in cancer cell
survival and proliferation [56]. HSPB1 downregulation
in human breast cancer cells has been shown to induce

upregulation of PTEN, a tumor suppressor gene [57].
Human Pirh2 (p53-induced RING-H2 protein) is encoded
by the RCHY1 gene. Decrease of Pirh2 expression in the
breast cancer cells result in reduced tumor cell growth
via the inhibition of cell proliferation and the interrup-
tion of cell cycle transition [58]. It is suggested that
TFAP2C overexpression correlates with poor overall sur-
vival after 10 years of diagnosis of breast cancer [59]. Koo
et al. have proposed that RIPK3 deficiency is positively
selected during tumor growth/development in breast
cancer [60].
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Id Gene Wow N T M GSy GS Top neighbors in MWIS
1 Q15796 SMAD2 0.896534 64 31 0 Yes Yes
2 Q14164 IKBKE 0.646178 1 16 0 No No
3 P54274 TERF1 0.638236 59 55 0 No No 1,20,34
4 P68400 CSNK2A1 0.626417 85 91 0 No No
5 P04637 TP53 0.60796 98 97 17 Yes Yes 1,4,7,8,34,42,44
6 Q99750 MDFI 0.60268 60 36 0 No No
7 P04183 TK1 0.578819 10 92 0 No No
8 Q965B4 SRPK1 0.457947 0 36 0 No No
9 Q13526 PIN1 0.438312 68 77 0 No No 4,6, 46
10 P46108 CRK 0.297179 96 70 0 No No 21,25,35
" P62993 GRB2 0.284621 97 98 0 No No 2,46
12 Q99558 MAP3K14 0.283214 45 17 0 No No
13 Q9Y6K9 IKBKG 0.271303 4 10 0 No No 12,19
14 Q13387 MAPK8IP2 0.269689 1 60 0 No No
15 Q13233 MAP3K1 0.255928 68 63 4 No Yes
16 Q09472 EP300 0.250913 94 89 0 Yes Yes 1,34,35
17 P21246 PTN 0.248842 53 2 0 No No
18 P20333 TNFRSF1B 0.234258 71 31 0 No No
19 Q99759 MAP3K3 0.233384 19 4 0 No No
20 060341 KDM1A 0.229576 79 93 0 No No
21 Q92569 PIK3R3 0.225153 29 76 0 No No
22 Q15714 TSC22D1 0.22131 99 76 0 No No 17,42
23 Q92624 APPBP2 0217109 41 38 0 No No 2
24 Q15047 SETDB1 0.212244 81 95 0 No No 7,20
25 P30480 HLA-B 0.20772 929 929 0 No No
26 P25791 LMO2 0.197168 38 2 0 No Yes
27 P25786 PSMA1 0.194226 4 36 0 No No 2,25,40
28 P08238 HSP90AB1 0.187144 99 99 0 No No 2,4,8,12,15,19,34,42,49
29 P14921 ETS1 0.184287 82 42 0 No No
30 P12757 SKIL 0.177551 32 73 1 No No 1
31 P03372 ESR1 0.175797 4 36 0 Yes Yes 15
32 Q16539 MAPK14 0.173795 60 33 0 No No 8
33 P63104 YWHAZ 0.172695 99 99 0 No No 7,19,42
34 P22736 NR4A1 0.170823 84 44 0 No No
35 015162 PLSCR1 0.169279 90 76 0 No No
36 P12931 SRC 0.169016 4 28 0 No Yes 4,21
37 P04626 ERBB2 0.164884 88 98 1 No Yes 8,14, 21
38 P40337 VHL 0.158704 99 99 0 No Yes 6
39 Q96EB6 SIRT1 0.153643 94 68 1 Yes No 4
40 P40692 MLH1 0.147726 1 20 0 No Yes
41 Q9Y4K3 TRAF6 0.145986 2 2 0 No No 12,19
42 P04792 HSPB1 0.14386 929 99 0 No No
43 Q5UIPO RIF1 0.139848 26 20 1 No No 7,42
44 Q96PM5 RCHY1 0.136242 42 22 1 No No
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Table 3 Top 50 genes with respect to My, (Continued)
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Id Gene Wow N T M GS; GSy Top neighbors in MWIS
45 Q92754 TFAP2C 0.135754 86 98 1 No No
46 Q9Y478 PRKAB1 0.134543 98 96 0 No No
47 014920 IKBKB 0.132882 62 53 0 No Yes 12,15,19,45
48 P21980 TGM2 0.132793 60 81 0 No No 1
49 Q9Y572 RIPK3 0.13256 92 75 0 No No
50 P42858 HTT 0.131761 4 10 0 No No 21

The first column provides the Uniprot id of the gene, the second column provides the gene name. The third column provides the weight of each gene based on Mp,,. The
fourth and the fifth columns provide the number of instances each gene is expressed in the normal and tumor samples respectively. The sixth column provides the number
of mutations of a gene observed throughout all the tumor samples in the dataset. The seventh column indicates whether the gene is listed in the breast cancer pathway of
the first golden standard, the NCBI BioSystems, whereas the eight columnd indicates whether it is listed in the second golden standard, the COSMIC database. The last
column provides the set of PPI network neighbors of the corresponding gene from the top 50 list that are also in MWIS

In addition to these genes already verified by relevant
literature, the MWIS genes in the top 50 list contains
three novel genes with indefinite associations to breast
cancer: MAP3K14, MAPKS8IP2, and PRKABI1. Although
not verified by literature, the Mj,, measure suggests these
three as candidate breast cancer genes that deserve fur-
ther investigation.

Conclusion

We defined a framework to evaluate the performances
of several network measures in differentially identify-
ing cancer-related genes on tumor versus normal net-
work instance pairs. We applied this framework on
the breast cancer data. Two separate classifications of
the network measures are defined; local/global and
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labeled/unlabeled. We demonstrate that on the available
data, the local/global classification is not as reliable a
source for separating the good performing measures from
bad ones as the labeled/unlabeled classification. Unla-
beled network measures surprisingly outperform labeled
ones. The best performing measure is based on between-
ness centrality, a global and unlabeled network measure.
Applying the measures employed in this study to instances
from various other types of cancer is part of the planned
future work. Extending the defined measures to node-
weighted, edge-weighted graphs, where a node weight
represents the expression level of the corresponding gene
and the edge weight represents the confidence attributed
to the corresponding interaction in the PPI network may
also provide valuable information in terms of cancer-
related genes identification. We finally note that the main
purpose of MWIS filtration is to compress the list of
all scored genes into a shorter list of genes, for detailed
inspection, such as in the form of literature verification
as is done in this study. Although such a compression is
not done blindly, by simply taking the top 50 genes for
instance, and the effects of guilt-by-association are taken
into consideration through the heuristic idea of indepen-
dent sets for providing true positives, the compressed list
can be susceptible to error in terms of false negatives.
Due to the nature of independent sets, at most one of
the two possibly high scoring genes is provided for every
interacting pair. Thus further biological evaluations could
focus on such high scoring pairs with one gene present,
the other absent in the compressed list, and the signifi-
cant genes in gene neighborhoods as in Fig. 8 for further
simultaneous inspections.
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