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Abstract

Background: Models of metabolism are often used in biotechnology and pharmaceutical research to identify drug
targets or increase the direct production of valuable compounds. Due to the complexity of large metabolic systems, a
number of conclusions have been drawn using mathematical methods with simplifying assumptions. For example,
constraint-based models describe changes of internal concentrations that occur much quicker than alterations in cell
physiology. Thus, metabolite concentrations and reaction fluxes are fixed to constant values. This greatly reduces the
mathematical complexity, while providing a reasonably good description of the system in steady state. However,
without a large number of constraints, many different flux sets can describe the optimal model and we obtain no
information on how metabolite levels dynamically change. Thus, to accurately determine what is taking place within
the cell, finer quality data and more detailed models need to be constructed.

Results: In this paper we present a computational framework, DMPy, that uses a network scheme as input to
automatically search for kinetic rates and produce a mathematical model that describes temporal changes of
metabolite fluxes. The parameter search utilises several online databases to find measured reaction parameters. From
this, we take advantage of previous modelling efforts, such as Parameter Balancing, to produce an initial mathematical
model of a metabolic pathway. We analyse the effect of parameter uncertainty on model dynamics and test how
recent flux-based model reduction techniques alter system properties. To our knowledge this is the first time such
analysis has been performed on large models of metabolism. Our results highlight that good estimates of at least 80%
of the reaction rates are required to accurately model metabolic systems. Furthermore, reducing the size of the model
by grouping reactions together based on fluxes alters the resulting system dynamics.

Conclusion: The presented pipeline automates the modelling process for large metabolic networks. From this, users
can simulate their pathway of interest and obtain a better understanding of how altering conditions influences
cellular dynamics. By testing the effects of different parameterisations we are also able to provide suggestions to help
construct more accurate models of complete metabolic systems in the future.
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Background
Quantitative modelling of metabolic networks has helped
design and improve the production of compounds rel-
evant for the bio-industrial and pharmaceutical sectors
[1, 2]. Many of the favoured methods to model large
metabolic networks relate system inputs (e.g. growth con-
ditions) to phenotypic outputs (for example, growth rate
or compound secretion) using directed graphs, i.e. inter-
nal dynamics are not directly considered [3, 4]. How-
ever, to obtain a more detailed understanding of how
system perturbations or alterations influence metabolic
networks and, hence, the observed and predicted phe-
notypes, it is desirable to have a method of construct-
ing consistent kinetic models of large-scale metabolism.
Here, we present a computational pipeline that brings
together a range of recently published methods to convert
a genome-scale reaction network into a detailed math-
ematical model, usable to study and predict metabolic
functions [5].

In mathematical terms, large-scale metabolic networks
are represented by

d
d—::S-v(x,k), (1)

where x is the vector of metabolite concentrations, S is
the stoichiometry matrix of the system detailing how one
metabolite converts into another, and v(x, k) is the flux
vector that describes the rate of metabolite conversion.
Notably, the fluxes will generally depend on the concen-
trations of metabolites in the network and the parameters,
or kinetic rates, k. Methods to solve Eq. 1 have approached
the problem from two directions. First, by using the quasi-
steady-state assumption, the metabolite concentrations
are believed to be constant relative to the time taken for
a cell to grow [4, 6]. This method requires data such as
growth and production rates of the species under study
[7, 8]. Furthermore, gene expression and essentiality data,
or metabolic flux measurements (for example from 3C-
labelling experiments), can be used to further constrain
and validate the model. Second, by using mathematical
functions (based on generalised Michaelis-Menten kinet-
ics) to describe v(x, k) with measured or estimated values
of k and approximating the system solution numerically
[9-11]. The model simulations can then be compared to
measured time-series profiles of metabolite concentra-
tions. We shall briefly review both approaches here.

Constraint based metabolic models

The result of the quasi-steady-state assumption simplifies
Eq.1to

S.v=0, 2)
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which is a set of linear equations that can be solved for
an optimal vector v when the system is optimized to, for
example, maximize biomass production (although there
are a variety of other functions, as shown in [7]). This
method is commonly referred to as Flux Balance Analysis
(FBA) [4, 6, 12]. Notable examples highlighting the utility
of FBA approaches can be found in [3, 13—15] whilst [16]
have recently used FBA to obtain a genome-scale model
of the human metabolic network, which has seen use in
applications such as the discovery of anticancer drugs
[17, 18]. Over recent years, a number of extensions to the
FBA method have been developed. However, systematic
analysis of these methods has shown that there is not one
single best-performing method that provides a reasonable
match between simulated and measured reaction fluxes
[2,7,8].

One notable development of FBA is dynamic FBA
(dFBA) that aims to match time-dependent changes in
system outputs with internal flux dynamics [19-21]. In
principle, dFBA is a set of FBA computations conducted
independently at several time-points. This results in a set
of dynamically changing optimal flux vectors that cover
the analysed time-period. However, such an approach can
be problematic as the solution of FBA is often non-unique,
i.e. there are multiple optimal flux vectors that can solve
Eq. 2 for a given set of objective functions [22, 23]. Conse-
quently, discontinuities in the flux vector can be observed
when v is plotted against time, which is suggestive of a
jump from one optimal flux vector to another [20, 21].
One method of solving this issue is to constrain the flux
optimisation such that the time-dependent change from
one flux vector to another is not allowed to be large,
thus limiting the search space for the optimisation routine
[19, 20, 24]. The addition of constraints such as these
enforces the reaction fluxes of a network to change con-
tinuously through time, in a similar manner to trajectories
obtained from Eq. 1, but it is not clear how the trajectories
depend on reaction rates or concentrations.

Dynamic metabolic models

In the second approach to solving Eq. 1, one has the
difficulty that the mathematical form of v(x,k) and the
parameters k need to be approximated in the absence
of appropriate and detailed datasets. Often the math-
ematical form of the fluxes v(x,k) are approximated
using Michaelis-Menten kinetics [9, 11, 25, 26]. Notably,
the use of Michaelis-Menten kinetics has been found
to provide accurate results for large-scale metabolic
models when compared to other frequently used rate
laws and has been useful in analysing the robust-
ness of dynamics in metabolic networks [25, 27, 28].
The generalised/reversible form of the Michaelis-Menten
approximation for a reaction >3\ ; w;A; = 3", BB
reads
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feat+ Hi (ﬂi/kgf)ai — eat— Hj (bj/ki\;[)ﬂj

o B
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3)

with u; representing the enzyme concentration for reac-
tion R; and k = {ke+, keat= kM kM o, BY, where k°
are the catalytic rates, kM are the Michaelis constants
and a; (or B;) the reaction stoichiometry associated with
concentration a; of reactant A; (or b; of product B)) [9].
What one should notice immediately is that, for even a
simple reaction, a large number of kinetic rates need to
be known or accurately estimated to ensure that Eq. 3
matches observed data (at least 4 rates for a reaction with
a single reactant and product). Thus, whereas the pit-
fall of dFBA is that it requires a large number of system
constraints to provide an accurate solution, the down-
side to kinetic approaches is that a vast amount of data
is required to accurately parameterise models of large
metabolic networks.

v(fa,bh k) =

Parameter balancing

Fortunately, an increasing number of experimentally-
measured parameters required for the use of Michaelis-
Menten approximations are becoming available in online
databases (for example BRENDA [29], SABIO-RK [30]
and eQuilibrator [31]). Parenthetically, even if only in vitro
estimates of kinetic rates are available, in certain cases
the relationship to their in vivo value has been shown
[32]. Furthermore, the Parameter Balancing (referred to
as PB from hereon) method has been developed to
utilise Bayesian inference techniques and include con-
straints on thermodynamic relationships between differ-
ent parameters [33, 34]. Thus, one could obtain either
measured or realistic estimates for a number of the param-
eters required to construct a kinetic model and simulate
changes in metabolite concentration. Examples of such
steps can be found in [1, 11], whilst [28] have shown
that relatively small models constructed with fluxes given
by Eq. 3 together with measured or estimated parameter
values provides better matches to data than other tested
functions.

Model reduction

The examples of [1, 11] show two different desired cases
of modelling metabolism. In the first instance, [1] con-
struct a detailed model describing the central metabolic
pathways of L. lactis whilst, in the second, [11] produce a
genome-scale model of yeast metabolism. In principle, the
conclusions drawn from larger models should be consis-
tent with those of smaller, more detailed systems and vice
versa when created in the same species. Thus one impor-
tant consideration is that of model reduction. Based on
current methods, model reduction could occur at one of
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three stages: pruning unimportant reactions directly from
the genome-scale network [35], grouping subsets of reac-
tions into a single effective reaction on the subsystem of
interest [36], or by assessing the kinetic rates of the sys-
tem using time-scale separation arguments fixing a subset
of system components to constant values [37]. Notably,
the methods of [35, 36] require only the reaction network
and no information about the dynamics of the pathway in
order to reduce the system size.

DMPy

Here, inspired by the workflows of [5, 11], we present an
automated pipeline that can translate a (genome-scale)
reaction network into a dynamic reaction equation model.
Given the network as an input, our pipeline automat-
ically integrates measured kinetic rates from different
sources (both online databases and measured or esti-
mated values) with the PB technique, optionally reduces
model size and, finally, translates the network into ordi-
nary differential equations using Eq. 3. Importantly, this
method differs from other (semi-automatic) methods
of constructing ODE models (such as CellNetAnalyzer
and COPASI [38, 39]) as parameters are obtained from
readily-available experimental measurements rather than
including an optimisation step to time-series data that can
prove very difficult for large-scale systems. By generating
simulated data of both the L. lactis central metabolic path-
way and randomly generated reaction networks, we go
on to analyse the accuracy of our pipeline and determine
how many kinetic rates must be measured experimentally
to obtain an accurate model. We also show the effect of
flux-based model reduction techniques on the resulting
system dynamics, extensions to larger networks, and the
utility of our pipeline by including compartmentalisation
and regulation within metabolic pathways. The presented
framework is intended to provide a first approximation
of large-scale metabolic dynamics within which further
details and computational methods can be added as more
data and information come to light. In the Discussion
we will highlight how our pipeline can be extended to
improve the resulting models (by incorporating different
model reduction and parameter optimisation strategies) if
the appropriate datasets are available.

Implementation and methods

Pipeline

In this section we shall provide an overview of the compu-

tational workflow. For further implementation details and

required inputs please refer to Additional file 1. All simu-

lations and testing were performed using Python version

2.7 (Python Software Foundation, www.python.org) and

MATLAB R2012b (MathWorks, Massachusetts, USA).
Figure 1 provides a pictorial overview of the pipeline

and consists of three main parts. First, a genome-scale
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Fig. 1 An overview of the computational framework. The pipeline consists of seven stages. The first of these (Steps 1-2) parses a genome-scale SBML
model such that the reactions and components within the system are listed. At the same time, the list of databases to be searched is registered and
the kinetic rates for each reaction in the metabolic network are found (Steps 3-4). Upon obtaining the kinetic rates, PB is used to obtain
thermodynamically feasible parameter distributions (Step 5). Using these parameter values, the SBML model is then translated into a set of ordinary
differential equations representing the dynamic changes in system components (Step 6). Finally, the parameterised model can be simulated and

analysed (Step 7)

reaction network in SBML (Systems Biology Markup Lan-
guage, www.sbml.org [40]) format is used as an input into
DMPy. The model is parsed and relevant kinetic rates
are found from a range of online databases (Steps 1-4,
Fig. 1). Then, the obtained parameter estimates (both
from online databases and experimental measurements)
are used as an input into the PB software that generates a
set of thermodynamically consistent kinetic rates (Step 5,
Fig. 1). Finally, the kinetic rates are input into Michaelis-
Menten functions with similar form to Eq. 3 such that
the SBML reaction network can be translated into param-
eterised ordinary differential equations (Step 6, Fig. 1).
The model can now be simulated and edited as required.
To look at the effect of model reduction upon sys-
tem dynamics, we have used flux-based model reduction
techniques prior to inputting the genome-scale model
into the pipeline [35]. In the Discussion we will explain
the implication of doing this and consider alternative
methods.

In the following we shall discuss each stage of the
pipeline and its purpose.

Parameter gathering (steps 1-4, Fig. 1)

The creation of large-scale metabolic models can be a
time-consuming process and this is, in part, due to the
manual collection of kinetic rates from online databases
that use different naming conventions for reactions and
models. To overcome this burden we have created a sub-
routine that is able to convert between naming structures
of models and databases to exhaustively search for all pos-
sible measurements of kinetic rates from online databases
(Fig. 2). In Additional file 1 we provide the pseudocode
for this routine and discuss possible extensions to further
constrain the database search for particular cases. The
output of the script is a table that is required for input into
the PB stage of the computational workflow [34, 41].

In Step 1 of Fig. 2, the databases a user wishes to search
are registered. It is noted which kinetic rates they con-
tain and how they can convert reaction or component
IDs (identifiers, see below) to these kinetic rates or other
IDs. The default databases used in this study are listed in
Table 1. In Step 2 (Fig. 2), the SBML model is parsed such
that names and identifiers of reactions or metabolites are
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{ Databases } {

Model }
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@ Extract available and required data

- |

Tasks }

reaction (Step 4)

@ Find data paths

{ Possible paths }

@ Repeat until: All paths tried OR all data obtained

{ Kinetic data }

Fig. 2 Automated search for parameter values. In order to automatically find all measured kinetic rates from online databases, a subroutine was
constructed as part of our pipeline (see Additional file 1). Upon registering the databases to be searched and how their identifiers can be converted
between each other (Step 1), all the reactions within the parsed genome-scale model are listed (Step 2). Then, the algorithm finds all possible paths
relating a modelled reaction with a database entry (Step 3). These data-paths are then exhaustively searched for all measured kinetic rates of a

obtained. This list of model components (both metabo-
lites and reactions) plus the parameters we wish to find
represents a set of task objects that are inputs into Algo-
rithm 1 (Additional file 1). Based on these set of tasks,
the online databases are searched exhaustively to find all
experimentally-measured rates related to the metabolite
reactions of interest.

One issue with using online databases is that different
sources use different naming conventions, e.g. BRENDA
uses EC numbers, whilst eQuilibriator uses KEGG identi-
fiers [25-27] to classify reactions. Consequently, methods
of integrating these identifiers and translating from one
database to another are required [29-31]. Thus in Step
3 (Fig. 2) a set of possible paths is constructed that links
online data values to the rates needed to complete the
model. The Rhea, MetaCyc and MetaNetX databases are
used here to translate identifiers [42—44]. For example,
assume we have a reaction name and we wish to obtain an

Table 1 Overview of databases currently used in the pipeline

Database Purpose Reference
BRENDA Michaelis constants, catalytic rates [29]
SABIO-RK Kinetic rates [30]
eQuilibrator Equilibrium constants [31]
Rhea |dentifier translation [42]
MetaCyc |dentifier translation [43]
MetaNetX |dentifier translation [44]

equilibrium constant, k%, then one possible path would
be:

Name (Glucose-6-phosphate isomerase)
— MetaCyc ID (ENZRXN-2863)
— Rhea ID (11816)
— KEGG reaction ID (R00771)
— eQuilibrator k%7 (0.361).

Each of these pathways are exhaustively examined (Step
4, Fig. 2) until all the useful experimental measurements
have been obtained. Full provenance and, if available in the
original database, literature references are saved and can
be manually examined if needed, for example, in the case
of conflicts between identifiers.

Parameter balancing (step 5, Fig. 1)

Upon obtaining measured kinetic rates from online
sources (and combining these with experimental mea-
surements), a table of found values and their reference
is automatically constructed, which is used as an input
into the PB software. In order to improve the scalability
of the parameter balancing algorithm and to support the
parameter balancing of large genome scale models, the
parameter balancing algorithm was implemented directly
into the pipeline based on the original implementation
by Lubitz et al. [34]. Here we shall briefly review the PB
method and further details can be found in [33, 34, 41].
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The principle of PB is to relate measured constants
with unknown values via the Haldane relationships and
Wegscheider conditions that ensure kinetic rates are ther-
modynamically feasible whilst reactions take place in an
ideal solution [33]. These relationships are able to relate
equilibrium constants, k°9, to catalytic rates, k°“* (s'1),
maximal velocities, v"* (mmol-s'1), Michaelis constants,
kM (mM), enzyme concentrations # (mM), and standard
chemical potentials, ° (kj-mol™!) via

1
eq o
lnkj :_ﬁ E nijl;
l

hiin k" = Inkf ™ —In ki~ + 3 " hng Inkj,
i

h‘ o
Ik = InkY ¥ 7 Z ng (ui /RT + Ink ) ,

12

h.
In V;nax:l: = 1n M]+1nklv F El E njj (,u,f/RT—l—ln i );
i

where k““* is the forward catalytic rate, k“*~ is the
backwards catalytic rate, kjv = kf“”kjc“t_ (s)) is the
geometric mean of catalytic rates, /; is the cooperativ-

ity factor for sigmoidal kinetics, #;; is the stoichiomet-
ric coefficient of metabolite i in reaction j, R is the
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gas constant (J-moll.-K'!) and T is the temperature in
Kelvin [34].

Furthermore, one can relate chemical potentials, u
(kJ-molt), and reaction affinities, R4, to metabolite con-
centrations, ¢ (mM), using

= /,L}9 + RT Ingj, (4)
R =—AG=— Zﬂy’m,
i

where AG is the chemical potential through a reaction
[34]. The concentrations, ¢, obtained from the balancing
routine are used as initial conditions when simulating the
resulting ordinary differential equations (see below).

Based on these relationships, any unmeasured values
can be calculated directly given that a subset of the sys-
tem parameters are known or can be estimated. This is
the principle behind PB. By bringing together as much
information as possible into prior distributions, Bayesian
approaches are used to obtain the maximum likelihood
estimates for kinetic rates that follow the thermodynamic
relationships above. This results in posterior distributions
for each kinetic rate in the metabolic system (e.g. Fig. 3,
green distribution), providing a feasible range for these
parameters [34]. However, in some cases where a sys-
tem has not been well characterised, prior information for

1.0 5 — |
” —— Prior (pseudo) b (o]
b5 Prior (pipeline)
2 08 . | _
9] Posterior (balanced)
IS
[
S 0.6 _ |
(a1
S
© 04 _ |
c
.2
5
S 0.2 - -
i
0.0 T i T T I I I | I
1076 1073 10° 10° 1073 10 109 10°% 10t 10 10%®
1.0 - -
- d Posterior (balanced) e f
5 Millard (2017)
S 08 | _
9] Jahan (2016)
IS
(¢
5 0.6 E e
a
Y
© 04 B E
<
.0
5
8 0.2 B -
[ [ | "
S
0.0 T T T T T T T T T T T
107 1073 10° 10° 1073 10 108 1078 10" 100 10%
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Fig. 3 Obtained prior and posterior distributions for parameters in the £. coli iJO1366 genome scale model. Examples of distributions obtained for
mediana &d kM, b & e kU and ¢ & f k% values in the E. coli iJO1366 genome scale model from the PB method and from parameter optimisation
routines in published models. a — ¢ The blue distributions are prior distributions obtained from databases, the red distributions are the pseudo
values used when there is no prior information, and the green distributions are posterior distributions obtained after balancing. d — f The green
distributions are the posterior distributions shown in (@ — ¢). The yellow distributions are taken from [55]. The pink distributions are taken from [56].
Only parameters with prior information resulting from the parameter search are included in the comparison
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certain values may not be found within the databases or
measured experimentally. In this case a pseudo-prior dis-
tribution is used to approximate the range of values one
may expect to see experimentally (compare blue and red
distributions in Fig. 3a-c as an example). Further details
about the construction of our pseudo-prior distributions
can be found in Additional file 1.

Mathematical translation (step 6, Fig. 1)

The next step of our framework is to translate the reac-
tion network into a set of ordinary differential equations
(ODEs). To do this we translate every reaction into a
flux term, as in Eq. 3, using libSBML [40, 45] and Sympy
[46]. For simplicity we use only the common modular
rate law [33] based on the reversible Michaelis-Menten
approximation

v({a,b,x},K) = u;freg (x, k) x
o cat— Bi
ket T, (af)™ — ket T, (by/ k)Y

o B ’
L (14 a/kf) T (1 bk ) =1+ Drgx k)

(5)
where
xi/ kM 1
fi’eg(x, k) = l_[ —t l_[ PRy Y )
{xixxa Sx} 1+ (xl/kzM) {xjx1Ex} 1—‘_(xj/k/' )
M x;
Dpgx k)= > L+ 3 Wl (6)
{xi:xa CX) i {xpx Sx)

with xa representing the vector of components that
activate the reaction and xj the vector of components
that inhibit the reaction [33, 47]. Here, f is known as
allosteric reaction regulation, whilst D, is specific reac-
tion regulation [33]. Thus, Eqs. 5 and (6) represent a
generalised version of Eq. 3.

Consequently, the reaction network is translated into
ODEs of the form

% =8 -v(x, k) = ve(x, k) — v, (x, k), (7)
where v¢ and v, are the sum of forward and reverse fluxes,
respectively. In the case of irreversible reactions, their for-
ward or reverse rate can be fixed to zero to remove these
fluxes. To include the effect of compartmentalisation one
needs to appropriately rescale concentrations within the
different subsystems. In the pipeline this can be done by
assigning the metabolite to a compartment directly in the
initial SBML file, which will be preserved in the final out-
put model and can subsequently be compensated for by
the numerical integration tool of choice.
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Simulation (step 7, Fig. 1)

Now that we have a set of ordinary differential equations
and kinetic rates to determine their functions, we can sim-
ulate the metabolic models given a set of initial conditions.
Furthermore, system inputs can either be fixed constant
or perturbed during simulation (e.g. a pulse of glucose
uptake). Simulations were conducted using libRoadRun-
ner [48] and Scipy [49]. As has been discussed previously,
due to the size and stiffness of large genome-scale ordi-
nary differential equation models, numerical instabilities
can make simulation difficult as processes occur on dif-
ferent time-scales [5]. In all the presented results, we
simulate the test models for 400s, providing a pulse in the
level of one of the metabolites after 200s (Glyceraldehyde-
3-Phosphate for the L. lactis and E. coli models). The
initial conditions for the simulations are obtained from the
PB routine, using the ¢’s in Eq. 4. The parameter values
used are the median values obtained from each individual
parameter distribution.

Model reduction (optional step)

The optional model reduction step is currently employed
before Step 1 of our pipeline. To do this, we used the Net-
workReducer algorithm that has been implemented in the
MATLAB toolbox CellNetAnalyzer [35, 39]. NetworkRe-
ducer decreases the size of metabolic networks by itera-
tively removing the reaction with the lowest flux variability
determined using Flux Variability Analysis (FVA) [24].
The iterative process ends when no more reactions can
be removed without violating the behaviours of the full
model (i.e. specific growth or production rates on a pre-
defined medium). Finally, a compression step is used that
compresses linear pathways into a single effective reac-
tion. We applied both the pruning measure that removes
reactions with the smallest range of possible fluxes whilst
maintaining phenotypes and protected pathways, and the
network compression step that lumps reactions from con-
nected pathways to the subsystem of interest into a single
reaction. For details on how the algorithm achieves this,
please see [35]. In the analysed networks, we set parts of
the glycolysis pathway to be protected, whilst a resulting
growth rate within 1% of the growth rate obtained from
the full model had to be maintained. The growth rate of
the full system was approximated using COBRApy [50].

Test models

To highlight the utility of our pipeline, we will illustrate
our analysis for multiple systems. In order to fully anal-
yse the accuracy of the pipeline, we have used the central
metabolic pathway of L. lactis [1]. The initial mathemat-
ical model of this system is already in the correct form
of Eq. 7 for most of the reactions and provides ranges
for kinetic rates within the system that we can include
in our pipeline. To show that the pipeline can also be
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used for larger scale systems, we use the E. coli core and
the /01366 genome scale models [51, 52] in combination
with the optional reduction steps.

In order to show how our automated search for kinetic
rates improves the number of parameters found from
online databases, we also included the S. cerevisiae model
iTO977 and the iJO1366 E. coli model that is well anno-
tated relative to other species [52, 53].

Finally we have included randomly generated reaction
networks in order to facilitate testing effects of includ-
ing regulation and compartmentalization. See Additional
file 1 for details on the generation of these models.

Pipeline analysis tests

In order to test the accuracy and reproducibility of our
framework we generated a simulated dataset from a
parameter balanced model of our tested reaction net-
works. To obtain the model we input the reaction network
into our pipeline such that we have an idealized ‘gold stan-
dard’ in silico system with fixed values (using the medians
of the balanced distributions) for every parameter in the
network (Fig. 4). Using randomized subsets of the fixed
parameter values as prior inputs into a second round of
PB we simulate the availability of a subset of the parame-
ter data. The subset of data is used to create a new model
through parameter balancing and is subsequently simu-
lated. Finally, the mean square error is calculated com-
pared to the simulation of the ‘gold standard’ reference
model. We then performed the following tests:

e how many times the posterior distributions need to
be sampled before there is convergence in the mean
square error between the samples and the simulated
‘gold standard’ data;

e the amount of prior distributions that need to be
known to obtain minimal differences between the
model obtained from the pipeline and simulated data,
and;

o the effect of altering the width of the posterior
distribution sampled from.

Convergence was tested by taking the standard error of
deviation relative to the mean score. After an initial period
of 25 samples, the simulation was marked as converged
when (o5//n)/us < 0.05, where o is the standard devia-
tion of the score, u; is the mean score and # is the number
of simulations. If convergence was not obtained within
10000 samples, the simulation run was halted and marked
as unconverged.

Results

Parameter gathering is improved by including
identification translation and previously estimated rates
The first step of the computational pipeline (Fig. 1) is to
automatically obtain distributions for kinetic rates from
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Fig. 4 Analysing the robustness of DMPy. Schematic explanation of
tests performed to assess the robustness of our pipeline. Using prior
information for kinetic rates in the system (1), a model is created
whereby the distribution of all parameters is known (2). The median of
all parameter distributions is then used to simulate a ‘gold standard’
set of time-series of system components. We then use a subset of the
known parameter distributions (3) as an input to create a new model
of metabolism (4), whose parameter distributions are sampled (5) and
the resulting dynamic model is simulated (6) and compared to the
‘gold standard’ reference. When the score converges (8), it is saved
and a new fraction of the ‘Data’ parameters is drawn (9)

online databases. We tested the automated search using
four models - the E. coli core and iJO1366 models, S. cere-
visiae model iTO977 and the central metabolic pathway
of L. lactis [1, 51-53]. Furthermore, in order to compare
the influence of automatically translating naming conven-
tions, we present the results with and without the usage
of Rhea, MetaCyc and MetaNetX databases [42-44].
The total number of parameter values found from each
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database are shown in Table 2 with the list of values
provided in Additional file 2.

From Table 2, there are two results that should be high-
lighted. First, upon inclusion of the identification translat-
ing databases, the number of parameters for which values
are found always increases, suggesting that our automated
searching strategy functions correctly and finds a larger
subset of parameter values within the databases. Sec-
ond, as a percentage of the total number of kinetic rates
being searched for, there is a higher fraction of equilib-
rium constants, k°4, available online than other reaction
parameters. Unlike enzyme specific properties such as the
catalytic rate constant or the Michaelis constant, the equi-
librium constant is only specific to the chemical reaction
and the environment in which it takes place. Thus they are
more readily available then other kinetic rates, which have
to be individually measured for each enzyme. Further-
more, the equilibrium constants can be predicted using
methods such as component contribution [54], as imple-
mented by eQuilibrator [31], which can also take into
account factors such as the pH and ionic strength of the
cellular environment. Despite this minor success, though,
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the number of measured reaction rates is only a small frac-
tion (roughly 1%) of the total needed to fully parameterise
a model. We discuss in Additional file 1 how our param-
eter searching algorithm can also filter results for specific
experimental conditions, such as pH or temperature. This
suggests that efforts to experimentally determine these
rates in a high-throughput manner should be continued
in order to improve our knowledge of parameter distri-
butions required for model development. However, for
all unmeasured kinetic rates, the PB algorithm constructs
pseudo-distributions to estimate the feasible range of cer-
tain parameters under specified experimental conditions.
Alternatively, parameter estimation methods can be used
when the appropriate data is available (see Discussion).

In Fig. 3a-c, we show the distribution of each individ-
ual parameters median value obtained from the parameter
distributions before and after using the PB algorithm.
When looking at the distribution of median values found
for the iJO1366 E. coli model, we observe that the distri-
butions both before and after balancing are approximately
log-normally distributed (Fig. 3a-c), as is assumed by the
PB algorithm. It is notable that the resulting posterior

Table 2 Coverage of kinetic rates obtained from the databases with (+) and without (-) the use of identifier translators

Model Database KM keat kea
+ - + - + -
E. coli # rates 10183 2583 2583
iJO1366 BRENDA 637 591 286 259 / /
eQuilibrator / / / / 491 0
SABIO-RK 228 0 4 0 0 0
# found 700 591 290 259 491 0
E. coli # rates 380 95 95
Core model BRENDA 29 0 10 0 / /
eQuilibrator / / / / 37 0
SABIO-RK 10 0 2 0 0 0
# found 33 0 12 0 37 0
S. cerevisiae # rates 5509 1612 1612
iT0977 BRENDA 342 330 113 108 / /
eQuilibrator / / / / 450 0
SABIO-RK 104 96 3 0 0 0
# found 370 356 116 108 450 0
L. lactis # rates 73 21 21
BRENDA 2 2 1 1 / /
eQuilibrator / / / / 12 0
SABIO-RK 2 2 0 0 0 0
# found 3 3 1 1 12 0

Rhea, MetaCyc and MetaNetX databases were used for identifier translation

If multiple values were found for the same reaction rate then this was only counted once

If the rate is not available from this database, it is noted with /
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distribution of median values shows good overlap with
parameter values used in models of E. coli central car-
bon metabolism that have been obtained using different
parameter optimisation methods (Fig. 3d-f) [55, 56].

The amount and quality of prior knowledge influences
accuracy of resulting model

Given the observation that altering the amount and qual-
ity of experimentally measured or computationally esti-
mated parameter values influences the prior and poste-
rior distributions obtained we wished to understand the
effects of these changes on system dynamics more thor-
oughly. In order to do this we took the parameter balanced
model of L. lactis metabolism and generated time-series
data of all compounds. This simulated ‘gold standard’ ref-
erence dataset was then used to compare the generated
dynamics obtained using different varieties of input into
our framework (Additional file 1: Figure S1). Notably,
the dynamics are qualitatively different with our pipeline
compared to the original model (compare blue line with
orange and green lines) [1]. In our model, a glucose pulse
leads to a decrease in FBP and G3P concentrations. This
reflects two factors. First, the mathematical form of reac-
tions in our model is constrained leading to a different
model structure to that published by [1]. Second, in our
balanced model we find Michaelis-Menten constants and
maximal velocity rates that differ from the original model.
The net effect of these alterations is that the balance
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between F6P and FBP conversion is altered such that, after
a glucose input, our model simulates an increase in FBP
to F6P conversion rather than FBP to G3P. This leads
to a drop in FBP and a corresponding decrease in G3P
concentrations.

We used the ‘gold standard’ data to perform three
tests of the computational pipeline. First, we analysed
the average error between the simulated dataset and sys-
tem dynamics from the output model obtained from the
pipeline given only a certain amount of kinetic rates are
known (Fig. 5). Second, we determined how many times
the posterior distributions need to be sampled before the
average difference between output simulations and the
‘gold standard’ data converges given different amounts of
prior information (Additional file 1: Figure S2). Finally,
we looked at the effect of altering the sampling width of
the posterior parameter distribution on pipeline output
(Fig. 6).

As one would intuitively expect, our analysis shows
that having a larger number of experimentally mea-
sured or optimised kinetic rates results in system dynam-
ics that better reflect the underlying biological net-
work (Fig. 5). However, it is interesting to note that
the number of samples required before convergence of
the mean square error of the system dynamics com-
pared to the ‘gold standard’ increased with the number
of known parameters (Additional file 1: Figure S2, green
lines). This likely reflects that, when little information
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is known, most sampled parameter sets from the poste-
rior distribution yield equally poor simulations. For ran-
dom networks we obtained more intuitive results where
more accurate posterior distributions require fewer sam-
ples to converge (Additional file 1: Figure S2, orange
lines).

Finally, it can be observed that there are multiple dis-
tinct peaks in the error distributions (Fig. 5). This can be
an indication of local minima in the parameter landscape
where the structure of the network has an inherent ten-
dency towards certain concentration states. In Additional
file 1 (Figs. 2 and 3) the same analysis was performed
on a randomly generated metabolic network. This sup-
ports the observation that with less than approximately
80% of the parameters known the simulation error steeply
increases.

In addition, it has to be noted that not only decreasing
the fraction of known parameters causes an increase in
error, but also increasing the sampling width of the pos-
terior distribution (Fig. 6). This indicates that having high
quality measurements or estimates of the parameters is
another essential factor. However, simulated dynamics are
more sensitive to decreased fractions of known param-
eters than a decrease in parameter quality (compare the
improvement of simulation accuracy across rows of Fig. 6
to down columns). Thus, having a rough estimate of most
parameters can be considered better than knowing few
parameters with high accuracy.

Performing flux-based model reduction techniques alters
system dynamics

One aspect of model construction that may ease the
requirement for measuring/approximating a large number
of parameter sets is to reduce the size of metabolic
networks being analysed. Thus, if the size of the metabolic
network can be reduced, whilst maintaining an accu-
rate description of experimentally observed phenomena,
then the resulting mathematical model will contain lower
numbers of reactions and kinetic rates. We explored the
effect of reducing model size such that systems still main-
tained an optimal flux through the system using Net-
workReducer (see Implementation and methods) [35].
This method allows one to not only prune reactions from
the metabolic network that do not influence the optimal
flux vector, but also to compress side-reactions into single,
lumped reaction nodes.

We applied both methods to the E. coli core metabolic
model [51] and used our pipeline to generate dynamic
models for the complete and the two reduced models
(Fig. 7), using the median of the balanced parameter distri-
butions for the parameter values. Note that lumped reac-
tions do not correspond to physical reactions any longer
and, as a result, our pipeline will not find any parameters
for these reactions. The pruned model, where reactions
having a low variability flux are iteratively removed, con-
tained 38 reactions and 40 metabolites compared to the
original models 95 reactions and 92 metabolites. The
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system (green line). Time-series for G3P, G6P and DHAP are shown. Models were simulated for 400 s with a G3P pulse after 200 s

compressed model, where in addition to the pruning step
linear pathways are compressed into a single reaction,
contained 18 reactions and 19 metabolites.

Figure 7 highlights that system dynamics can be quanti-
tatively altered through the use of NetworkReducer. Fur-
thermore, there are clear qualitative differences between
the dynamics of the full and reduced models for several
system components. Therefore, this suggests that using
flux-based constraints for model reduction may not be
the best method when one is interested in system dynam-
ics and that networks should be reduced by other means
(see Discussion).

Comparing pipeline utility for models of varying size

To highlight the utility of our complete pipeline, we com-
pare the time and memory required to obtain a dynamic
model of various metabolic models (Table 3). To pre-
vent bias in our comparisons, all models were created
once using offline libraries obtained from the online
databases. Thus, any time delays due to accessing the
online databases does not influence our results. The mod-
els range from small, core parts of metabolism (the E. coli
core model and the model of L. lactis metabolism) and
larger, genome-scale metabolic models (for E. coli and S.
cerevisiae) [1, 51-53]. These systems range from 10’s of

Table 3 Comparison of run times and memory usage of pipeline for models of different sizes

Model Reactions Peak Parameter Parameter Model Total
(metabolites) memory search balancing building
(GB) (min:sec) (min:sec) (min:sec) (min:sec)
E. coli 2583 296 22:05 33:14 2:12 57:33
iJO1366 (1805)
E.coli 95 0.2 0:58 0:04 0:07 1:10
Core model (92)
S. cerevisiae 1612 19.1 13:18 11:44 1:14 26:18
iT0977 (2245)
L. lactis 21 0.2 0:34 0:01 0:01 0:41
(26)

All values were calculated using 12 x 2.1 GHz cores of an AMD Opteron Processor 6272

Peak memory = maximum amount of RAM used

Databases were searched locally offline so that online connection speeds did not influence results
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reactions and metabolites to 1000’s and, thus, provide a
good range of examples for which our pipeline is designed
to be used for. Without including the optional model
reduction step, we found that we could obtain a system
of ordinary differential equations with balanced param-
eters for the largest systems within 1 hr, whilst it takes
a matter of minutes to obtain smaller models. Notably,
the majority of time and computer power required to cre-
ate a model stems from searching for and balancing the
kinetic rates (that requires mathematical transformations
of large matrices [34]) from the searched databases. Com-
pared to manual curation of parameters and developing
a large system of differential equations, we believe this is
a vast improvement in speed to obtain an initial dynamic
model of metabolism.

Discussion

In this work we have introduced an automated compu-
tational pipeline that translates a genome-scale network
of cellular metabolism into a parameterised set of ordi-
nary differential equations that can simulate the dynamic
behaviour of system components. Whilst this pipeline is
inspired by the works of [5, 11], these steps have pre-
viously required manual efforts to collect appropriate
datasets, reaction rates and to translate the metabolic net-
work into mathematical equations. Thus, bringing these
processes together into a single package, DMPy, will have
beneficial consequences for many researchers interested
in the dynamics of metabolic pathways.

The pipeline has three key steps and one optional
(model reduction) process (Fig. 1). Upon parsing a
genome-scale metabolic network, we have developed an
algorithm that automatically searches through a set of
prescribed online databases to find all available experi-
mentally measured reaction rates (Fig. 2, Tables 1 and
2 and Additional files 1 and 2). Where parameters are
unmeasured, pseudo distributions are constructed esti-
mating the approximate value that these rates would take
upon measurement. These parameter distributions based
on our prior expectations are then used as an input
into the previously published PB algorithm (Fig. 3) [34].
The resulting posterior parameter distributions then con-
tain reaction rates that satisfy a range of thermodynamic
criteria such as Haldane and Wegscheider relationships.
Conveniently, the distribution of median parameter values
that we use for model simulations closely resemble param-
eter distributions found using other methods to model E.
coli carbon metabolism [55, 56]. The metabolic network
is subsequently translated into a generalised set of dif-
ferential equations using the reversible Michaelis-Menten
approximation (Egs. 5 and (6)) that can be simulated to
explore the dynamics of metabolism [9]. We show the util-
ity of our framework by analysing the results of the central
metabolic pathway of L. lactis, randomized networks, and
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both the full and the core model of E. coli metabolism
[1, 51, 52]. In the following subsections we shall describe
where we think efforts could be made to improve the
effectiveness of our initial pipeline.

Precise measurements of kinetic rates in high-throughput
shall improve model accuracy

We analysed the results of the algorithm in comparison
to simulated ‘gold standard’ data for the central metabolic
pathway of L. lactis that has been previously modelled
using differential equations (Fig. 5) [1]. Notably, we found
that the accuracy of parameterised dynamic models using
our pipeline is dependent on the amount and quality of
measurements of the kinetic rates within the L. lactis
system. By resampling the posterior distributions 10000
times and computing the average error in comparison to
the simulated dataset, we found that accurate estimates
for >80% of the reaction rates are required to obtain an
approximately close match between simulated and tar-
get metabolic time-series data (Fig. 5). Whilst we note
that this result may differ for other systems, this find-
ing is notable as it is often the case that less than 1% of
the required reaction rates have been measured (Table 2).
This suggests that efforts of obtaining measurements or
estimates of reaction rates are necessary to help construct
accurate parameterised dynamic models of metabolism.

One way of improving dynamic models is through
improved high throughput measurement techniques. By
altering the width of prior parameter distributions we
can analyse the effect of measurement precision of
kinetic rates whereby narrower prior distributions imply
more precise measurements. What we observed was that
increasing the sampling width of the prior distributions
quickly led to erroneous dynamics being simulated from
the resulting model and parameter set (Fig. 6). This
was supported both when a high or low fraction of
the required reaction rates had been measured. Since in
vitro parameter measurements can often have errors of
an order of magnitude or more compared to in vivo,
great care has to be taken when directly integrating these
measurements. Techniques, such as that by [32], aim to
alleviate this problem by integrating multiple sources of
data from different conditions and could be integrated
into our pipeline. In conclusion, the experimental set-up
used to obtain kinetic rates requires high precision in
order to decrease the width of parameter distributions
and improve model accuracy. We suggest that such an
idealised high-throughput precise measurement method
should be one of the key targets for future research in
this area.

A second option to obtain good estimates of reaction
rates from limited data is the use of parameter optimi-
sation methods (as in [55, 56]). Recently, Frohlich et al.
have proposed a method that can find estimates for 100’s



Smith et al. BMC Systems Biology (2018) 12:72

of parameters faster than previous methods [57]. Thus,
one could include this method in our pipeline after the
construction of the ODEs to fine-tune model dynamics.
However, two aspects should be noted. First, any param-
eter estimation method should include constraints such
that parameters satisfy the Haldane and Wegscheider rela-
tionships used in the PB algorithm (see Implementation
and methods). Second, it is hard to predict how including
such measures will increase the run time of our pipeline
as presented in Table 3. Hence, finding an efficient param-
eter optimisation method for large systems is a key aspect
of future research.

Model reduction should incorporate knowledge of system
dynamics

In this work we have shown how flux-constrained model
reduction methods result in smaller systems that have
qualitatively different dynamics to the original complete
model (Fig. 7) [35, 36]. Essentially, these model reduction
techniques look to remove reactions from larger networks
that have little influence on the resulting reaction fluxes
important for observed phenotypes. For example, in Net-
workReducer (see Implementation and methods) [35],
flux variability analysis (FVA) is used to find reactions that
have minimal impact on resulting flux estimates. Thus,
these minimal-impact reactions can be removed with-
out altering system fluxes. However, since these methods
are performed using the genome-scale reaction network,
the model reduction step is performed before the cre-
ation of a dynamic model and, subsequently, does not
take into account any information about temporal system
dynamics. Consequently, we have found that the dynam-
ics of metabolic components are influenced by flux-based
model reduction techniques (Fig. 7). This suggests that
any flux-based reduction method is only useful as a first
approximation when no data is available. The reduced
model could then be used to aid direct experiments to
obtain better quality data for key components in the sys-
tem — conveniently also aiding the parameter estimation
problem discussed above.

This raises the issue of whether methods can be auto-
mated that are able to reduce a large-scale metabolic
network to maintain specific dynamic requirements, such
as a match to time-series data. One could envisage two
possible techniques; first, by reducing the differential
equations based on time-scale arguments (for example,
the quasi-steady state assumption) [37], and second, by
using flux-based reduction methods and appropriately re-
approximating the parameters of reduced modules such
that the remaining parts of the system are dynamically
consistent with the full model. In the second instance
this would require generating both a model of the full
and reduced networks and then dynamically comparing
their output. Thus, rather than developing a single model
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with our pipeline, two would need to be produced, thus
increasing the computational time to generate a model.
This is undesirable and, consequently, reducing dynamic
models by focussing on a specific time-scale may be more
appropriate.

Within biological systems, processes occur across a
range of time-scales (roughly from femtoseconds to
hours). Thus, one is generally interested in understand-
ing what happens at a specific time-scale and ignoring
or simplifying those processes that happen too quickly
or slowly, consequently reducing the systems complexity
[37]. Importantly, the speed of reactions could be approx-
imated by their maximal velocity. Upon adaptation of
our pipeline, one could in principle search for all com-
ponent dynamics that occur either too quickly or slowly
compared to the components of interest and fix their con-
centrations as constants within the system. This reduces
the number of components and equations that require
parameterisation and simulation. Such ideas are the focus
of future work and pipeline developments.

Expanding the mathematical functions within the model
One other limitation of our current pipeline is that
every reaction is mathematically described by the same
reversible Michaelis-Menten approximation, including
transport reactions or genetic interactions. In Additional
file 1, we have presented comparative effects of includ-
ing compartmentalisation within metabolic networks and
the effects of including or altering regulatory mechanisms
(Additional file 1: Figures S4 and S5), automating a pro-
cess of selecting mathematical functions from a library of
specific reactions may also increase the accuracy of the
resulting models. This would allow for the appropriate
depiction of known transport reactions between compart-
ments and the addition of transport regulators or satura-
tion effects. Tools such as SBMLSqueezer [58], allow for
automated selection of rate laws based on the components
and annotation of the reaction and could be integrated
into the pipeline at the model generation step, although it
has to be considered how different rate laws can fit into
the assumptions of the PB framework. Additionally, recent
work by [59] shows how to generate a genome scale map of
regulatory interactions of small molecules. This could fur-
ther improve the quality of the generated networks, espe-
cially when starting from existing genome scale metabolic
networks, where this information is often lacking.
Furthermore, by allowing a user to easily manipulate
and alter mathematical functions, sub-modules of larger
networks can be easily replaced by known, more-detailed
kinetic models of specific pathways. Importantly, our
pipeline allows users to fix parameter values by using
narrow prior distributions. Consequently, the resulting
models will maintain the dynamics of a more detailed
model whilst allowing one to observe the effects of the
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metabolic pathway on a genome-scale reaction network.
Future developments of this computational framework
will aim to incorporate these ideas to provide more flex-
ibility to users such that finer details can be added to
large-scale models of metabolism.

Conclusions

In conclusion, we have developed a modular frame-
work that provides an initial approximation of tempo-
ral metabolic changes within a cell, which can easily be
extended with additional data as required. Due to the
modular approach, individual methods within the frame-
work can be replaced or updated as they are enhanced.
Furthermore, by generating more detailed data, we have
shown that the accuracy of these dynamic models will
improve given the current methods used within the
pipeline. In addition to this, through the use of model
reduction techniques and compartmentalisation within a
cell, individual subnetworks or compartments within the
dynamic model can be easily manipulated and replaced
as metabolic pathways are studied in more detail. We
envision that this framework will be of great use to the
metabolic community as attempts continue to unravel the
complex relationship between system inputs and phys-
iological outputs that are relevant for the bio-industry
sector.

Availability and requirements

DMPy can be found at gitlab.com/wurssb/DMPy along
with all computer scripts and models used in this study.
DMPy is written in Python, further implementation
details can be found in Additional file 1.

Progject name: DMPy.

Homepage: gitlab.com/wurssb/DMPy.

Programming Language: Python.

Additional files

Additional file 1: Appendix. Implementation details of computational
workflow; pseudo-code for automated parameter search subroutine;
methods of constructing prior distributions of kinetic rates;
compartmentalisation and regulation; method of generating random
reaction networks; Supplementary Figures. (PDF 827 kb)

Additional file 2: Parameter values. Reaction rates that were obtained by
our automated database search for different metabolic systems.
(XLSX 510 kb)
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