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Abstract

Background: Up to date, Mycobacterium tuberculosis (Mtb) remains as the worst intracellular killer pathogen. To
establish infection, inside the granuloma, Mtb reprograms its metabolism to support both growth and survival,
keeping a balance between catabolism, anabolism and energy supply. Mtb knockouts with the faculty of being
essential on a wide range of nutritional conditions are deemed as target candidates for tuberculosis (TB) treatment.
Constraint-based genome-scale modeling is considered as a promising tool for evaluating genetic and nutritional
perturbations on Mtb metabolic reprogramming. Nonetheless, few in silico assessments of the effect of nutritional
conditions on Mtb's vulnerability and metabolic adaptation have been carried out.

Results: A genome-scale model (GEM) of Mtb, modified from the H37Rv iOSDD890, was used to explore the
metabolic reprogramming of two Mtb knockout mutants (pfkA- and ic-mutants), lacking key enzymes of central
carbon metabolism, while exposed to changing nutritional conditions (oxygen, and carbon and nitrogen sources).
A combination of shadow pricing, sensitivity analysis, and flux distributions patterns allowed us to identify
metabolic behaviors that are in agreement with phenotypes reported in the literature. During hypoxia, at high
glucose consumption, the Mtb pfkA-mutant showed a detrimental growth effect derived from the accumulation of
toxic sugar phosphate intermediates (glucose-6-phosphate and fructose-6-phosphate) along with an increment of
carbon fluxes towards the reductive direction of the tricarboxylic acid cycle (TCA). Furthermore, metabolic
reprogramming of the ic-mutant (ic/7&icl2) showed the importance of the methylmalonyl pathway for the
detoxification of propionyl-CoA, during growth at high fatty acid consumption rates and aerobic conditions. At
elevated levels of fatty acid uptake and hypoxia, we found a drop in TCA cycle intermediate accumulation that
might create redox imbalance. Finally, findings regarding Mtb-mutant metabolic adaptation associated with
asparagine consumption and acetate, succinate and alanine production, were in agreement with literature reports.

Conclusions: This study demonstrates the potential application of genome-scale modeling, flux balance analysis
(FBA), phenotypic phase plane (PhPP) analysis and shadow pricing to generate valuable insights about Mtb
metabolic reprogramming in the context of human granulomas.
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Background

Tuberculosis (TB) is the world’s leading infectious cause
of death, with 10.4 million new active cases in 2015 and
mortality of 1.8 million people [1]. The etiological agent
of TB, Mycobacterium tuberculosis (Mtb), is capable of
replicating and surviving for decades within host granu-
lomas, including caseating, fibrotic and cavitating lesions,
each providing a diverse array of nutritional microenvi-
ronments [2].

During the infection, it has been proposed that Mtb
makes a shift between replicative to non-replicative
states [3]. During replicative states, Mtb is predicted to
access glucose and triacylglycerides as main carbon
sources in aerobic conditions inside macrophages [4]. As
the infection continues, there is an increased immune
activation of host cells, which attracts mononuclear cells
and T lymphocytes to the infection site to encapsulate
the bacteria; this structure is called granuloma, the hall-
mark of TB [5]. At this point, normal aerobic respiration
is limited (hypoxia), the bacterium induces dysregulation
of host’s lipid metabolism, which triggers the formation
of foamy macrophages [6]. Through this non-replicative
state, Mtb metabolism relies mainly on fatty acids and
lipids. Consequently, Mtb reprograms its metabolism to
support both growth and survival. In this scenario, the
cell struggles to maintain a metabolic balance among
catabolism, anabolism and energy supply [7]. A recent
study that integrates metabolomics and transcriptomics
data, showed that Mtb uses different nutrients during
macrophage infection, with a notorious uptake and
utilization of lipids [8].

Over the past few years, a limited number of experi-
mental studies have aimed at describing the essential
roles of enzymes of central carbon metabolism (CCM)
in the physiology of Mtb [9-16]. However, our under-
standing of Mtb’s metabolic reprogramming is still
scarce, as the essentiality of such enzymes is conditional
to the nutritional environment of the organism, and
their complete phenotypic/functional characterization is
time-consuming and laborious.

A straightforward approach for predicting the effect of
genetic and environmental perturbations on metabolism
is the genome-scale constraint-based modeling, using
flux balance analysis (FBA) [17, 18]. Applications of
these models for studying Mtb metabolism has been
promoted since 2007 [19-25]. Models have been used to
simulate growth, metabolic phenotypes, synergistic drug
inhibition, and identification of potential drug targets,
among others. Although FBA has been used for obtaining
meaningful global predictions of gene-essentiality in a var-
iety of model organisms and environments [20, 26-29],
the intracellular metabolic adaptation of those knockouts
under changing nutritional environments has never been
explored in deep.
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In this study, an improved genome-scale model
(GEM) of Mtb was used to explore in silico the essenti-
ality/lethality of two Mtb mutants (pfkA-mutant and icl-
mutant) under changing nutritional environments, spe-
cifically, normoxia/hypoxia and high and low consump-
tion rates of glucose and propionate (glycolytic and
anaplerotic substrates, respectively). Here, we demonstrate
the potential application of genome-scale modeling, FBA
flux distributions, phenotypic phase plane analysis and
shadow prices to generate valuable insights concerning
Mtb metabolic reprogramming, and to point out the con-
ditions that favor or disfavor the survival of those wild
type and Mtb mutants, in the context of human
granulomas.

Methods

Metabolic network of Mycobacterium tuberculosis

The Mtb H37Rv iOSDD890 metabolic network model,
proposed by Vashisht and colleagues, was used as the
starting point [30]. The model consists of 1152 reac-
tions, 961 metabolites, and 890 genes. The Model and
Constraint Consistency Checker (MC3) algorithm was
run under MATLAB R2013a to identify dead-end
metabolites, single-connected metabolites, and zero-flux
reactions [31]. For improving the Mtb metabolic
network, some gaps for B-oxidation of fatty acids and
transport reactions were filled. Also, reactions from the
cholesterol degradation pathway were added into the
iOSDD890 model [24]. The improved iOSDD890 meta-
bolic model encompassed 1265 reactions, 1021 metabo-
lites, and 922 genes.

Flux balance analysis

Using the extended model, we performed metabolic flux
balance studies under specific conditions and constraints.
FBA uses linear optimization to determine the steady-
state reaction flux distributions in a metabolic network, by
maximizing (or minimizing) an objective function, such as
ATP production, growth rate, or metabolite production.
The metabolic system is described using the well-known
stoichiometric matrix Sy, , ,, relating the flux rates of en-
zymatic reactions v, ,; to time derivatives of metabolic
concentrations Xp, « 1 as dx/dt =S. v where v = [v{, Vo...vp;
b1 by...bpext]'; Vi are the internal fluxes; b; represents the
exchange fluxes in the system; #; is the number of internal
metabolites and next is the number of external metabo-
lites in the system. At steady state, dx/dt = S. v =0. There-
fore, the required flux distribution belongs to the null
space of S. Since there are more reactions than metabo-
lites, the system becomes underdetermined, thus entailing
the formulation of a constrained optimization problem.
The critical step is the definition of an objective function
that captures the biochemical goal of the system [32, 33].
As the problem consists of a linear objective function and
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linear constraints, a Linear Programming (LP) problem
arises as:maxc'v;s. t. S. v=0, wherein ¢ represents the
objective function. COBRA Toolbox v2.0 synchronized
with MATLAB and the Gurobi optimizer 5.6.3, was used
for all FBA calculations.

Phenotypic phase plane (PhPPs) analysis

PhPP analysis is a method for sensitivity analysis of
GEMs [34, 35]. Here, the effect of the variation of two
environmental parameters (e.g. glucose and oxygen up-
take rates) on an objective cellular function is analyzed.
To construct the PhPP diagram, the respective values of
the environmental conditions under investigation are
represented in a x,y plane and the optimal flux distribu-
tion is computed for all points in the plane. Shadow
prices are calculated for the two-parameter space to
demarcate regions of constant flux distributions (pheno-
typic phases). Phenotypic phases are drawn based on
changes in these shadow prices. In addition, in the PhPP
there is a line called isocline, which demarks zones of
constant values of the objective function. The slope of
isoclines within each phase of the PhPP is calculated
from the shadow prices as follow:

Tix

(1)

o=
Tty

Where 7 is the shadow price and x and y refer to the
variables on the x- and y-axes. Phases with a negative a
value means there is a dual limitation of the substrates
(both contribute positively towards the objective func-
tion). Phases with a positive @ value are termed “futile”
phases; in these phases, one of the substrates is inhibi-
tory towards obtaining the objective function, and this
substrate will have a positive shadow price. Finally, if a
phase has either horizontal or vertical isoclines, there
exist single substrate limitations; the a value in this
phase will be zero or infinite, respectively. Therefore, in
that phase, the shadow price of one of the substrates
goes to zero and thus has no value to the cell [34, 35].

Optimization problem statement

For most system biology applications where FBA is used,
the analysis lies on the maximization of biomass growth
rate; in contrast, in the present study, we used a two-
stage optimization approach, as described by Schuetz
and colleagues and D’Huys and colleagues [32, 36]. Such
approximation retrieves a unique and biologically
meaningful solution to the FBA problem of biomass
growth rate maximization, thus overcoming the problem
of finding alternate optimal solutions. The first stage in
the approach deals with the maximization of biomass
growth rate (linear programming problem), whereas the
second stage deals with the minimization of the sum of

Page 3 of 18

squares of all fluxes (non-linear programming problem)
of the metabolic network model. The assumption under-
lying the minimization principle postulates that cells and
whole organisms gain functional fitness by fulfilling their
functions with minimal effort and thus assuring an effi-
cient metabolic flux distribution [32, 37]. The value of
biomass growth rate, obtained at the first stage, is
used as a constraint during the second optimization
stage. The first stage was run using Gurobi solver under
COBRA Toolbox, while the second stage was solved using
the MATLAB’s built-in finincon solver. For all runs, the
Gurobi feasibility tolerance was set to 107°, and for the
non-linear optimization, the algorithm was terminated
when first order optimality was satisfied to within 107
the maximum constraint violation was also 107 The
mathematical formulation of the whole optimization
problem is shown in Egs. (2)—(3). The sensitivity analysis,
including the PhPP analysis and the calculation of shadow
prices, was carried out by solving the LP problem, used in
stage 1. In contrast, stage 2 was utilized for the computa-
tion of flux distributions in the phenotypes of interest.

Stagel : Maximize Z = Vbiomass (2)

n
Subject to : Zj:lsijvj =0 VJ-LBSVJ-SVIUB

Stage2 : Minimize Zjllvf (3)

. n
Subject to : Zj: 1S,-j\/j =0 V]-LBSV,'SV,UB; Vbiomass = £

Simulation strategy for exploring the metabolic
adaptation of two mutants of Mycobacterium tuberculosis
Simulations using the extended GEM of Mtb were
carried out for exploring the metabolic adaptation of the
bacteria to different oxygen and substrate availabilities
after two-mutation perturbations. The first case study
addressed the metabolic adaptation for a phosphofructo-
kinase (ApfkA) mutant strain, growing in a medium with
available glycerol, phosphate, ammonium, and trace
elements, and under different oxygen and glucose uptake
consumptions. The second case study, explored the
metabolic adaptation of an isocitrate lyase (dicll &
Aicl2) mutant strain, growing on a medium with
available phosphate, ammonium and trace elements, and
on various propionate and oxygen availabilities.

For simulation purposes, as a first step, phenotype phase
planes were built, and phenotypes of interest were identi-
fied (e.g. variation of glucose and oxygen uptake rates and
variation of fatty acids and oxygen uptake rates, respect-
ively, for each case study; for both instances, biomass
growth rate was maximized). Furthermore, shadow prices
were calculated for selected important metabolic interme-
diates that participate in the perturbed pathways. Finally, a
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pathway utilization analysis was carried out along with the
characterization of flux distributions at specific conditions
for each phenotype.

Results and discussion

The identification and analysis of different metabolic phe-
notypes of the Mtb mutants comprised model formulation,
sensitivity analysis, a solution of the optimization problem,
analysis of results, and hypothesis generation. The
complete strategy is presented in Additional file 1.

The GEM of Mtb iOSDD890 was used as starting
point for this analysis [30]. Gene-protein-reaction associ-
ations, zero flux reactions, metabolic gaps and reaction
reversibility, were checked by using the MC3 algorithm
[31]. Accordingly, some network inconsistency issues
related to gaps were identified. Based on these results,
three noteworthy modifications were carried out in the
iOSDD890 model.

I. Under the tested environmental conditions, it was
identified that some reactions in the p-oxidation
pathway within the iOSDD890 model had zero fluxes,
and no grow could be achieved on those fatty acids.
This condition was caused by the absence of reactions
catalyzed by the ATP- dependent fatty acyl-CoA
ligases in the iOSDD890 model; these steps are
essential for fatty acid activation (conjugation with
Coenzyme A) before -oxidation. Therefore, we added
67 reactions related to fatty acyl-CoA ligases, transport,
and exchange of some fatty acids, thus rendering a
model able to represent cell growth on fatty acids.

II. It was detected that seven transport reactions were
missing in the iOSDD890 model, so it cannot use
neither acetate nor aminobenzoate, formate,
oxoglutarate, oxalate, guanine or urea. Hence, the
corresponding transport reactions were added, as
some of them can be used by Mtb as sole carbon
and nitrogen sources [38].

III. The iOSDD890 model missed the cholesterol

degradation pathway. For this, 36 related reactions
were added from another published model [24].

Additional information for new reactions and gene-
protein-reaction (GPR) associations are included in
Additional file 2. The final extended model, obtained
after the modifications mentioned above, encompassed
1265 reactions, 1021 metabolites, and 922 genes
(Additional file 3).

For both case studies, we modified the reaction
exchange bounds to allow the Mtb model to run on a
minimal culture medium. Then, we identified reactions
and pathways that were perturbed, and defined biomass
growth rate as the objective function to generate a work-
ing constraint-based model to be used in FBA.
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Granulomatous lesions during TB disease

Findings in humans and the non-human primate model
of Mtb infection have indicated that granulomatous
lesions are highly heterogeneous [39]. The diverse
immunopathology of granulomas and cavities generates
a plethora of microenvironments to which Mtb must
adapt, affecting the replication, metabolism, bacterial
subpopulations, and consequently their respective sus-
ceptibility to anti-TB drugs.

Granulomatous lesions in humans have different
forms: (i) non-necrotizing granulomas characterized by a
lymphocyte rim, macrophages and epithelioid histiocytes
at the center. In this stage, the granuloma becomes
highly vascularized [40, 41]. (ii) Necrotizing granuloma
with a central necrosis surrounded by a layer of cellular
infiltrates and a fibrotic rim. (iii) Granulomas with solid
caseous centers characterized by a complete necrosis of
immune cells with a disappeared nucleus and cellular
contours, forming the caseum (cheese-like core). A solid
caseum contains relatively low bacterial numbers and is de-
lineated by layers of lymphocytes, activated macrophages
surrounded by a collagen rim. (iv) Liquefied necrotic
granulomas characterized by a fissured and fragmented
caseous mass, with semi-liquid consistency and high
extracellular bacillary numbers. (v) Cavities appear when
remnants of liquefied lesions release their content into an
airway; they are delineated by a fibrous capsule, with high
extracellular and intracellular bacillary numbers. Add-
itional factors such as hypoxia (defined as <4 uM O, satur-
ation or O, tension lower than 10 mmHg), nutrient
limitation, low pH and oxidative stress are thought to be
present in caseating and necrotic lesions and the phagoly-
sosome of infected macrophages [39, 42]. In caseous
granulomas, lipids like triglycerides and cholesterol are
abundant [43], which enables Mtb to adapt to a lipid-rich
environment by the induction of cholesterol and triglycer-
ide utilizing enzymes [44—46]. It is believed that this nutri-
ent shift allows Mtb to acquire the poorly understood
dormancy-like or persister-like phenotypes [47, 48]. From
this, our interest was to explore the metabolic adaptations
of the two Mtb mutants growing during shifts of oxygen
and carbon sources (glucose and fatty acids), and to
analyze it in the context of the Mtb under granulomatous
environments.

Case study I: In silico analysis of the metabolic adaptation
of a pfkA-mutant of Mycobacterium tuberculosis to
changes in oxygen and glucose uptake rates

PFKA is a key glycolytic enzyme that catalyzes the
irreversible formation of fructose-1,6-biphosphate from
fructose-6-phosphate (Fig. 1a). Although Mtb has two
genes associated with PFK activity (pfkA and pfkB), func-
tional studies of Phong and Colleagues (2013) suggested
that pfkA might be responsible for 100% of the PFK
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Fig. 1 Key Metabolic pathways of Mtb during infection. a Central metabolism of Mtb. b Redox metabolism of Mtb. The X symbol represents the
disrupted pathways for simulating the experimental conditions reported in the literature

activity under aerobic and hypoxic conditions. In contrast, sign of its capacity to use glycolytic substrates during
pfkB overexpression does not lead to detectable PFK activ-  infection [9, 10, 14—16].

ity under the same conditions. Different researchers have We simulated the metabolic adaptation of a null pfkA-
argued that a conserved glycolysis pathway in Mtb is a mutant of Mtb using the modified iOSDD890 Mtb
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model. The in silico pfkA-mutant strain was generated
by disrupting the glycolytic reaction step involved in the
formation of fructose-1,6-biphosphate (ATP + fructose-
6-phosphate — fructose 1,6 biphosphate + ADP)
(Fig. 1a). To elucidate the effect of oxygen and glucose
consumption on the Mtb-mutant growth rate, a
phenotypic phase plane (PhPP) analysis for the pfkA-
mutant was performed. We generated a three-
dimensional graph showing the effect of substrate and
oxygen uptake rate on Mtb growth (Fig. 2a). Four
phases can be identified from the graph (changes in
the slopes) representing different metabolic pathway
utilization patterns or phenotypes. The continuous
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black line corresponds to the optimal relation be-
tween glucose and oxygen consumption to obtain the
maximal Mtb growth (LO: line of optimality). In
general, we observed that increments in oxygen up-
take rate promote Mtb’s growth, and increments in
glucose consumption partially inhibit Mtb growth in
the pfkA-mutant.

By analyzing the three-dimensional graph of pfkA-mu-
tant (Fig. 2b), we generated a two-dimensional graph
that highlights the presence of isoclines (which define
regions of different colors with the same constant
growth rate values), when glucose and oxygen uptakes
are varied.
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PhPP and shadow price analysis identify inhibitory
substrate uptake conditions for an Mtb pfkA-mutant in
the context of human granulomas

As observed in Fig. 2b, the PhPP of the pfkA-mutant is
divided into four phases (G1-G4); each phase has a dis-
tinct metabolic pathway utilization pattern (same figures
for Wild-type Mtb are shown in Additional file 4). G1 is
characterized by a negative slope of isoclines, which
means that, in this phase, both glucose and oxygen
consumption are important for the Mtb’s growth. In
contrast, phases G2, G3 and G4 are characterized by
positive slopes of isoclines, which means that one of the
varied substrates (glucose or oxygen) is inhibitory to
Mtb growth. Wild-type Mtb had a different behavior in
comparison with the pfkA-mutant; negative isoclines
were observed in all phases (Additional file 4).

Black points in Fig. 2b show scenarios at specific con-
ditions (glucose and oxygen uptake rates) in each phase.
The black point in G1 represents Mtb inside a solid
necrotic granuloma (with a hypoxic center) and poor
vascularization (Fig. 2c) [42]. In this kind of lesions, Mtb
induces the formation of lipid bodies and foamy macro-
phage phenotypes [6]. Therefore, in this scenario, we as-
sumed that this intracellular Mtb-mutant is undergoing
a metabolic transition from glucose to lipid consumption
during quiescence. Hence, in G1, Mtb is oxygen de-
prived and consumes glucose at low rates (Fig. 2b). This
G1 phase is characterized by the negative slope of the
isoclines in both Wild-Type and pfkA-mutant; as ex-
pected, negative shadow prices were obtained for both
glucose and oxygen (see Table 1); consequently, within
this phase, increasing the availability of oxygen or
glucose will increase biomass growth rate. Due to these
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restrictions, Mtb should be in a non-replicative state,
and the access to carbon sources and oxygen might in-
crease its metabolic activity.

The black point in G2 represents a bacterium in a nec-
rotic granuloma in the lower part of the lungs, which will
acquire appropriate environmental conditions to reactivate
from quiescence by consuming available glucose during
hypoxia. This phase is identified as a futile phase as defined
elsewhere [34]; in this phase, glucose has a partial inhibi-
tory effect towards the growth of bacteria in a broad range
of values (from 0.09 to 0.8 mmol/gDW/h) (Fig. 2b). The
shadow price for glucose is positive for the Mtb-mutant
(Table 1). Likewise, sugar-phosphate intermediates such as
glucose-6-phosphate,  fructose-6-phosphate, ribose-5-P,
xylulose-5-P, mannose-1-P, mannose-6-P, and trehalose-6-
P have positive shadow prices, confirming the inhibitory
effect of these intermediates on biomass growth. In this G2
phase, the model predicts a harmful inhibitory effect of low
oxygen and high glucose uptake rates on biomass growth,
which is in agreement with the experimental results ob-
tained by Phong [49]. In contrast, metabolites in wild-type
Mtb have negative shadow prices (in all phases) as a trace
of positive contribution to Mtb growth.

Phong and co-workers experimentally characterized
the behavior of an Mtb pfkA-mutant growing on a spe-
cific medium — the Dubos medium — under aerobic and
hypoxic conditions [49]. They found that if the medium
is supplemented with glucose, the pfkA-mutant multiply
efficiently prior to oxygen depletion. After the 6th day,
when oxygen was low, the pfkA-mutant exhibited a
significant growth inhibition; in contrast, when glucose
addition was omitted, the pfkA-mutant survived. This
phenomenon was explained by the accumulation of toxic

Table 1 Shadow prices for different metabolites in Wild-type and pfkA-mutant strains exposed to various substrate concentrations

Metabolite GI1 G2 G3 G4
WT ApfkA WT ApfkA WT ApfkA WT ApfkA

Oxygen -0.0273 -0,0273 -0.0278 —-0,0365 -0.0278 —0,0305 -0.0215 -0,0232
Glucose —0.0601 —0.0601 -0.0500 0.0274 —0.0500 0.0122 -0.0484 0.0029
Glucose-6-P —-0.0601 —-0,0601 —-0.0500 0,0274 —-0.0500 0,0122 —-0.0484 0,0029
Fructose-6-P —0.0601 —0,0601 —-0.0500 0,0274 —0.0500 0,0122 —-0.0484 0,0029
Ribose-5-P —0.0501 —0,0501 —0.0435 0,0061 —0.0435 —0,0031 —-0.0421 —0,0087
Xylulose-5-P —0.0501 —-0,0501 -0.0435 0,0061 —0.0435 —0,0031 -0.0421 -0,0087
Mannose-1-P —-0.0601 —0,0601 —-0.0500 0,0274 —0.0500 0,0122 —-0.0484 0,0029
Mannose-6-P —0.0601 —0,0601 -0.0500 0,0274 —0.0500 0,0122 —-0.0484 0,0029
Trehalose-6-P -0.1312 -0,1312 -0.1111 0,0426 =011 0,0122 -0.1075 —0,0058
ATP -0.2223 -0,2223 -0.2186 —-0,1948 -0.2186 —-0,1956 —-0.2007 -0,1804
Oxaloacetate —0.0191 —-0,0191 -001%4 -0,0274 -0.0194 -0,0214 -00134 —0,0145
Fumarate -0.0109 -0,0109 -0.0111 -0,0152 -0.0111 -0,0122 —-0.0080 —-0.0087
Succinate -0.0027 -0,0027 —-0.0027 —-0,0030 -0.0027 —-0,0030 —-0.0027 —-0,0029

G1, G2, G3 and G4, represent the phenotypic phases associated with definite nutrient conditions. Boldface shadow prices represent harmful intermediate

metabolites for Mtb. Wild-type (WT); pfkA-mutant (ApfkA)
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intermediates like glucose-6-phosphate and fructose-6-
phosphate.

These experimental results demonstrate that in the
presence of exogenous glucose, the absence of PFKA
activity leads to the accumulation of toxic metabolic
intermediates (glucose-6-phosphate and fructose-6 phos-
phate) in hypoxic non-replicating mycobacteria, as we
observed in our simulations (Fig. 2b), and the positive
values of shadow prices for sugar-phosphate intermedi-
ates (Table 1).

The black point in G3 represents the bacterium in a
replicative state inside an early vascularized solid granu-
loma (Fig. 2¢). Here, it is believed that Mtb has access to
glucose and oxygen, as it was demonstrated by Guirado
and colleagues [50]. The authors found increased tran-
scription of glycolysis genes (pfkA and ppgK) during Mtb
growth within early stage in-vitro granulomas from
individuals. The black point in G4 denote a hypothetic
scenario of high oxygen consumption; oxygen consump-
tion rate in aerobic Mycobacterium bovis BCG cultures
was calculated to be 0.98 mmol/gDW/h [19, 51]. These
phenotypic phases are also characterized mostly as futile
zones (Fig. 2b). Shadow prices of glucose, glucose-6-
phosphate, fructose-6-phosphate, mannose-1-phosphate
and mannose-6-phosphate for the pfkA-mutant have
positive values and therefore an adverse effect on
biomass growth rate; in G3 and G4, for these sugar-
phosphates, shadow prices near zero were observed
(0.0122 and 0.0029, respectively) showing a weak inhib-
ition of bacterial growth. In contrast, negative shadow
prices are attained for ribose-5-phosphate and xylulose-
5-phosphate in G4, indicating the utilization of the pen-
tose phosphate pathway for promoting bacterial growth.
Shadow prices for ATP, oxaloacetate, fumarate and
succinate are negative in all phases, which suggests that
oxidative phosphorylation and TCA cycle are active and
promote the survival of Mtb. Similarly, it can be seen
that oxygen is important in controlling phenotypic
variability in all phases (i.e. negative shadow prices are
obtained, see Table 1).

A metabolic exploration of the pfkA-mutant suggests a
strong Mtb susceptibility to hypoxia at high glucose levels
In the PhPP, a line of optimality (LO) was exhibited
(Fig. 2b), which lies on the boundary between G1 and
G2, G3 and G4, and defines the optimal ratio of glucose
and oxygen uptake rates for maximal biomass produc-
tion. At cellular level, the line of optimality represents a
scenario in which, once glucose consumption increases,
NAD", NADP", and FAD" are converted into their re-
duced forms to maintain redox balance, thus demanding
more oxygen supply to retrieve oxidized cofactor forms;
under this scenario, the maximal growth rate is reached.
Our metabolic exploration of the pfkA-mutant suggests
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a strong Mtb susceptibility to hypoxia at high glucose
levels; the cause of this cell-growth inhibition by the ac-
cumulation of sugar-phosphate is unknown, even in E.
coli [52-54]. Research on this topic has been rather
scarce for Mtb.

For explaining the in silico observed toxicity phenotype
(Fig. 2b) in the pfkA-mutant strain, we used the improved
GEM to analyze flux distribution through glycolysis, TCA
cycle, pentose phosphate pathway, redox, and energy
metabolism in all phases (Additional file 5). During
oxygen depletion in solid granulomas (oxygen uptake
decreases from G4 to G2; black points), the flux through
the glycolytic enzyme glucose-6-phosphate isomerase
(pgi) increases towards glucose-6-phosphate in the gluco-
neogenesis sense (Fig. 3), whereas pyruvate kinase (pykA)
showed a flux decline behavior (Fig. 3). Fluxes of poly-
phosphate glucokinase (ppgK) and phosphoglycerate mu-
tase (pgmA) remained unchanged in the glycolytic
direction (Additional file 6). Supplementation of glucose
exhibited a weak increase in these fluxes (G1 to G2). Re-
grettably, little has been known about the activity of glyco-
lytic enzymes during hypoxia in Mtb, using glycolytic
substrates as carbon sources [55].

Glucose-6-phosphate isomerase (pgi) catalyzes the
reversible isomerization of glucose-6-phosphate to
fructose-6-phosphate. Our results predict an increasing
gluconeogenesis activity for this enzyme at low oxygen
availability, G1, and G2. The phenotypic phases G2 and
G4 are characterized by high glucose-6-phosphate
dehydrogenase (fgdl) activity, the first reaction towards
pentose phosphate pathway (Figs. 1 and 3). Conversely, in
G1, this enzyme is not active; therefore, merely the supply
of both, fructose-6-phosphate and glyceraldehyde-3-
phosphate, is allowing carbon flux towards the pentose
phosphate pathway.

The pgmA enzyme catalyzes the reversible reaction of
D-3-phosphoglycerate to 2-phosphoglycerate. It is
known that D-3-phosphoglycerate is a precursor of
amino acids such as L-serine, glycine, and cysteine. The
D-3-phosphoglycerate dehydrogenase (serA) catalyzes (in
many bacteria, including Mtb) the first reaction in the
pathway of L-serine biosynthesis by converting D-3-
phosphoglycerate to hydroxypyruvic acid phosphate util-
izing NAD" as a cofactor (Dey et al., 2005). Our results
indicate that while the flux through pgmA was
unchanged during oxygen depletion (G2), in serA, there
is a flux decline (Fig. 3). Certainly, under low oxygen
availability, the NAD" pool is depleted which is detri-
mental for serA activity.

Flux through phosphoenolpyruvate carboxykinase
(pckA) was strongly favored in the TCA cycle (Fig. 3).
Though pckA is primarily associated with gluconeogenesis
(the reaction thermodynamics and concentration of
related metabolites favors the oxaloacetate (OAA) to
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Fig. 3 Flux distributions at key enzymes in the pfkA-mutant during shifts in glucose and oxygen concentration. Negative and positive fluxes
represent backward and forward sense of the reaction. pgi: glucose-6-phosphate isomerase, serA: phosphoglycerate dehydrogenase, pckA: PEP
carboxykinase, icd1/2: isocitrate dehydrogenase, frdA~D: fumarate reductase, mdh: malate dehydrogenase, fumC: fumarase, acn: aconitase,
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phosphoenolpyruvate (PEP) reaction for sugar backbone
building), in Mtb during hypoxia, this enzyme has demon-
strated an anaplerotic function in favor of OAA produc-
tion [56]. We observed that the flux at pckA increased in
the OAA direction with glucose uptake increments and
oxygen depletion (G1 to G2 and G4 to G2) (Fig. 3).

In the TCA cycle, the fluxes through aconitase (acn)
and isocitrate dehydrogenase (icd1/2) decrease notice-
ably at low oxygen conditions; yet, malate dehydrogen-
ase (mdh), fumarase (fumC), and fumarate reductase
(frdA~D) fluxes (absolute values), increase under oxygen
depletion (G4 to G2) (Fig. 3). Glucose uptake increment
favors this effect (G1 to G2). The observed flux distribu-
tion supports the reductive TCA flux rather than the
oxidative one. The large pool of OAA produced by
phosphoenolpyruvate carboxykinase (pckA) also favors
this reductive activity (Fig. 3).

Regarding flux distribution through redox and energy
metabolism, a detrimental effect was observed under oxy-
gen depletion; still, flux values are favored as glucose up-
take increases. These results are comparable to available
literature, e.g., Watanabe and colleagues, where a 2.3-fold
increase in intracellular ATP levels and an almost 70-fold
increase in the ratio of NADH/NAD™ were found [57].

Mtb has various dehydrogenases to fuel the electron
transport chain with electron donors NADH, NADPH,
and FADH,, during oxidation of any carbon source
(Fig. 1b). NADH oxidation is carried out by NADH
menaquinone oxidoreductases; these enzymes transfer
electrons from NADH to menaquinone producing
menaquinol, which conserves energy by translocation of
protons across the membrane to generate proton motive
force (PMF), using F1Fo-ATP synthase. Likewise, mena-
quinone pool is restored by dioxygen reduction (mena-
quinol oxidation) in the terminal oxidases, aas-type
cytochrome ¢ oxidase, and cytochrome bd-type mena-
quinol oxidase, which is coupled to the generation of
proton motive force [58]. In the absence of oxygen,
dioxygen reduction by terminal oxidases is inhibited.
This situation entails a decreased activity of NADH
dehydrogenase, which leads to poor translocation of pro-
tons and a low ATP generation. During this hypoxia
phenomenon, Mtb struggles to survive by producing
alternative electron acceptors (menaquinone) by fumar-
ate reductase that results in succinate production until
replenishing the redox balance, and respiration con-
tinues [59, 60]. A similar pathway utilization pattern for
¢ydD, nuoA ~ N and atpFH, at low oxygen uptake rates,
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was anticipated by our pfkA-mutant Mtb metabolic
model, and their fluxes decline at low oxygen availability
(Additional file 6).

Metabolic flux distribution provides insights about
methyl-branched lipid biosynthesis

The predicted growth rate inhibition under hypoxia and
increments of glucose supply may be further described.
While fluxes for glycolytic intermediates such as
glucose-6-phosphate and fructose-6-phosphate are fa-
vored at low oxygen and high glucose uptake rates,
fluxes towards the glycogen precursor glucose-1-
phosphate and cell wall components derived from
fructose-6-phosphate, were rather deprived; in contrast,
substantial carbon flux is addressed towards the succin-
ate pool whose accumulation might have contributed to
the synthesis of methyl-branched lipids by means of the
direct action of methyl malonyl-CoA mutase (mutAB)
on succinyl-CoA (Fig. 3). Yet, flux towards malonyl-CoA
by the enzyme Acetyl-CoA carboxylase (accA3) was
disfavored which endorses growth inhibition (G2) caused
by deprived formation of fatty acids and lipids, as essen-
tial components of the Mtb cellular wall (Fig. 3).

Similar results were observed in the synthesis of the
amino acid precursors D-3-phosphoglycerate, phospho-
enolpyruvate, and pyruvate; accordingly, fluxes involved
in the synthesis of the aminoacids L-serine (serB2),
glycine (glyA), tyrosine (tat), tryptophan (trpA), alanine
(alaT), isoleucine (ilvE), and lysine (lysA) were deprived
in phase G2 of the PhPP (Additional file 7). Besides, flux
towards o-ketoglutarate was very low in G2, thus
restraining the availability of critical L-glutamate, argin-
ine, and glutamine for biomass synthesis.

Interestingly, our in silico results are in good agreement
with experimental reports showing that pfkA-mutant
adapts to hypoxia inside a granuloma. The metabolic flux
analysis showed that, under hypoxic conditions, Mtb
slows and redirects its TCA cycle intermediates to in-
crease production of succinate while sustaining the mena-
quinone pool and ATP synthesis in response to oxygen
limitation as it has been reported by Watanabe [57].
Additionally,  glucose-6-phosphate and  fructose-6-
phosphate accumulation enlarges this effect (due to
glucose supply increment), producing fewer amounts of
biomass precursors, thus resulting in a marked inhibition
of growth.

Although there are not enough studies revealing the
role of pfkA-mutant in vivo, our simulations predict that
the lethality effect of pfkA-mutant might not be pro-
longed in Mtb subpopulations growing in caseous
granulomas. In that environment, Mtb is adapting its
metabolism to a non-replicative state; probably, the ma-
jority of the bacterial population is consuming lipids as a
carbon source, so gluconeogenesis rather than glycolysis
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is active [50]. In this scenario, a hypothetic drug inhib-
ition of pfkA could be useful only during the initial states
of the solid necrotic granuloma, or during reactivation,
where Mtb can access glycolytic substrates, killing the
bacterium just during the transition from replicative to
non-replicative state or vice versa.

Case study llI: In silico analysis of the metabolic
adaptation of an icl-mutant of Mycobacterium tuberculosis
to changes in oxygen and fatty acid uptake rates.
Isocitrate lyase (ICL1) is a Mtb enzyme that has both
isocitrate (ICL) and methylisocitrate lyase (MCL) activ-
ities; it is codified by two essential genes for metabolism
of even-chain fatty acids [61, 62], ic/1(Rv0467) and icl2
(Rv1915/Rv1916), which is divided in the genome of
Mtb-H37Rv into two individually expressed modules,
Rv1915 and Rv1916 (aceAa and aceAb). In this study,
we mimicked the metabolic adaptation of ic/I and ic/2
mutants (ic/-mutant) when fatty acid and oxygen avail-
abilities are changed, using in silico simulations; our ex-
tended GEM was also used for this analysis. The model
associates a total of 50 pathways including p-oxidation
of fatty acids, odd numbered acyl chain fatty acids and
of unsaturated fatty acids, that are essential for assimila-
tion of host fatty acids as a carbon source, during Mtb
infection [63]. The in silico ic/-mutant strain lacked the
ICL reaction (isocitrate — succinate + glyoxylate) and
the MCL reaction (methylisocitrate — succinate)
(Fig. 1a). For modeling purposes, we chose propionate as
a representative odd-chain fatty acid to be evaluated. In
our ic/-mutant model, propionate is metabolized mainly
via beta-oxidation pathway.

PhPP for the ic/-mutant is represented in a three-
dimensional graph for identifying changes in the slopes
of the Phenotypic Planes (Fig. 4a). Phase boundaries, as
well as the line of optimality, are shown in Fig. 4b. Each
phase represents a distinct metabolic pathway utilization
pattern in the Mtb-mutant when the availability of
propionate and oxygen are varied. All phases are charac-
terized by positive slopes of the isoclines (Fig. 4b).
Therefore, either propionate or oxygen inhibits growth
in the ic/-mutant, in a specific phase. Those phases are
considered as futile phases [34]. PhPPs of the wild-type
Mtb are shown in Additional file 8. The black point in
F1 (similar to G1 in the Case Study I), mimics Mtb in-
side an early solid granuloma, with poor vascularization,
localized at the lower zones of the lung where oxygen
could be low (Fig. 4b and c). Accordingly, we are assuming
that intracellular Mtb is undergoing a metabolic transition
to consumption of lipids where the availability of oxygen
and propionate is limited. F3 and F4 depict the intracellu-
lar bacterium being phagocytized by foamy macrophages/
histiocytes, or extracellular bacteria consuming lipid bod-
ies from death cells inside a caseous granuloma (Fig. 4b
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and c). Therefore, Mtb is consuming high fatty acid phases, F1, F2, and F5 shadow prices are positive, which
concentrations, while oxygen keeps low levels [43]. Black  means it is inhibitory for growth. In contrast, propionate
points in F2 and F5 represent Mtb growing in a broken is important for growth in phases F1, F2, and F5 (nega-
liquefied granuloma [64] within which the bacterium can  tive shadow prices), whereas it is inhibitory for growth
consume high levels of fatty acids or lipids in an oxygen- in F3 and F4. Indeed, such inhibitory effect (phases F3
ated environment. and F4), predicted by the in silico analysis, has also been

All phases (F1 to F5) are defined by futile phenotypes, observed experimentally [65]. Lee and co-workers re-
which means that either propionate or oxygen are in-  ported a noticeable lethal inhibitory effect of increments
hibitory towards supporting biomass growth. Shadow of propionate uptake rates on biomass growth rate, thus
prices for propionate, oxygen and other important highlighting the toxic effect of propionyl-CoA accumula-
metabolites are shown for each phase in Table 2. As tion. Although propionyl-CoA toxicity was not directly
observed, oxygen is necessary for biomass growth in F3  confirmed (in silico) by positive shadow prices in all ex-
and F4, since it has a negative shadow price; yet, in  plored phenotypes, shadow prices for propionyl-CoA in
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Table 2 Shadow prices for different metabolites in Wild-type and icl-mutant strains exposed to different substrate conditions

Metabolite F1 F2 F3 F4 F5
WT Aicl WT Aicl WT Aicl WT Aicl WT Aicl

Propionate —-0.0504 —0.0495 -0.0319 -0.0319 0.0072 0.0072 0.0187 0.0187 —0.0458 —0.0458
Oxygen 0.0101 0.0106 0.0053 0.0053 —-0.0096 —-0.0096 -0.0213 -0.0213 0.0109 0.0109
Propionyl-CoA —0.0571 —0.0566 —-0.0425 —-0.0425 -0.0120 —-0.0120 —-0.0026 —0.0026 —0.0549 —0.0549
Acetyl-CoA -0.0336 -0.0318 -0.0266 -0.0266 -0.0120 -0.0120 -0.0133 -0.0133 -0.0329 -0.0329
S-Methylmalonyl-CoA —0.0604 —-0.0601 —-0.0478 -0.0478 -0.0217 -0.0217 -0.0133 -0.0133 -0.0567 -0.0567
NADH —0.0033 —0.0071 0 —-0.0053 0 0 0 0.0053 —-0.0018 —0.0055
Succinyl-CoA -0.0604 —-0.0601 —-0.0478 -0.0478 -0.0217 -0.0217 -0.0133 -0.0133 -0.0567 -0.0567
2-Methylcitrate -0.1007 —-0.0990 -0.0744 -0.0744 -0.0241 -0.0241 -0.0160 -0.0160 -0.0897 —-0.0897
2-Methyl-isocitrate —-0.1007 —-0.0990 -0.0744 -0.0744 —-0.0241 —0.0241 —-0.0160 —-0.0160 —-0.0897 —0.0897
Succinate -0.0571 —-0.0566 —-0.0425 —-0.0425 -0.0120 -0.0120 -0.0026 -0.0026 -0.0513 -0.0513
Fumarate -0.0504 —-0.0486 -0.0372 -0.0359 -0.0120 -0.0120 -0.0080 —-0.0080 -0.0439 -0.0439
Glyoxylate -0.0168 -0.0177 -0.0106 -0.0106 —-0.0024 0 —-0.0133 0 -0.0128 -0.0128
Malate —-0.0504 —0.0495 -0.0372 -0.0372 —-0.0121 —-0.0121 —-0.0080 —0.0080 —0.0439 —0.0439
FADH2 -0.0067 -0.0071 —-0.0053 —-0.0053 0 0 0.0053 0.0053 -0.0073 -0.0073

F1, F2, F3, F4 and F5, represent the phenotypic phases associated with specific nutrient conditions. Boldface shadow prices represent harmful intermediate

metabolites for Mtb. Wild-type (WT); pfkA-mutant (ApfkA)

F3 and F4 were close to zero, indicating that biomass-
growth-rate increment was promoted by other metabo-
lites rather than propionyl-CoA.

The role of Vitamin B, in Mtb pathogenesis remains
poorly understood. Currently, it has been demonstrated
an enzymatic-dependent role of Vitamin B;, for the activ-
ity of methionine synthase (MetH) and methylmalonyl-
CoA mutase (mutAB), during methionine biosynthesis
and propionate metabolism (methylmalonyl pathway)
[65—-68]. Our simulations with the in silico ic/-mutant pre-
dict an active methylmalonyl pathway, which corresponds
to the in-vivo scenario of available vitamin B;,. Spontan-
eous in silico activation of the methylmalonyl pathway
occurs because our GEM does not take into account vita-
min Bj, as a cofactor for methylmalonyl-CoA mutase
(mutAB). Consequently, simulations of the ic/-mutant
metabolism (where glyoxylate shunt and methylcitrate
cycle are disrupted) show propionate catabolism by activa-
tion of methylmalonyl-CoA mutase (mutAB) (Fig. 5)

Pathway utilization analysis was carried out for the five
representative points of the identified phenotypes in the
PhPP for both, icl-mutant and wild-type (Additional file 9).
The most relevant results for the ic/-mutant are presented
in Fig. 5; complementary flux distribution analysis for the
main enzymes are shown in Additional file 10. For all phe-
notypes, a similar pathway utilization pattern, which is
consistent with experimental observations, was found
[66]. We also saw that when our Mtb model relies on high
concentrations of propionate, propionyl-CoA ligase cata-
lyzes the formation of propionyl-CoA, whose toxicity on
the ic/-mutant is only prevented by the methylmalonyl
pathway; methylmalonyl-CoA not only goes to constitute

methyl-branched lipids but also enters the TCA cycle,
after conversion to succinyl-CoA by methylmalonyl-CoA
mutase (mutAB). From the TCA cycle, the glycolytic
substrates could be replenished by gluconeogenesis, a
reaction mediated by phosphoenolpyruvate carboxykinase
(pckA). Replenishing of pyruvate takes place by the action
of the malic enzyme (mez) (Fig. 5).

The icl-mutant phenotypes F1, F3, and F4, were analyzed
at a fixed oxygen uptake rate (0.4 mmol gDW ' h™") with in-
creasing values of propionate uptake rates (0.1, 0.3 and
0.5 mmol gDWh™). In F1, propionate is essential for
growth, but in F3 and F4 (larger propionate uptake), it is in-
hibitory. Differences in metabolic flux distribution towards
amino acid biosynthesis were also observed. From F1 to F2
there is an increase in fluxes towards phenylalanine, histi-
dine, valine, alanine, glycine, lysine, threonine and methio-
nine (Additional file 11), which is consistent with the growth
rate boost between the two points examined within these
two phases. In contrast, a reduction in the flux towards these
amino acids occurred in F3 and F4. Particularly, in these two
“inhibitory” or “toxic” phenotypes (caseous granuloma), we
found that metabolic fluxes through the TCA cycle, i.e., aco-
nitase (acn), isocitrate dehydrogenase (icd1/2), succinate de-
hydrogenase (sdhA~ D, fumarase (fumC) and malate
dehydrogenase (mdh), were disfavored in comparison with
F2 and F5 (broken liquefied granuloma) (Fig. 5).

High levels of propionate uptake negatively affect both
redox metabolism and vital metabolic pathways in Mtb
icl-mutants

The needy activity of the TCA cycle in the ic/-mutant
was also predicted by small negative values for the
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metabolic-intermediate shadow prices (isocitrate, succin-
ate, succinyl-CoA, malate, and fumarate) in F3 and F4
(Table 2). In the ic/-mutant, the depletion of intermedi-
ates in this pathway might produce a redox imbalance
(NADH/NAD", NADPH/NADP*, and FADH,/FAD) for
Mtb metabolism at low oxygen uptake rates. Shadow
prices for NADH/NADPH and FADH2 in our ic/-mu-
tant Mtb model were either zero or positive at pheno-
types F3 and F4, respectively. Although the magnitude
of shadow prices for the wild-type Mtb is very similar to
the icl-mutant, a slight difference is found in the values
of the shadow prices of metabolites in phase F1, indicat-
ing a small positive or negative contribution of those
metabolites to Mtb’s growth. The NADH’s shadow prices
were zero or negative for all phases in the wild-type
strain, which is an indication of a slight improvement of
NADH/NAD" balance (in the wild type) in comparison
with the ic/-mutant. A possible explanation for this mild
improvement in redox balance is the activation of
carbon flux by the isocitrate lyase (ICL) and methylisoci-
trate lyase (MCL) enzymes, in addition to the methylma-
lonyl pathway activation.

Therefore, we argue that high levels of propionate
uptake (Phenotypes F3 and F4) negatively affect both
redox metabolism (low NAD*/NADP*/FAD" recovery
and ATP synthesis), and vital metabolic pathways as glu-
coneogenesis, pentose phosphate pathway, synthesis of
amino acids, mycolic acids synthesis, and synthesis of
methyl-branched lipids (Additional files 10, 11 and
Fig. 5). Furthermore, phenotype F4 revealed a high for-
mate hydrogen lyase enzyme (hycD) activity (hycD cata-
lyzes the production of molecular hydrogen and CO,

from formate and atomic hydrogen), caused apparently
by an increase of intracellular H* (Additional file 10).
Our observations harmonize with the recent findings of
Eoh and Rhee [69], who explored the toxic effect of pro-
pionate and acetate addition on a Mtb-ICL mutant.
Their findings can be summarized as i) depletion of TCA
cycle and gluconeogenic pathway intermediates, ii) non-
competitive inhibition of 2-methylcitrate on fructose-1,6-
biphosphatase activity, and iii) shifts in NAD/NADH
pools, changes in membrane potential and a decrease in
the intracellular pH. Also, under aerobic conditions, vita-
min B;, dependent pathway (methylmalonyl pathway) led
selective corrections in TCA cycle activity and membrane
potential.

Inside hypoxic caseous granulomas, a strong lethality of
icl-mutant seems to be favored in Mtb populations
surviving in fatty acids

Although there is not a direct evidence of the effect of
hypoxia on the methylmalonyl pathway in vivo, our find-
ings predict that oxygen limitation creates an inability to
methylmalonyl pathway to correct TCA cycle activity
and membrane potential when the ic/-mutant consumes
fatty acids, unlike to Eoh and Rhee’s work, found under
aerobic conditions [69]. In other words, a strong lethality
of ic/-mutant seems to be favored in Mtb populations
surviving inside hypoxic caseous granulomas with avail-
able fatty acids. This lethality is lost in Mtb growing in
broken liquefied granulomas during replicative state,
probably because oxygen can restore NAD and NADH
pools and therefore membrane potential (F5). Addition-
ally, phenotypes F2 and F5 (analyzed at higher values of
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oxygen: 0.85 and 1.55 mmol gDW 'h™%, respectively)
exhibited a noticeable boost in all fluxes towards lipids,
amino acids, gluconeogenesis, and pentose phosphate
pathway; this is consistent with the increase in Mtb mu-
tant proliferation within broken liquefied granulomas.

Effect of the consumption of asparagine on the metabolic
reprogramming of pfkA- and icl-mutant strains of Mtb in
a caseous granuloma scenario
Nitrogen is an essential molecule for Mtb to produce
amino acids, proteins, and nucleotides. Metabolite label-
ing studies have confirmed that Mtb actively imports
amino acids such as alanine, aspartate, asparagine,
glutamate and glutamine from the host cytoplasm [70].

Metabolic profiling during the infection in guinea pig’s
lung granulomas infected with Mtb showed accumula-
tion of acetate, glutamate, and aspartate as the infection
progressed [7]. It is believed that aspartate accumulation
could be a consequence of the utilization of asparagine
from the host. Asparaginases catalyze the hydrolysis of
asparagine into aspartate and ammonia to gain resist-
ance to acid stress [71, 72]. Therefore, we decided to
explore the metabolic adaptation during consumption of
asparagine in the hypoxic phases of pfkA- and ic/-mu-
tants (G2 and F3/F4 respectively), which corresponds to
a caseous granuloma scenario. In the metabolic model,
this effect was captured by the relaxation of reaction ex-
change boundaries, thus allowing asparagine consump-
tion at each punctual phase. The consumption range
values showed in Fig. 6, were those that allowed a feas-
ible solution of the optimization problem.

Mtb allows asparagine uptake by AnsP2 (Rv0346c).
AnsA (Rv1538c) is the asparaginase enzyme involved in
asparagine deamination into aspartate, which releases
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ammonia; subsequent spontaneous protonation pro-
duces ammonium. It is believed that it has a major role
in resistance to acid stress, both in vitro and in vivo.

Our in silico results indicate that the use of asparagine
as nitrogen source presented an equilibrated balance
between growth and inhibition at different levels of con-
sumption in both Mtb mutants (Fig. 6). For instance,
Mtb growth was slightly favored in G1 and F3/F4
phases when asparagine consumption was below
2 mmol gDW 'h™" and 0.6 mmol gDW ' h™" respect-
ively. In contrast, for consumption rates higher than
2 mmol gD\X/’1 h™' and 0.6 mmol gD\X/’1 h%, a
slightly growth inhibition arose. Furthermore, aspara-
gine consumption leads to ammonium secretion in
the pfkA- and icl-mutants (as described by Gouzy and
coworkers), high fumarate reductase activity and high
secretion of succinate, which might be responsible for
the minor growth inhibition by carbon loss (Fig. 6).
These results suggest that the reductive TCA cycle is
active with increased asparagine uptake rates; yet,
under lower asparagine uptake rates, succinate secre-
tion is significantly reduced, and carbon flux is redir-
ected towards acetyl-CoA. This behavior is expected
since asparagine deaminase (ansA) catalyzes the synthesis
of aspartate, which in turns, allows for the synthesis of
oxaloacetate using aspartate oxidase (nadB, Rv1595) or
the reversible aspartate transaminase (aspBC, Rv3565,
Rv0337c¢). Flux distributions data derived from the add-
itional asparagine consumption on phases G2 and F3/F4
of Mtb-mutants are included in Additional files 12 and 13,
respectively.

In both pfkA-mutant and ic/-mutant, the high levels of
oxaloacetate should be reduced by the malate dehydro-
genase activity, which augments flux in the reductive

a“ G2 b F3 (o F4
6 pfkA-mutant icl-mutant icl-mutant
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Fig. 6 Metabolic adaptation of icl- and pfkA-mutants under hypoxia and asparagine consumption. a Effect of asparagine consumption in the G2
phase of the pfkA-mutant. b Effect of asparagine consumption in the F3 phase of the ic-mutant. ¢ Effect of asparagine consumption in the F4
phase of the ic-mutant. ACE: acetate, GLU: glutamate, SUCC: succinate, ALA: L-alanine, NH4: ammonium, FOR: formate, PROP: propionate
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TCA cycle direction and might favor succinate produc-
tion. Although recently, succinate production has been
associated with elevated carbon flow through the glyoxy-
late shunt [59], in the pfkA-mutant simulations, the
glyoxylate shunt could not carry flux with asparagine
consumption. We believe that the use of glycolytic sub-
strates like glucose and glycerol could increase succinate
production by fumarate reductase activity during hyp-
oxia, but the use of acetate may favor succinate produc-
tion through the glyoxylate shunt [59].

Furthermore, asparagine consumption allowed the
production of alanine during the hypoxic caseous granu-
loma of phase G2. In Mtb, one of the genes upregulated
in response to hypoxia is ald (Rv2780), encoding L-
alanine dehydrogenase [73]. This enzyme catalyzes the
reversible NAD-dependent interconversion of L-alanine
to pyruvate. Under aerobic conditions, L-alanine is used
as a nitrogen source, whereas under hypoxic conditions,
this reaction allows recuperation of NAD" and alanine
to recover redox balance during non-replicative states.
The use of glycolytic substrates by the pfkA-mutant,
when asparagine is used as a nitrogen source, seems to
favor L-alanine production.

Acetate was produced and spent when both, pfkA-mu-
tant and ic/-mutant consumed asparagine in the phases
G2 and F3/F4. Acetate accumulation has been detected
in guinea-pig granulomas infected with Mtb [7]. Though
it is believed that most of the detected metabolites in
guinea pig granulomas are derived from the host me-
tabolism, Mtb might also produce them. Riicker and
coworkers demonstrated that Mtb had evolved a dual
role in acetate metabolism. Mtb uses enzymes like
phosphate acetyltransferase (pta) and acetate kinase
(ackA), which together can mediate acetate produc-
tion (when Mtb is consuming pyruvate or fatty acids)
to release an excess of carbon units and resumption
of acetate as a carbon substrate depending on the
available substrates for Mtb [74].

Nonetheless there is no evidence of propionate
production by Mtb; the metabolic model used predicts it
using two enzymes that do not have an annotated func-
tion in Mtb but in E. coli: methyl-malonyl-CoA decarb-
oxylase (scpB) and succinate CoA transferase (scpC)
[75]. Similar findings were obtained from the model,
regarding the prediction of acetate production; it was
produced by acetoacetyl-CoA transferase (atoD), another
E. coli enzyme. These findings point out the need for a
further manual curation of the existing GEMs of Mtb; it
will contribute to enhance the prediction of metabolic
adaptations under a plethora of external perturbations.
Indeed, new experimental evidence is needed to prove
acetate production by high asparagine uptake rates,
adding new insights about the role of the acetate metab-
olism in Mtb.
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Finally, formate was produced just in the F3/F4 phases
of the ic/-mutant, by the high activity of the enzyme
formate-tetrahydrofolate ligase (fls1&2), which catalyzes
the interconversion between tetrahydrofolate and 10-
Formyltetrahydrofolate, the latter acts as a donor of
formyl groups in de novo purine biosynthesis pathway.

Still our simulations do not show considerable inhib-
ition or improvements of growth in the Mtb-mutants. A
comparison between metabolic modeling predictions
and literature findings allows us to propose a schematic
representation of carbon flux distributions during the
metabolic adaptation of the pfkA- and ic/-mutants, when
asparagine is used as a nitrogen source, in an environ-
ment such as the one of a hypoxic caseous granuloma
(Additional files 14 and 15).

Any of the phases analyzed here showed zero growth
when asparagine was used as an additional nitrogen
source in the explored ranges. It simply points out the
success of the lack of a catabolite repression mechanism
for the survival of Mtb inside a granuloma with “infinite”
availability of carbon and nitrogen sources [76].

Conclusions

Recent findings in humans and the non-human primate
model of Mtb infection have indicated that host-pathogen
interactions within lesions are a dynamic process, driven
by subtle and local differences in signaling pathways,
resulting in diverging trajectories of lesions within a single
host [39]. These findings suggest that Mtb metabolism is
highly adaptable, which enables the microorganism to
survive for long periods, even under demanding host envi-
ronments. The study of the lethality of Mtb mutants and
the optimal use of its metabolic pathways during exigent
nutritional environments, in the context of human granu-
lomas, was the main facet analyzed in this work. Our in
silico analysis confirmed some particular hypothesis gen-
erated in vivo and in-vitro, related to the use of glycolysis,
TCA cycle, and propionate metabolism.

A harmful effect arises in a pfkA-mutant only during
the adaptation to hypoxia in a solid granuloma with
available glucose. Otherwise, the bacterium was capable
of sustaining growth. In this hypoxia adaptation, we
found that Mtb slows and redirects its TCA cycle to in-
crease production of succinate by fumarate reductase
while sustaining the menaquinone pool and ATP synthe-
sis. Therefore, inhibition of pfkA would be effective only
during the initial states of the solid necrotic granuloma,
or during reactivation, where Mtb has access to glyco-
lytic substrates; otherwise, in further stages of the
disease, a hypothetical drug inhibition would not be
effective against Mtb.

In addition, using shadow price calculations, we pre-
dict, for the first time, the appearance of toxic sugar
phosphate intermediates (such as glucose-6-phosphate
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and fructose-6-phosphate) as glucose uptake increases in
the pfkA-mutant (a phenotype found experimentally for
the Mtb pfkA-mutant under the same conditions). This
finding shows the potential of genome-scale modeling
and shadow pricing for the identification and study of
toxic metabolic intermediates.

The lethality of an ic/-mutant was high during the
transition from solid to necrotic granuloma, which Mtb
population can access to large quantities of fatty acids
and hypoxia but not in a liquefied granuloma where
oxygen is available. We confirmed the importance of the
activity of methyl malonyl pathway and acetate con-
sumption for the detoxification of propionyl-CoA during
high propionate uptake rates. We also found a decrease
in TCA cycle intermediates that produce a redox imbal-
ance during hypoxia conditions and low ATP synthesis,
but methyl malonyl pathway could revert the effect and
sustain growth under aerobic conditions, in a liquefied
granuloma. Thus, a drug inhibition of ic/-mutant seems
to be favored in Mtb populations surviving inside hyp-
oxic caseous granulomas. Although previous studies in
mouse model showed that a deletion of both ic/ genes
causes a profound attenuation during both the acute and
chronic phases of mouse infections, this model does
not form clear hypoxic caseous granulomas as in
humans [77]; therefore, this conclusion might require
further validation. Moreover, there is evidence that
ICLs have important roles in adaptation to hypoxia
and antibiotic tolerance by mechanisms such an anti-
oxidant defense that are independent of fatty acid
metabolism [59, 78].

Furthermore, in silico results showed that asparagine
consumption promotes production of succinate, and ala-
nine for restoring redox balance in both Mtb mutants,
as reported in the literature. Besides, acetate resumption
seems to have an important role in Mtb metabolic
reprogramming at changes in carbon and nitrogen
sources.

The use of genome-scale modeling and shadow price
analysis might help to accelerate our metabolic under-
standing about the essentiality of Mtb gene knockouts,
to generate hypothesis about possible drug targets that
could be lethal during all the stages of TB disease, and
to prioritize resource-intensive experimental work in the
development of new anti-TB drugs.

Although in this study we explored the metabolic
reprogramming of only two Mtb knockouts, future
efforts will be made to provide a web server for
displaying the in silico metabolic phenotypes reached
by a large number of mutants (known metabolic-
based drug targets) under diverse nutritional condi-
tions. This tool will accelerate the study of metabolic
reprogramming of Mtb mutants under a wide range
of intracellular constraints.
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