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Abstract

Background: Numerous centrality measures have been introduced to identify “central” nodes in large networks.
The availability of a wide range of measures for ranking influential nodes leaves the user to decide which measure
may best suit the analysis of a given network. The choice of a suitable measure is furthermore complicated by the
impact of the network topology on ranking influential nodes by centrality measures. To approach this problem
systematically, we examined the centrality profile of nodes of yeast protein-protein interaction networks (PPINs) in
order to detect which centrality measure is succeeding in predicting influential proteins. We studied how different
topological network features are reflected in a large set of commonly used centrality measures.

Results: We used yeast PPINs to compare 27 common of centrality measures. The measures characterize and assort
influential nodes of the networks. We applied principal component analysis (PCA) and hierarchical clustering and
found that the most informative measures depend on the network’s topology. Interestingly, some measures had a
high level of contribution in comparison to others in all PPINs, namely Latora closeness, Decay, Lin, Freeman closeness,
Diffusion, Residual closeness and Average distance centralities.

Conclusions: The choice of a suitable set of centrality measures is crucial for inferring important functional properties
of a network. We concluded that undertaking data reduction using unsupervised machine learning methods helps to
choose appropriate variables (centrality measures). Hence, we proposed identifying the contribution proportions of the
centrality measures with PCA as a prerequisite step of network analysis before inferring functional consequences, eg.,

essentiality of a node.

components analysis (PCA)
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Background

Essential proteins play critical roles in cell processes
such as development and survival. Deletion of essential
proteins is more likely to be lethal than deletion of
non-essential proteins [1]. Identifying essential proteins
conventionally had been carried out with experimental
methods which are time-consuming and expensive, and
such experimental approaches are not always feasible.
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Analyzing high-throughput data with computational
methods promises to overcome these limitations. Various
computational methods have been proposed to predict
and prioritize influential nodes (e.g. proteins) among bio-
logical networks. Network-based ranking (i.e. centrality
analysis) of biological components has been widely used
to find influential nodes in large networks, with applica-
tions in biomarker discovery, drug design and drug repur-
posing [2—6]. Not only in molecular biology networks but
also in all types of networks, finding the influential nodes
is the chief question of centrality analysis [7]. Examples
include predicting the details of information controlling
or disease spreading within a specific network in order to
delineate how to effectively implement target marketing
or preventive healthcare [8—10]. Several centralities mea-
sures (mostly in the context of social network analyses)
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have been described [7] in the last decades. A comprehen-
sive list of centrality measures and software resources can
be found on the CentiServer [11].

The correlation of lethality and essentiality with differ-
ent centrality measures has been subject of active research
in biological areas, which has led to the centrality-lethality
rule [1]. Typically, some classic centrality measures such
as Degree, Closeness, and Betweenness centralities have
been utilized to identify influential nodes in biological
networks [9]. For example, in a pioneering work, the au-
thors found that proteins with the high Degree centrality
(hubs) among a yeast PPIN is likely to be associated with
essential proteins [1]. In another study, this rule was
re-examined in three distinct PPINs of three species which
confirmed the essentiality of highly connected proteins for
survival [12]. Similar results were reported for gene
co-expression networks of three different species [13] and
for metabolic network of Escherichia coli [14, 15]. Ernesto
Estrada generalized this rule to six other centrality mea-
sures. He showed that the Subgraph centrality measure
scored best compared to classic measures to find influen-
tial proteins, and generally using these measures per-
formed significantly better than a random selection [16].
However, He and Zhang showed that the relationship be-
tween hub nodes and essentiality is not related to the net-
work architecture [17]. Furthermore, regarding the
modular structure of PPINs, Joy et al. concluded that the
Betweenness centrality is more likely to be essential than
the Degree centrality [18]. The predictive power of Be-
tweenness as a topological characteristic was also men-
tioned in mammalian transcriptional regulatory networks
which was clearly correlated to Degree [19]. Recently, it
has been shown that presence of hubs, ie. high Degree
centralities, do not have a direct relationship with prog-
nostic genes across cancer types [20].

On the other hand, Tew and Li demonstrated func-
tional centrality and showed that it correlates more
strongly than pure topological centrality [21]. More re-
cently, localization-specific centrality measures had been
introduced and claimed that their results is more likely
essential in different species [22-25]. In the same way,
some studies emphasized on the protein complex and
topological structure of a sub-network to refine PPIN
and identify central nodes [26—28]. Tang et al. integrated
the gene co-expression data on PPIN as edge weights to
realize the reliable prediction of essential proteins [24].
Khuri and Wuchty introduced minimum dominating
sets of PPIN which are enriched by essential proteins.
They described that there is a positive correlation be-
tween Degree of proteins in these sets and lethality [29].
In these studies, the solution of the controversy is as-
cribed to utilizing biological information.

Similar in methodology but different in the underlying
physical system that the network represents, some other
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studies attempted to quantify correlations between several
classic centrality measures. In 2004, Koschiitzki and
Schreiber compared five centrality measures in two bio-
logical networks and showed different patterns of correla-
tions between centralities. They generally concluded that
all Degree, Eccentrecity, Closeness, random walk Be-
tweenness and Bonacich’s Eigenvector centralities should
be considered to find central nodes and could be useful in
various applications without explaining any preference
among them [30]. Two years later, they re-expressed
pervious outcomes by explaining the independence behav-
ior of centrality measures in a PPIN using 3D parallel
coordinates, orbit-based and hierarchy-based comparison
[31]. Valente et al. examined the correlation between the
symmetric and directed versions of four measures which
are commonly used by the network analysts. By compar-
ing 58 different social networks, they concluded that
network data collection methods change the correlation
between the measures and these measures show distinct
trends [32]. Batool and Niazi also studied three social,
ecological and biological neural networks and they con-
cluded the correlation between Closeness-Eccentricity and
Degree-Eigenvector and insignificant pattern of Between-
ness. They also demonstrated that Eccentricity and Eigen-
vector measures are better to identify influential nodes
[33]. In 2015, Cong Li et al. further investigated the ques-
tion of correlation between centrality measures and intro-
duced a modified centrality measure called mth-order
degree mass. They observed a strong linear correlation
between the Degree, Betweenness and Leverage centrality
measures within both real and random networks [34].
However, there is no benchmark for network biologists
that provides insight, which of the centrality measures is
suited best for the analysis of the given network. The
result of the centrality analysis of a network may depend
on the used centrality measure which can lead to incon-
sistent outcomes. Previously, a detailed study showed
that the predictive power and shortcomings of centrality
measures are not satisfactory in various studies [35].
While these centrality measures have proven to be
essential in understanding of the roles of nodes which
led to outstanding contributions to the analysis of bio-
logical networks, choosing the appropriate measure for
given networks is still an open question. Which measure
identifies best the centers of real networks? Do all
measures independently highlight the central network
elements and encompass independent information or
are the measures correlated? Is the computation of all
these measures meaningful in all different networks or
does the best measure depend on the network topology
and the logic of the network reconstruction? In this
study, we used unsupervised machine learning to com-
pare how well the most common centrality measures
characterize nodes in networks. We comprehensively
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compared 27 distinct centrality measures applied to 14
small to large biological and random networks. All bio-
logical networks were PPINs of the same set of proteins
which are reconstructed using a variety of computational
and experimental methods. We demonstrated how the
ranking of nodes depends on the network structure (top-
ology) and why this network concept ie. centrality
deserves renewed attention.

Methods

The workflow of this study was schematically presented
in Fig. 1. Our workflow started by constructing and
retrieving networks, followed by global network analysis.
The centrality analysis and comparing them using ma-
chine learning methods were the next main steps. See
basic definitions for more details.

Reconstruction of the networks

In this study, a UniProtKB reviewed dataset [36] was used
to retrieve proteins in Saccharomyces cerevisiae (6721 pro-
teins). UniProtKB accessions were converted to STRING
using the STRINGdb R package, which resulted in 6603
protein identifiers (3rd Sep 2016). Interactions among
proteins were extracted based on the STRING IDs. In the
2017 edition of the STRING database the results of these
interactions are structured in a way to provide maximum
coverage; this is achieved by including indirect and
predicted interactions on the top of the set. [37]. In this
study, 13 evidence channels (related to the origin and type
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of evidence) indicating PPIN of yeast were presented:
co-expression, co-expression-transferred, co-occurrence,
database, database-transferred, experiments, experiments-
transferred, fusion, homology, neighborhood-transferred,
textmining, textmining-transferred and combined-score
(See Additional file 1). In the following, the name of the re-
constructed network is basis of the corresponding channel
name which made of. For the purpose of comparison with
real network behavior, a null model network was generated.
The null network is the Erdds—Rényi model [38] and was
generated using the igraph R package [39]. The generated
null network was created with a size similar to the yeast re-
constructed PPIN in order to have a more fair comparison.

Fundamental network concepts analysis

To understand the network structure, we reviewed various
network features using several R packages [40-42]. The
network density, clustering coefficient, network hetero-
geneity, and network centralization properties of the
network were calculated. The number of connected com-
ponents and graph diameter for each network were also
computed. Then, the power-law distribution was assessed
by computing o values and r correlation coefficients. As
most of centrality measures require a strongly connected
component graph, the giant component of each PPINs
and the null network were extracted. Moreover, for a gen-
eral overview of the structure of the extracted giant com-
ponents, some network features such as network density,
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clustering coefficient, network heterogeneity, and network
centralization were calculated.

Centrality analysis

For this research study, we were only considered undir-
ected, loop-free connected graphs according to the PPIN
topology. For centrality analysis, the following 27 cen-
trality measures were selected: Average Distance [43],
Barycenter [44], Closeness (Freeman) [9], Closeness
(Latora) [45], Residual closeness [46], ClusterRank [47],
Decay [48], Diffusion degree [49], Density of Maximum
Neighborhood Component (DMNC) [50], Geodesic
K-Path [51, 52], Katz [53, 54], Laplacian [55], Leverage
[56], Lin [57], Lobby [58], Markov [59], Maximum
Neighborhood Component (MNC) [50], Radiality [60],
Eigenvector [61], Subgraph scores [62], Shortest-Paths
betweenness [9], Eccentricity [63], Degree, Kleinberg’s
authority scores [64], Kleinberg’s hub scores [64], Harary
graph [63] and Information [65]. All these measures are
calculated for undirected networks in a reasonable time.
These measures were calculated using the centiserve
[11], igraph [39] and sna [66] R packages. Some of the
centrality measures had a measurable factor to be speci-
fied which we used the default values. For a better
visualization, We assorted the centrality measures into
five distinct classes including Distance-, Degree-, Eigen-,
Neighborhood-based and miscellaneous groups depend
on their logic and formulas (Table 1).

Unsupervised machine learning analysis

Standard normalization (scaling and centering of matrix-
like objects) has been undertaken on computed centrality
values according to methodology explained in [67]. We
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used PCA, a linear dimensionality reduction algorithm,
[68] as a key step to understand which centrality measures
better determine central nodes within a network. PCA
was done on normalized computed centrality measures.
To validate the PCA results in PPINs, we also examined
whether the centrality measures in all networks can be
clustered according to clustering tendency procedure. To
do this, the Hopkins’ statistic values and visualizing VAT
(Visual Assessment of cluster Tendency) plots was calcu-
lated by factoextra R package [69]. We applied the cluster-
ing validation measures to access the most appropriate
clustering method among hierarchical, k-means, and PAM
(Partitioning Around Medoids) methods using clValid
package [70]. This provides silhouette scores according to
clustering measures which would be helpful for choosing
the suitable method. After selection of the clustering tech-
nique, factoextra package was used to attain optimal num-
ber of clusters [69]. In order to measure the dissimilarity
among clusters, we used Ward’s minimum variance
method. To compare the clustering results in aforemen-
tioned PPINS, the Jaccard similarity index was used relying
on the similarity metrics of the clustering results within
BiRewire package [71].

Results

Evaluation of network properties

By importing the same set of protein names, the 13
PPINs were extracted from the STRING database using
different evidence channels. (Note: the PPI scores
derived from the neighborhood channel of yeast were all
zero). All these channels distinctly identify an interaction
for each protein pair quantitatively. The dependency
between evidence channels was also shown in Fig. 2 by a

Table 1 Centrality measures. The centrality measures were represented in five groups depending on their logic and formulae

Distance_based Degree-based

Eigen-based

Neighborhood-based Miscellanous

Average Distance Authority_score

Barycenter Degree Centrality

Closeness Centrality
(Freeman)

Diffusion Degree

Closeness centrality
(Latora)

Kleinberg's hub
centrality scores

Decay Centrality Leverage Centrality

Eccentricity of the
vertices

Lobby Index (Centrality)

Lin Centrality
Radiality Centrality

Residual Closeness Centrality

Eigenvector centralities

Katz Centrality
(Katz Status Index)

Laplacian Centrality

ClusterRank Geodesic K-Path Centrality

Density of Maximum
Neighborhood Component
(DMNQ)

Maximum Neighborhood
Component (MNC)

Harary Graph Centrality

Information Centrality
Subgraph centrality scores Markov Centrality

Shortest-Paths
Betweenness Centrality

Note that the first column (i.e. distance-based centralities) was specified according to the definition of distance between vertices in graph theory. The second one
(i.e. degree-based centralities) was defined based on the number of immediate neighbors of each node within a given network. Eigen-values of adjacency matrix was
the main idea to classify the Eigen-based centralities. Furthermore, the concept of subgraph or community structure was proposed in the neighborhood-based
centralities. Others were collected in the miscellaneous group. Remind that this grouping was just applied to have better visualizations.
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Fig. 2 Pairwise scatterplot between the evidence channel scores. The Pearson’s r correlation coefficients between the evidence channels were
shown in the upper triangle of the plot. The distributions of scores in each evidence were presented at the diameters of the figure

pairwise scatterplot and Pearson’s r correlation coeffi-
cient. Most of the networks were not significantly corre-
lated and correlation coefficients were around zero for
all networks.

In the following, the 14 networks were utilized to under-
take an examination of centrality measures. Note that the
giant component of each network was accounted for
computing several network properties (Table 2). The
homology, fusion, co-occurrence and database networks
contained high numbers of unconnected components. Ex-
cept the homology network which had the smallest giant
component, the densities of all networks were between
0.01-0.05, as was expected real network are typically
sparse. The network diameter of the fusion, co-occur-
rence, database and co-expression were one order of mag-
nitude greater than others. All of the PPINs except
homology network were correlated to power-law distribu-
tion with high r correlation coefficients and diverse alpha
power (see Additional file 2). The high value of the aver-
age clustering coefficients of the database and homology
indicated the modular structure of these networks.

Compared with the null network, most of the PPINs had
a high value of heterogeneity and network centralization.
The Degree distribution and clustering coefficients for the
networks were also plotted in Figs. 3 and 4 respectively.
Except the homology network, all the Degree distributions
were left-skewed similar to scale-free networks. The de-
pendency of PPINs was further assessed and confirmed
statistically by Wilcoxon rank sum test (Table 3).

Centrality analysis

In the next step, the 27 centrality measures of nodes were
computed in all 14 networks. The distribution and pair-
wise scatter plots of the computed measures were repre-
sented in Fig. 5 to point out pairwise relationship between
them. (For the other PPINs see Additional file 3). The r
correlation coefficients were also shown in this figure in
which some of the centrality measures displayed a clear
correlation and the others revealed a vast diversity among
all five centrality classes. This diversity especially enriched
in Distance-, Neighborhood-based and miscellaneous clas-
ses for combined-score PPIN compared with Erdos-Renyi
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network. Analogously, this special profile of centrality
measures was repeated in all PPINs to some extent. An-
other remarkable distinction was the multimodality of dis-
tributions in the random network but not in real networks
which was repeated for most of the Distance-based cen-
trality measures. Furthermore, according to r correlation
coefficients, the pairwise association of centrality mea-
sures were roughly higher in the null network than PPINSs.

Dimensionality reduction and clustering analysis

In the next step, PCA-based dimensionality reduction
was used to reveal which centrality measures contain the
most relevant information in order to effectively identify
important or influential nodes in networks. As illus-
trated in Fig. 6, the profile of the distance to the center
of the plot and their directions were mostly consonant
except for the homology which was similar to the
random network. The rank of contribution values of each
centrality measure were shown in Table 4, depend on their
corresponding principal components. The percentage of
contribution of variables (i.e. centrality measures) in a given
PC were computed as (variable.Cos2*100)/(total Cos2 of
the component)). A similar profile of the contribution of

centrality measures was observed among all biological net-
works even in homology network opposed to the random
null network (See Additional file 4). On average, Latora
closeness centrality was the major contributor of the princi-
pal components in PPINs. In contrast, other well-known
centralities i.e. Betweenness and Eccentricity revealed a low
contribution value in all PPINs. Analogous to the null net-
work, their values were lower than random threshold
depicted in Fig. 8 and Additional file 4. On the contrary,
the Degree displayed moderate levels of contribution in all
real networks whilst it was the fourth rank of random
network contributors. Although the profile of contributions
were similar, each PPIN exhibited a special fingerprint of
the centrality ranking. Finally, by performing unsupervised
categorization, we aimed to cluster centrality values com-
puted in the networks. First, we performed a clustering ten-
dency procedure. We found that the centrality values are
clusterable in each network as all values in the Hopkins sta-
tistics were more than the cutoff (0.05). The results are
shown in the first column of Table 5 and Additional file 5.
Then, by calculating silhouette scores, three methods (i.e.
hierarchical, k-means, and PAM) were evaluated in clus-
tering the data sets (Additional files 6 and 7). The output
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of applying these algorithms and the corresponding num-
ber of clusters were also shown in Table 5 and Additional
file 8. Using the hierarchical algorithm based on Ward’s
method [72], the centrality measures were clustered in each
PPINs (Fig. 7). Number of clusters, distance between cen-
trality measures and centrality composition in all 13 PPINs
indicated that each centrality ranks nodes within a given
network distinctly. For a better comparison, we provided
Table 6 containing pairwise Jaccard similarity indices for
each network pair. The lowest values were related to the
homology, neighborhood-transferred and co-occurrence
PPINs while among these genome context prediction
methods, fusion PPIN was more associated to the other
networks. The high similarity between co-expression and
co-expression-transferred was expected however the similar
clusters of the database derived PPIN with both aforemen-
tioned PPINs and also combined-score  with
textmining-transferred are noteworthy.

Discussion

Interestingly, silhouette scores of centrality measures
were closely related to corresponding contribution value
of the measures (Fig. 8). Where there was a high

silhouette value, a high contribution value was observed,
however, a high contribution value did not always mean
a high silhouette value. The relationship between the
silhouette scores and contribution values of each
centrality measure was also examined by regression
analysis. Latora closeness, Radiality, Residual, Decay, Lin,
Leverage, Freeman closeness and Barycenter centrality
measures were present together in the same cluster where
the corresponding silhouette scores were all at a high level
except the Leverage’s score (Fig. 8a). The average silhou-
ette score was around 0.66 in this cluster. On the other
hand, the Leverage’s contribution value was below the
threshold line and placed in the group with the least
amount of contribution (Fig. 8b). The centrality measures
namely Lobby index, ClusterRank, Laplacian, MNC, De-
gree, Markov, Diffusion degree, Kleinberg’s hub, Eigen
vector, Authority score, Katz group together where the
mean of their silhouette scores (i.e. 0.61) was higher than
the overall average and in the same way, their correspond-
ing contribution values were high, too. On the other hand,
we observed that Shortest path Betweenness (which was
in a separated cluster) and Geodesic k path, Subgraph and
DMNC (which are all in one cluster) showed the low
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silhouette value mean (ie. 0.03) much lower than the
average. In all other PPINSs, the same relationship between
silhouette scores and contribution values was observed as
shown in Additional files 4 and 7.

Our results demonstrated that a unique profile of cen-
trality measures including Latora closeness, Barycenter,
Diffusion degree, Freeman closeness, Residual, Average
distance, Radiality centralities, was the most significant in-
dicator in ranking PPIN nodes. We inferred that the
rationale and logic of network reconstruction dictates
which centrality measures should be chosen. Also, we
demonstrated the relationship between contribution value
derived from PCA and silhouette width as a cluster valid-
ity index. Regarding to the robustness issue, we first reas-
serted that the architecture and global properties of a
network impact on the centrality analysis results [73-75].
Therefore, the center of a network would be different, de-
pending on the network’s inherent topology. In other
words, we addressed this issue whether a given centrality
measure has enough information via-a-vis and it demon-
strates a same behavior in some other networks.

Conclusion

Network-based methods have been introduced as an
emergent approach for simplification, reconstruction,
analysis, and comprehension of complex behavior in
biological systems. Network-based ranking methods (i.e.
centrality analysis) have been found widespread use for
predicting essential proteins, proposing drug targets

candidates in treatment of cancer, biomarker discovery,
human disease genes identification and creation a cell
with the minimal genome [76]. However, there is no
consensus pipeline for centrality analysis regarding
aforementioned applications among network analysts.

In this study, we worked on yeast PPINs which were
built using 13 evidence channels in the STRING
database. Subsequently, 27 centrality measures were
used for the prioritization of the nodes in all PPINs. We
illustrated that data reduction and low-dimensional
projection help to extract relevant features (i.e. centrality
measures) and corresponding relationships. Thus, to
quantify connectivity in biological networks, we recom-
mend that before arbitrary picking centrality measures
to pinpoint important nodes, PCA (as an example of
data projection methods) conduce how to use these
measures. In the other word, the analysis of principal
components clarifies which measures have the highest
contribution values, i.e., which measures comprise much
more information about centrality. Freshly, the applica-
tion of these approach for discovering essential proteins
was assayed in a polypharmacology study to prevent
epithelial-mesenchymal transition in cancer [77].

Basic definitions
e Giant component of a graph defines the largest

connected component of a graph in which there is a
path between each pair of nodes [78].
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Table 5 Clustering information values for PPINs. The Hopkin's e Network density is a representation of the number
statistics threshold for clusterability was 0.05 of interactions to the number of possible

Network Hopkins Number of Silhouette interactions among a given network [79].

Statistic Clusters Average Value . . .
e Network centralization refers to a topological
Coexpression 0.25 6 036 . .
spectrum from star to grid topologies (where each
Coexpression_transferred 0.21 7 033 . .
node has a same number of links) of a graph varies

Cooccurence 0.18 6 055 from 1to 0 [79]

Datab 024 6 033 : . .

atabase e The network heterogeneity measure describes as
Database_transferred 020 ? 032 the coefficient of variation of connectivity

Experiments 021 ? 031 distribution. A high heterogeneous network implies
Experiments_transferred 016 6 043 that the network is exhibited approximate scale-free
Textmining 024 8 028 topology [79, 80]

, 80].

Textrnining_transferred 0.20 6 035 e The clustering coefficient of a node is the number
Neighborhood_transferred 026 2 039 of triangles (3-loops) that pass through it, relative to
Fussion 016 5 048 the maximum number of 3-loops that could pass
ombined_score . : rou e node. The network clustering coefficien
Combined 030 7 027 through the node. The network clust fficient
Homology 0.23 2 046
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Table 6 Jaccard index coefficient values for PPINs. The values represent how similar the networks are, in terms of their clustering

results. A value of 1 indicates an exact match while values equal to 0 show dissimilarity

coexp.  coexp._tr coocc. comb. dat_tr dat exp. exp._tr  fus. hom. nei_tr tex tex._tr

coexpression 0.99 0.58 0.77 062 100 058 080 083 041 043 062 076
coexpression_transferred 0.57 0.78 0.63 0.99 0.58 0.81 0.82 040 043 062 0.77
cooccurence 047 0.75 058 044 050 073 029 030 043 048
combined_score 052 077 062 063 064 037 0.39 078 096
database_transferred 062 055 055 055 025 027 047 051
database 058 080 083 041 043 062 076
experiments 0.59 049 025 0.27 067 063
experiments_transferred 067 041 043 062 062
fussion 040 042 052 064
homology 091 030 037
neighborhood_transferred 032 039
textmining 0.78
textmining_transferred
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Fig. 8 (a) Clustering silhouette plot of the combined-score PPIN. The colors represented the six clusters of the centrality measures in this PPIN.

The average silhouette width was 0.49. (b) Contribution values of centrality measures according to their corresponding principal components in
this PPIN. The number of principal components stand on the network architecture was equal to 3. The dashed line indicates the random
threshold of contribution. (c) Line plot between silhouette and contribution values. The R value shown is the result of a regression coefficient
analysis and the p value has been computed from Pearson’s correlation test
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defines as the mean of the clustering coefficients for
all nodes in the network [81, 82].

¢ Influential nodes which is generally used in social
networks analysis point as nodes with good spreading
properties in networks [83]. Different centrality
measures are used to find influential nodes.

e Centrality-lethality rule explains nodes with high
centrality values in which maintain the integrity of
the network structure, are more related to the
survival of the biological system [84].

e The silhouette criterion defines how similar a
centrality is to its own cluster compared to other
clusters. It ranges from — 1 to 1, where a high value
infers that the centrality is well matched to its own
cluster and poorly matched to neighboring clusters.
If most centralities have a high value, then the
clustering configuration is proper. If they have low
or negative values, then the clustering configuration
may have too many or too few clusters [5, 85].

In order to see definitions of all used centrality mea-
sures, see http://www.centiserver.org.

Additional files

Additional file 1: Evidence channel dataset. The contents of 13 evidence
channels illustrating the yeast PPIN from STRING database. (downloaded in
3rd Sep 2016) are provided. (TXT 28629 kb)

Additional file 2: Fitted power law distribution. The Degree distribution
of each network has been compared to the power law distribution in
order to visualize the scale free property in the structure of each network.
(PDF 203 kb)

Additional file 3: Scatterplots between groups of centralities. Each
panel indicates scatterplots between centralities groups of two networks.
(PPTX 1963 kb)

Additional file 4: Contribution values of centralities in each network. These
values were computed based on the principal components. The red line
shows the threshold used for identifying effective centralities. (PDF 441 kb)

Additional file 5: Visual assessment of cluster tendency plots. Each
rectangular represents the clusters of the calculated results of the
centrality measures. (PDF 313 kb)

Additional file 6: Clustering properties results. These properties include
connectivity, Dunn and Silhouette scores. These scores suggest the
sufficient clustering method by a specific number of clusters. (DOCX 16 kb)

Additional file 7: Clusters silhouette plots. Each color represents a cluster
and each bar with specific color indicates a centrality. (PDF 417 kb)

Additional file 8: Optimal number of clusters. The suitable number of
clusters for hierarchical clustering method was computed using the

average silhouette values. (PDF 321 kb)
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