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Abstract

Background: The hypothalamic-pituitary-adrenal (HPA) axis is a central regulator of stress response and its
dysfunction has been associated with a broad range of complex illnesses including Gulf War Illness (GWI) and Chronic
Fatigue Syndrome (CFS). Though classical mathematical approaches have been used to model HPA function in
isolation, its broad regulatory interactions with immune and central nervous function are such that the biological
fidelity of simulations is undermined by the limited availability of reliable parameter estimates.

Method: Here we introduce and apply a generalized discrete formalism to recover multiple stable regulatory
programs of the HPA axis using little more than connectivity between physiological components. This simple discrete
model captures cyclic attractors such as the circadian rhythm by applying generic constraints to a minimal parameter
set; this is distinct from Ordinary Differential Equation (ODE) models, which require broad and precise parameter sets.
Parameter tuning is accomplished by decomposition of the overall regulatory network into isolated sub-networks that
support cyclic attractors. Network behavior is simulated using a novel asynchronous updating scheme that enforces
priority with memory within and between physiological compartments.

Results: Consistent with much more complex conventional models of the HPA axis, this parsimonious framework
supports two cyclic attractors, governed by higher and lower levels of cortisol respectively. Importantly, results
suggest that stress may remodel the stability landscape of this system, favoring migration from one stable circadian
cycle to the other. Access to each regime is dependent on HPA axis tone, captured here by the tunable parameters of
the multi-valued logic. Likewise, an idealized glucocorticoid receptor blocker alters the regulatory topology such that
maintenance of persistently low cortisol levels is rendered unstable, favoring a return to normal circadian oscillation in
both cortisol and glucocorticoid receptor expression.

Conclusion: These results emphasize the significance of regulatory connectivity alone and how regulatory plasticity
may be explored using simple discrete logic and minimal data compared to conventional methods.

Keywords: Logical Modeling, Multi-valued discrete simulation, biological regulatory feedback, HPA axis, Regulatory
stability, HPA axis plasticity

Background
The Hypothalamic-Pituitary-Adrenal (HPA) axis is one of
the most fundamental components of the body in regulat-
ing the response to stress. Due to its important regulatory
role, it is no surprise that the HPA axis has been asso-
ciated with a number of complex chronic diseases such
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as Gulf War Illness (GWI) and Chronic Fatigue Syn-
drome [1–3]. Initially, stress is perceived by the central
nervous system (CSN) and a pulse is transmitted to the
hypothalamus to release corticotropin-releasing hormone
(CRH) into the pituitary gland (PA) in the mid-brain.
The pituitary initiates release of adrenocorticotropin hor-
mone (ACTH) into the blood stream where it signals to
the adrenal cortex to respond in turn and release cortisol
(CORT) into the blood stream. CORT has broad effects
across the body where it binds to glucocorticoid recep-
tors (R) and in a negative feedback suppresses ACTH
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secretion [4]. Previously, models of the HPA axis have
been formulated as sets of Ordinary Differential Equations
(ODE) [5, 6], delay differential equations (DDEs) [7, 8]
or as discrete Boolean (BN) networks [9]. Early work by
our group extended the BN formalism to a fixed 3-state
logic to provide additional detail [10]. While BN models
are able to partially generate cyclic attractors [11], in the
case of HPA axis, the complexity in the behavior of CORT
(e.g. multi-level range) cannot be modeled in either the
BN or extended BN framework. Therefore, in this study,
we employ a fully generalized discrete network formal-
ism introduced by Thomas [12] and use different updating
schemes such as synchronous, asynchronous and prior-
ity updating with memory in order to recover bi-stable
attractors in HPA axis behavior with minimal parame-
ter selection. Our contribution is twofold; a model tuning
algorithm that ensures alignment of model behavior with
an expected qualitative outcome (e.g. cyclic attractor) and
a new updating scheme based on assignment to a priority
class with a memory of previous states that accounts for
historical actions of the model. Our proposed tuning algo-
rithm selects a set of logical parameter values that guaran-
tee a target behavior such as the presence of limit cycles.
This is done based on the identification of isolated positive
and negative feedback loops in the regulatory signaling
networks.
To illustrate the properties of this Generalized Discrete

Formalism we construct a basic model of the HPA axis
and compare the predictions against behaviors obtained
using a much more detailed set of conventional ODEs.
We show that the multi-level discrete logic proposed in
this work accurately reproduces the bi-stable oscillatory
behavior predicted by Kim et al. [7]. Moreover, we show
that externally applied stress can temporarily collapse the
attractor space to specific states or sets of states that may
serve to re-initiate the system under an alternate home-
ostatic program after stress has dissipated. The range
of these intermediate stress-potentiated states and their
location are dependent upon the set of logic parameters
imparted by HPA axis tone. We propose that knowl-
edge of these “gateway” states may inform on potential
mechanisms of onset for many of these stress-mediated
illnesses, an aspect which remains poorly understood.
Having a control subject under challenge access a stress-
enabled state that is normally observed in chronic HPA
axis dysfunction would suggest that such states act as a
stepping stone in the sequence of onset events leading
to persistent illness. Similarly, we show that an externally
applied therapeutic agent, in this case a glucocorticoid
receptor blocker, may render a given persistent regula-
tory program unstable and favor return to the original
homeostatic regime. This plasticity of the attractor space
suggests that systems such as these continuously adapt
the repertoire of regulatory programs available to ensure

stable behavior as an adaptive response to changes in
environmental cues.

Results
In this section, we illustrate how the bi-stability in HPA
behavior, predicted by a muchmore elaborate ODEmodel
proposed by Kim et al. [7] in the absence of external per-
turbations, may be recovered using this compact discrete
formalism under various updating schemes. Secondly, we
simulate how an external stressor may facilitate the migra-
tion from one stable regulatory cycle to another poten-
tially pathogenic regulatory mode. Then, we assess the
robustness of the attractors by introducing stochasticity in
the state transition functions. Finally, we demonstrate how
an external intervention, such as a R antagonist, might
be applied to promote recovery of a more desirable circa-
dian rhythm by rendering the alternate cycle dynamically
unstable.

Parameter identification
As described in greater detail in the “Methods” section,
the current discrete model uses parameters defining the
relative contextual weight of stimulatory and inhibitory
signals (K values) and the threshold of activation θ

required for a response to be produced. The HPA axis is
one of the better studied physiological regulatory axes and
its oscillatory [3, 7] and bi-stable [5–7] dynamic behav-
ior has been well documented and these attributes served
here as constraints for the identification of parameter val-
ues. Specifically, it has been shown that multi-stability
[13, 14] and cyclical behavior require positive and neg-
ative feedback loops respectively. Therefore, in order to
guarantee that the HPA model supports bi-stable cyclic
attractors, its topology must contain at least one neg-
ative and one positive feedback loop. In addition, the
feedback loops must be functional. Functional status is
determined by assignment of logical values (K). Intuitively,
our method first analyzes the topology of the network
to identify feedback loops and their corresponding parity
[15], and then exhaustively checks whether different val-
ues of K would make such feedback loops functional (see
Additional file 1 for more details). Out of 65536 logical
combinations of K values available to this model con-
figuration, we found that only one parameterization (see
Table 1) was able to reproduce bi-stable cyclic attractors.
The values of activation threshold theta were necessarily
1 for single output elements but in the case of dual out-
put nodes Cort and R each output received a threshold
value that would ensure that their corresponding feedback
loops became active. This parameter identification was
performed only with respect to those parameters defining
the behavior of CRH, ACTH, CORT and R. The perceived
severity of an environmental threat is highly subjective,
varying greatly from person to person based on a range
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Table 1 Feasible logical parameters (K) generating bi-stable
cyclic attractors along with their equivalent logical equations (see
[63] for more details on how these equations might be further
simplified)

Component Logical values(Kinetic
Ratios)

Logical Equivalence

CRH (i = 2) K2∅ = 0, K24 = 1 CRH ∶∶ (CORT ↔ 0).

ACTH (i = 3) K3∅ = 0, K32 = 1,
K35 = 1, K3.25 = 1

ACTH ∶∶ (CRH AND ¬

(R↔ 0)) OR (¬CRH AND
R↔ 0) OR (CRH AND
R↔ 0).

CORT (i = 4) K4∅ = 0, K43 = 2 CORT ↔ 2 ∶∶ ACTH.

R (i = 5) K5∅ = 0, K54 = 1,
K55 = 2, K5.45 = 2

R↔ 2 ∶∶ (R↔ 2)OR
(R↔ 2 AND CORT ↔ 2).
R↔ 1 ∶∶ CORT ↔ 2
AND ¬(R↔ 2).

Note that Stress is not mentioned in this table since it has no input interaction. The
binary entities (e.g. CRH and ACTH) are denoted by conventional logical notations
(e.g. ¬ACTH ∶∶ ACTH↔ 0)

of factors including genetic predisposition and life expe-
riences. One might expect some individuals, for example
combat veterans, being hyper-aware and respondingmore
readily and more intensely to a stressor. In an attempt
to capture and accommodate some of this variability in
the perception of environmental stress we performed a
separate model calibration for this model input after first
finding a parameterization of the internal components
(e.g. CRH, ACTH, CORT, R)of the model at rest in the
absence of an external stimuli (Additional file 2).

HPA axis behavior in isolation
A discrete generalized version of the HPA axis is illus-
trated in Fig. 1a. Note that the dimerized R (RD) and
native R used by Gupta et al. [5] are modeled here as a sin-
gle node R resulting in only 4 state variables in this variant
of the model. The edges are labeled with the threshold of
the interaction θij at which they become active. In a first
analysis we apply asynchronous simulations where a state
node in the State Transition Graph (STG), describing
the sequence of system states as they evolve across time,
might have more than one successor. These support two
complex singular or cyclic attractors (Additional file 3)

Table 2 Frequency of Update (di) for the priority with memory
update

Component di

CRH (i = 2) d2 = 1

ACTH (i = 3) d3 = 1

CORT (i = 4) d4 = 4

R (i = 5) d5 = 1

Note that Stress is not mentioned in this table since it has no input interaction

in state variables [CRH ,ACTH ,CORT ,R] respectively.
While CORT levels oscillate across the full range of
expression in both cycles, these regulatory modes differ
significantly with respect to the expression of R which
in one case remains overexpressed or saturated (upper
limit 2). Similarly, synchronous updating of the state
variables (Additional file 4) supports 4 cyclic attractors
where CORT again oscillates between its maximum and
minimum expression values. In two of these attractors we
again notice the persistent overexpression of R.
Finally, we applied a priority class updating with mem-

ory where we separated the state variables into two classes
namely fast and slow state transition or updating, based on
their relative kinetics. Because of their anatomical prox-
imity in the mid-brain, we placed CRH, ACTH and R in
the fast group giving these state variables a first priority
of update (Table 2). As the adrenal gland resides in the
periphery and, CORT is released into the general circu-
latory compartment, this state variable was assigned to
the slow group. Results of this stratification are shown
in Fig. 1b (simplified in Additional file 5). As with fully
asynchronous updating, we recover two singular or cyclic
attractors. However, in this case CORT oscillates in a split
range. In one cyclic attractor CORT oscillates at the high
end of its range (1 − 2), with expression of R also oscillat-
ing, while in the second CORT oscillates at the low end of
the range (0 − 1) of expression with R being saturated or
persistently overexpressed.

Simulating environmental challenge
In an ideal protective environment, without any exter-
nal disturbances such as stress, the two stable attrac-
tors recovered under a compartmentalized asynchronous
updating in the previous section have no overlap, that is
they do not share any common states transient or oth-
erwise. As a result, it is impossible to migrate from one
stable regime to the other (Fig. 1b). Of course this ide-
alized sensory deprivation is not representative of the
everyday world and we hypothesize that adding environ-
mental factors to the model circuit may alter the regu-
latory landscape in a way that might facilitate migration
from one attractor to the other. To test this hypothesis,
we introduce a generic stressor that directly stimulates
CRH synthesis and release (Fig. 2a) as a new environ-
mental input or exogenous state variable to the model.
Our results indicate that activation of this external stres-
sor remodels the stability landscape in a way that may
support the migration from one attractor to another.
Applying stress directly to CRH, while keeping all other
model parameters constant (unperturbed model) resulted
in the identification of 16 parameter sets (Additional file 2)
describing stress-CRH interactions supporting coherent
dynamic behavior. Of these solutions 4 parameter sets
supported 2 cyclic attractors, 4 sets supported 1 cyclic
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a b
Fig. 1 Recovering Multiple Regulatory Cycles for the HPA Axis. Applying a Priority Class updating scheme to a multi-level regulatory logic model of
the hypothalamic-pituitary- adrenal (HPA) axis (a) produced a state transition graph (STG) in [CRH, ACTH, Cort, R] supporting two stable oscillatory
cycles (b). The regulatory mode labeled as Healthy (green state nodes) supports oscillation in the state of glucocorticoid receptor R from low to
medium expression with cortisol expression (Cort) oscillating from mid to high expression levels. Conversely, in the second regulatory regime Cort
expression levels oscillate at the lower end of the range with R persistently over-expressed (yellow nodes). Note that in absence of external
disturbances (assumed here), once the system has settled in one or the other of these cycles it will remain locked in that regulatory mode since
there are no state transition edges supported by the circuitry that connect these separate attractors or their basins. States identified with an asterisk
correspond to stationary states to which the system collapses under a chronic external stress (Figurer 3) that overlap with the oscillatory regime
where cortisol spans the lower range (red) or the higher range of expression (blue)

attractor and a stationary point, and the remaining 8
solutions supported only stationary points, that is those
attractors containing only a single state. Further exami-
nation showed that among these, only 4 parameter sets
supported biologically plausible behavior for CRH when
stress was absent and only 2 supported expected HPA axis
behavior when stress is present. These 2 final parame-
ter sets supported stable states existing under persistent
stress (Fig. 2b) that straddled the stable states available
in the absence of stress, or with the HPA axis at rest
(Fig. 1b). Specifically, the stationary point [0002] and
[1122] both overlap with the cyclic attractor in the unstim-
ulated system where R is chronically over expressed
(Fig. 1b) trapping the system in that cycle when stress is
removed.

Inducing regulatory recovery
Consistent with the nature of these attractors, removal
of the triggering insult does not reverse the condition.
Interrupting this dynamically stable cycle of chronically

under-expressed CORT will require another external per-
turbation. Here we simulate a reverse scenario where
the corresponding over-expression of R is inhibited by
an externally applied pharmaceutical antagonist (Fig. 3a).
While an exhaustive evaluation of rescue strategies based
on single-target interventions suggested that inhibition of
CRH would also succeed, the latter is less widely used and
somewhat more novel [16]. For this reason we focused
this proof-of-principle on the more common inhibition of
glucocortiocoid receptor R [17]. Initiating the simulations
from any state in the chronic hypocortisolic attractor,
we simulated the trajectory that the system might fol-
low in order to migrate back to the target healthy state
(Fig. 3b). Applying this idealized inhibitor of R we found
that the attractor landscape changed such that the chronic
low-level oscillatory regime for CORT facilitated by the
persistent overexpression of R became dynamically unsta-
ble. Indeed, under these conditions the only stable regime
remaining involved oscillation of R and CORT within
desired ranges.
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a b
Fig. 2 A Stress-mediated Collapse of Regulatory Repertoire. Introducing an environmental stressor (orange node) into the HPA regulatory circuit (a)
alters the stable attractor space in [CRH, ACTH, Cort, R, Stress] such that cycles supported at rest collapse (b). Under normal regulatory feedback tone
and sensitivity, stress serves to galvanize the Healthy regulatory cycle while also allowing for transition to a pathologic stationary point (red asterisk).
Alternatively, in the case of a heightened sensitivity to stress the previous stability landscape collapses altogether to 3 stationary points, one
belonging to the medium to high range cortisol cycle (blue asterisk) and two belonging to the low to medium range cortisol regime (red asterisk)

Robustness of attractors with respect to stochasticity
In the previous sections, we show that this regulatory
model of the HPA axis can in principle accommodate 2
stable oscillatory attractors and that under the influence
of different environmental factors it might be possible to
migrate from one regime to the other. While we con-
firm that it is possible to escape a given attractor it is
also of interest to know how difficult this escape might
be or in other words how strong an attraction is exerted
by a given regulatory regime. We explore this by con-
ducting 1000 repeated Monte Carlo simulations for each
of the 36 possible initial states supported by the net-
work, where we applied random errors ε = 0.05 to the
HPA regulatory logic in the following three numerical
experiments:

• Isolated wild type: In this case, we performed
repeated wild-type simulations of the network in
isolation (that is without any external perturbation by
environmental factors). Simulations of the HPA
network were initiated at random states around both
attractors. Statistics describing the resulting

frequency of occurrence of the final resting states
were used to reconstruct the transition matrix for
each of the attractors.

• Chronic environmental stress: In this case, we
simulated a chronic stress scenario in order to see
how the transition probabilities separating attractors
change in this new landscape. Specifically, we are
interested in probability of transition from the
healthy (oscillating R expression) attractor to the
pathological where R is chronically over-expressed
(e.g. p21 in the transition matrix∏ where i = 1 for
pathological and i = 2 for healthy attractor).

• Therapeutic blockade of R : Here, we simulate the
effects of knocking out or strongly inhibiting R (e.g.
using mifepristone) in our model as means of a
therapy. In this case, we are interested in both the
probability of treatment resistance or remaining in
pathological state (e.g. p11) as well as treatment
response prompting a return transition to the healthy
regulatory regime (e.g. p12).

Transition probabilities under random biological noise
or decisional error ε = 0.05 for each of these experiments
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ba
Fig. 3 Shifting Stability in Favor of a Target Regulatory Program. As in Fig. 2, the introduction of an external factor, in this case a therapeutic agent
(Drug; yellow node) inhibiting the expression of R (a), again alters the stability landscape significantly such that the previously stable pathological
(low to medium cortisol expression) oscillatory regime, and its component stationary points supported under conditions of persistent stress (red
asterisk), is now dynamically unstable (b). Indeed, under a therapeutic blockade of R the only stable regime in [CRH, ACTH, Cort, R, Drug] consists of
the healthy (medium to high cortisol expression) attractor (including the subset of overlapping component states that remained available under
untreated conditions of chronic stress, blue asterisks)

is shown in Fig. 4. The probability of transition of the HPA
axis from a healthy to a pathological regulatory regime
is increased approximately tenfold under conditions of
sustained external stress from 0.003 to 0.026. Should
migration occur under these conditions, the probability of
escaping this quite stable pathology remains roughly the
same as in the undisturbed state at approximately 0.05.
In Fig. 4c we show that the probability of an escape tran-
sition from this robust pathological steady state back to
the healthy regulatory regime improves dramatically from
0.05 to 0.69 with the introduction of an R antagonist. In
addition, the probability of relapse back into the patholog-
ical state falls by 2 orders of magnitude to 0.0001, making
this transition extremely unlikely.
To illustrate this further, we applied the transition

probability matrices computed in the previous step to
a Markov Chain model and simulated the likelihood
over time of escaping the pathological overexpression of
R under conditions of undisturbed rest, chronic stress
and therapeutic blockade of R. For each of these con-
ditions, the Markov Chain model of each scenario was
used to infer the average (number of time steps leading

to a 50 ∶ 50 chance of escaping the pathology and the
resulting probabilities of relapse or conversely of remain-
ing in the new healthy regime (Fig. 5). The results of
the Markov Chain simulations show that the average
number of time steps involved in transitioning from the
pathological state to the healthy state are quite differ-
ent for each scenario. As might be expected, if HPA
axis dynamics currently adhere to the pathologic regu-
latory program P then the application of chronic stress
serves to further galvanize this condition. Specifically,
chronic stress would significantly delay a situation where
the system might have a 50 ∶ 50 chance of escape
(almost one quarter). Moreover, the probability of remain-
ing free of this pathology and maintaining a stable healthy
state H never exceeds 70% (the Markov chain transition
probabilities stabilizes in the middle figure). Conversely
the introduction of a R antagonist almost immedi-
ately destabilizes the pathological attractor resulting in
a rapid shift to the healthy regulatory regime H. More-
over, under this R blockade the probability of remaining
resilient to stress and avoiding relapse is much higher,
exceeding 90%.
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Fig. 4Mapping the Relative Resilience of a Regulatory Program. Graphical representation of the estimated probability of occurrence (State
Transition Matrix) of state transitions resulting in a return to a given attractor versus an escape to the neighboring attractor. Markov Chain Monte
Carlo simulations repeated 1000 times for each of the 36 possible initial states, were conducted with 5% random biological noise applied to an
unperturbed HPA axis at rest (wild type) (a), to conditions of persistent environmental stress (b), and under therapeutic blockade of R (c). Results
suggest that conditions of persistent stress facilitate the transition to a chronic HPA dysregulation while downregulation of R significantly
destabilizes the latter favoring a return to normal HPA rhythm

Discussion
Logical Modeling and Parameterization
In this study, we employed a generalized discrete for-
malism in order to explain the complex cyclic bi-stable
behavior of the HPA axis. By enforcing expected qualita-
tive behaviors formally by requiring the requisite negative
and positive regulatory feedback loops, we were able to
recover two cyclic steady states that closely mimic the
results of more complex ODE based simulations [7]. An
alternative but similar methodology is also proposed in
Devloo’s work [18], however the latter, focuses on the
identification of steady states and not the parametrization
of the supporting logic. Recently, other model check-
ing techniques [19, 20] have also been proposed for
identifying logic parameters efficiently. These methods
rely on experimental time course measurements and do
not accommodate qualitative behavior (e.g. bi-stability,
cyclic attractors). It should be noted that we expect the

combination of qualitative and quantitative results to yield
a smaller and more accurate parameterization space com-
monly available to such models. Sedghamiz et al. [21]
employs a Constraint Satisfaction (CS) technique along
with biologically inspired cost functions to make the
parameterization much more efficient. Indeed the small
network model used here was selected as an example
benchmark problem since the dynamics of the HPA axis
have been well studied and a detailed conventional ODE
model [7] was available as a comparator. However, this
multi-valued logical model becomes more useful as the
size of the network increases. First, the availability of
comprehensive and detailed kinetic data becomes increas-
ingly sparse as the networks become larger especially
when these bridge across multiple physiological regula-
tory axes. In such cases the proposed framework allows
one to continue exploring network dynamics by drawing
the typically much broader knowledge of connectivity, for

a

b

c

Fig. 5 Simulating Escape from Pathological Dysfunction. Monte Carlo simulations of Markov Chains models tuned to the migration probabilities in
each State Transition Matrix showing the expected evolution in time in the probability of continuing to occupy the pathological regime (red line)
versus occupying the Healthy regime (blue line) assuming 5% random biological noise. Under conditions of persistent stress (b) any potential
escape from pathological dysfunction is delayed (dotted vertical) compared to an unperturbed resting state (a). Conversely, with the introduction of
a therapeutic blockade of R, a spontaneous escape from HPA dysregulation is virtually instantaneous (c). Time is plotted on an arbitrary scale and is
measured in iterations
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example receptor-ligand biochemistry. Secondly as might
be expected, there exists an important computational
advantage as the parameter search space for logical mod-
els is discrete, and thus significantly smaller. Our group
recently reported the use of Constraint Programming to
further enhance the scalability of model parameterization
[21] and is applying this successfully in ongoing work to
a number of well-studied problems, the largest of these
consisting of 114 entities connected by 129 interactions
describing gene regulation in dendritic cell differentiation
[22]. Other studies have also shown the promising scala-
bility of logical modeling with the help of model checking
techniques and Answer Set Programming [19, 23].

Complexity of attractor detection
Identification of attractors in this study is performed
with a linear time modified Tarjan’s algorithm [24]. These
methods have a time complexity of O(∣V ∣ + ∣E∣), where
V is the number of nodes and E number of edges in
the state transition graph (STG). Accordingly, this time
complexity is closely related to the type of the update
scheme chosen. The STG generated under synchronous
update is the smallest graph as each state has only one
out degree, or successor state available. Therefore, in the
case of a regulatory network with n nodes each taking
m states, the STG has ∣V ∣ = mn nodes and ∣E∣ = mn

edges, yielding a time complexity of O(2mn). In contrast,
an asynchronous update would typically generate a very
large STG as a regulatory graph with n variables will at
each transition have a maximum n successors or out-
degrees. This equates to an architecture where ∣V ∣ = mn

and ∣E∣ = nmn resulting in a complexity of O (mn(1 + n)).
The priority class update has a time complexity that lies
between these two extreme cases, namely O (2mn) ≤
Opriority ≤ O (mn(1 + n)). Consequently, traversing the
STGs formed by the regulatory networks with more than
40 nodes might become intractable. There are methods
that have employed symbolic representation of STG in
order to search for attractors in a more efficient man-
ner [22, 25]. However, application of these methods is
limited to Boolean networks only. Recently, fast parallel
algorithms [26] have been proposed for the detection of
Strongly Connected Components (SCC) in large graphs.
A modification of such algorithms might be used in order
to more efficiently traverse large STGs.

Context responsive remodeling of HPA axis behavior
Due to biological variability in the way environmental
stressors are perceived and their severity assessed, we
explored this interaction of an idealized stressor with the
HPA axis in more depth. We identified multiple stable
states that remained feasible as long as persistent stress
was applied. In the absence of persistent stress these
stress-potentiated states become dynamically unstable

and resume their role as transient states in either the
low-range or high-range cortisol oscillatory regimes. We
showed that model parameters associated with increased
sensitivity to external stress offered additional oppor-
tunity for transitioning into a stable regulatory state
characterized by overexpression of the glucocorticoid
receptor R.
Neural circuitry mediating sensitivity to perceived

threat are reported to be a distinguishing component
among several stress-induced illnesses [27] including
PTSD where studies show hyperarousal as a consistent
feature of this illness [28]. Accordingly, the predictions of
this simple model align with results from animal studies
suggesting that chronic stress leads to the persistent over-
expression of the glucocorticoid receptor (R) [29]. The
correspondingly low cortisol levels have been associated
with metabolic mediation of stress-related disorders [30],
including post-traumatic stress disorder (PTSD) [31] as
well as fatiguing illnesses such as chronic fatigue syn-
drome [32]. Conversely persistently high cortisol levels
have been associated with anxiety and major depressive
disorders [33]. While it is recognized that differences in
sensitivity to stress directly affect vulnerability to last-
ing HPA axis dysfunction, the adaptive states that exist
in the presence of chronic stress and that may predis-
pose to these conditions have not been well-studied.
The simple model presented here predicts that in the
case of stress-sensitive subjects a unique adaptive state
exists characterized by high cortisol levels and elevated
expression of R. Experimental validation of this marker
co-expression pattern in, for example, a statistically signif-
icant segment of the hyper-aware subjects (new military
recruits for example) would support the involvement in
illness onset of these adaptive states. Such an assessment,
potentially using a sub-maximal exercise challenge, could
serve in the screening of candidates that might be exposed
more frequently to such conditions, for example first
responders. To further assess how easily accessed or
entrenched these conditions might be, we also studied the
model from a stochastic perspective by considering the
effects of random biological noise included as a proba-
bility of a decisional error in the signaling mechanisms.
Our simulations showed that under conditions promot-
ing the over-expression of CRH (e.g. by chronic stress)
the chance of falling into a stable state of pathological
hypo-cortisolism increases. Conversely the model pre-
dicts that down-regulating R would highly increase the
probability of transition to the alternate oscillatory steady
state, essentially making the pathological persistent over-
expression of R dynamically unstable. While stochastic
simulations are well studied and modeled in Boolean net-
works, as far as we are aware, this has not been fully
explored in multi-valued networks and we propose that
this work is one such novel attempt. Indeed, in this work
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we extend the concept of probabilistic failure of regula-
tory function introduced by Garg et al. [34], and applied
to Boolean networks, to the much more complex case of
multi-valued logic.
Plasticity in stress response leading to context spe-

cific changes in the availability of specific HPA axis
response programs have been observed in nature. For
example, reduction in exposure to light, simulating
seasonal shortening of daylight hours, resulted in
increased corticosterone responses to restraint in mice,
increased hippocampal glucocorticoid receptor expres-
sion, enhanced corticosterone negative feedback on the
HPA axis, and increased sensitivity to dexamethasone
suppression of corticosterone. Conversely, during peri-
ods of food scarcity resulting in caloric deficiency,
Maniscalco and Rinaman report [35] that many physio-
logical and behavioral responses to acute stress centrally
mediated by the HPA axis are significantly attenuated
such as anxiety and fearful behavior as well as normal
stress-induced loss of appetite in favor of food foraging
and intake behavior. They propose that this altered pro-
gramming is due to reduced recruitment of A2 noradren-
ergic (PrRP+ A2) and hindbrain glucagon-like peptide
(GLP-1) neurons, with correspondingly reduced signal-
ing mid and forebrain targets. Indeed, Rabassa et al. [36]
report that under conditions of chronic daily stress, acute
response to a stressor resulted in a dampened expression
of HPA axis markers such as ACTH further reinforcing
the notion that alternate stable response programs can be
induced by exogenous environmental factors. Such envi-
ronmental remodeling of the attractor topology will also
be affected by regulatory physiology adjacent to the HPA
axis. For example, as with changes in metabolic status
and its regulation by the hypothalamic-pituitary-thyroidal
(HPT) axis, availability of specific stress response pro-
grams may be further modified by sex and regulation of
the hypothalamic-pituitary-gonadal (HPG) axis [37].
As one might expect, adaptive changes in stress

response programming will be similarly affected by phar-
maceutical agents such as amphetamines which dampen
the prototypic peripheral physiological response to stress
and activation of the paraventricular nucleus (PVN)
[38]. In this work, we propose a novel perspective on
drug action, namely one where a pharmaceutical agent
serves not to artificially maintain an otherwise unstable
response but instead to render unstable an otherwise sta-
ble pathology e.g. a chronic regulatory imbalance. For
example the hormone ghrelin has been reported to desta-
bilize the chronic inflammatory cascade characteristic of
osteoarthritis (OA) rendering this pathologic program
unstable by rebalancing the interplay between Akt and
NF-κB signaling pathways [39]. Multi-target regulators
such as BCG vaccine have been shown to impart pro-
tection against a number of autoimmune illnesses by

activating anti-viral immune programming and in essence
undermining the stability of antibody-mediated cascades
[13, 14]. We extend this concept further by attempting to
quantify the extent of this stability from the design and
tuning of the regulatory circuitry itself, in essence describ-
ing the risk of onset or subsequent relapse in terms of
the geography of a given attractor. Indeed, Gordon et al.
[40], report that shifting topology of the hormonal regu-
latory environment during premenopausal transition may
increase vulnerability to environmental psychosocial fac-
tors leading to heightened risk of depression. Likewise,
although initial responses to first-line therapy are high
in chronic myeloid leukemia (CML), this response dis-
sipates within 2 years in approximately 25% of patients.
Therapy eventually fails outright in up to 40% of patients
[41] suggesting that while the desired response was indeed
accessible, the corresponding attractor remained shallow
enough to allow escape and relapse in a significant num-
ber of individuals. One could argue therefore that it is
not sufficient to provide access to the correct regulatory
program, it is also necessary to alter the landscape in a
way that this attractor is sufficiently deep and resilient to
biological variability.

Conclusion
There is a growing appreciation for chronic diseases as
the consequences of biological systems becoming trapped
in abnormal steady states. In this work we use con-
cepts initially developed by Thomas [42–44] and recently
reviewed in Abou-Jaoudé et al. [45] to rigorously describe
the function of regulatory networks in a discrete logic
formalism that requires only minimal parameter fitting.
This formalism is used to design and implement meth-
ods that combine computational efficiency with biological
fidelity in capturing the multi-stable oscillatory modes of
a major physiological regulator, namely the hypothalamic-
pituitary-adrenal or HPA axis. Specifically, we enforce
the generic properties of elementary feedback circuits,
namely oscillatory dynamics and multi-stability, on a gen-
eral model in order to efficiently tune parameter values
and identify stable regulatory modes. This simple model
of the HPA axis based on a segmented binary logic sepa-
rated by activation thresholds reproduced the same com-
plex dynamic behavior as that supported by a much more
sophisticated set of ODE recently proposed by Kim et al.
[7]. Importantly in this work we we extend the priority
class asynchronous updating scheme of Faure et al. [46] by
adding a memory of recent update, essentially reinforcing
delayed activation. It is important to note that inclusion
of a state transition memory in this update scheme was
necessary in order to recover complex bi-stable oscilla-
tory behavior. The simplicity of our implementation of
the Thomas conceptual framework is significant not only
because it offers a compact parameter space but more
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importantly because this framework makes it possible to
explore the behavior of much broader physiology. For
example, systems such as the HPA axis can be cast in a
much more comprehensive context, one that accounts for
interactions with neighboring metabolic, sex hormone,
immune and central nervous system regulators [47, 48]
even when little is known about the dynamics linking
these different domains.
Indeed, the multi-valued logical formalism employed

in this study has several important advantages over
conventional Boolean networks. These include the
increased discrete state resolution and related support
of concentration-dependent actions, both which were
needed here to reproduce the oscillatory split-range
dynamics of the model HPA axis. Furthermore, the log-
ical K values employed with this formalism can express
all the possible combinatorial effects of co-factors in
a more efficient and compact form than only using
simple logical keywords such as AND, OR and NOT.
Nonetheless, the main limitation of discrete logic-based
models (binary and multi-valued) is that they express
time as the number sequential state transition events.
In general therefore, ODE models are more quantita-
tive and accurate if proper parameters for the model
are known, while the qualitative logical modeling tech-
niques such as this are better suited for scenarios where
kinetic parameters are difficult or impossible to accurately
estimate.
In addition to reproducing the behavior of the HPA

axis in isolation, this work graphically demonstrates how
external factors may modify the overall regulatory circuit
and shift the corresponding state transition landscape.
Such modifications may make typically unavailable attrac-
tors suddenly available. Indeed, our analysis of this simple
model of HPA biology predicts specific stress-potentiated
stable states that straddle both basins of attraction offering
a tentative mechanistic model for the potential course of
onset in chronic HPA dysregulation. Importantly we link
these potential avenues of onset to changes in the sensitiv-
ity to perceived stressful events, showing that changes in
this biology may affect vulnerability by making available
under stress additional states that occupy the opposite
attractor. This same shift in regulatory landscape may also
apply in the case of host-pathogen interactions [49] or
therapies where drug effects may make available attrac-
tors consisting of pathogenic side effects. As a result, we
contend in this work, that in addition to direct phar-
macological side-effects, drugs and treatment programs
should also be assessed in terms of the attractors that
they may inadvertently render accessible. This acces-
sibility will also be mediated by environmental effects
and other outside influences which as additional compo-
nents of the regulatory circuit may alter the geometry of
these regulatory traps making them broader still. While

the concept of remodeling of an attractor landscape by
an externally applied stressor or pharmaceutical agent
may not in and of itself novel [50–52], one could argue
that such concepts are still not widely applied in the
design of intervention strategies and its operationaliza-
tion remains an area of ongoing research. Additionally
we propose that such investigations have so far been
restricted to binary networks and that the use of multi-
valued logic in exploring these phenomena is, to our
knowledge, novel.
We chose to study the HPA axis since it has been thor-

oughly studied, thus providing a well-established ground
truth against which we could compare our predicted
model parameter sets. Elevated levels of glucocorticoid
receptors play a key role in many diseases related to the
HPA axis [53]. A prominent example is Gulf War Illness
(GWI), where the heightened and sustained stress of a
combat environment and its continued stimulation of the
HPA axis may have increased the vulnerability of person-
nel to environmental exposures and facilitated the migra-
tion to hyper responsive neuroinflammatory response
program [54]. In this like in many treatment resistant
conditions, static single target interventions have proven
largely ineffective [3] supporting the notion that design-
ing an effective escape trajectory may require a better
knowledge of the regulatory dynamics at play. Knowledge
such as this would inform not only on the best physio-
logic regulatory target (e.g. R) but would also inform on
the best context (i.e. instantaneous state of co-regulators)
in which to apply an intervention. Depending on this con-
text, the recovery may follow a longer or shorter trajectory
or fail outright. Perhaps more importantly still, this strat-
egy of externally reshaping the attractor landscape might
also be applied pro-actively towards developing protec-
tive strategies directed at increasing the resilience of a
healthy regulatory program in anticipation of a stressor.
In addition to recapitulating the known behavior of the
HPA axis, we predicted that chronic, sustained stress
would remodel the attractor landscape. One of the newly-
available steady states is a unique attractor characterized
by chronic overexpression of cortisol and the glucocorti-
coid receptor, which could increase sensitivity to further
dysregulation of the HPA axis. Pre-emptively dampening
the expression of glucocorticoid receptor R may offer an
attractive candidate strategy for reducing the vulnerability
of civilian first-responders or military personnel in com-
bat to the stress-mediated onset of immune and endocrine
dysfunction.

Methods
System of ordinary differential equations for HPA axis
Kim et al. [7] proposed the following system of
delay differential equations to describe behavior of the
HPA axis:
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dCs
dT

=
C
∞
(O) − Cs
Tc

. (1)

dC
dT

= pcI(t)h(Cs)gc(C) − dcC. (2)

dA
dT

= pAC (
KA

KA +OR
) − dAA. (3)

dO
dT

= POA(T − Td) − doO. (4)

dR
dT

= PR (1 −
μRk2R

k2R + (OR)2
) − dRR. (5)

Where Cs, C, A, O, and R are concentrations of syn-
thesized CRH, released CRH, ACTH, CORT and the
glucocorticoid receptor R respectively. For more details
about these parameters and the governing equations see
[7]. These equations translate into the HPA regulatory
network shown graphically in Fig. 1a. Due to the complex-
ity of parameter tuning and the often-limited availabil-
ity of parameter estimates supporting ODE sets such as
these, we look to the generalized formalism introduced by
Thomas [12]. We use the latter to derive an equivalent set
of discrete equations that also capture HPA behavior but
drawmainly on the connectivity of the regulatory network
and require only minimal parameter support.

Discrete generalized formalism
In order to facilitate the analysis of discrete networks,
we borrow the notation of piecewise linear differential
equations from Snousi et al. [55]:

dxi
dT

= ki∅ +∑ kijSαij(xj, θij) − kixi. (6)

Where xi is the state of variable i in the network, ki∅ is
an independent term representing the basal value of each
variable (biologically we assume that there might always
exist a basal concentration of species i), αij ∈ {+,−} is the
interaction sign (activation, inhibition respectively) from j
to i, θij is the threshold above which the interaction from
node j to i is active, Sαij(xj, θij) is a binary function com-
puting whether the state of node j is above the activation
threshold for this interaction, and finally ki > 0 is a decay
term for state variable i.

Sαij(xj, θij) = 1↔ {
αij = + ∧ (xj ≥ θij),
αij = − ∧ (xj < θij).

(7)

Using this notation, the regulatory network might be
formulated as a signed, weighted and directed graph with
N vertices and E edges; where an edge (j, i,αij, θij) states
that the change in the expression level of variable xi
depends on the concentration of xj (i.e. when kij ≠ 0) if it is
above the threshold θij. The steady state x0i of this equation
is the solution when xiT = 0. Therefore,

x0i =
1
ki
[ki∅ +∑ kijSαij(xj, θij)]. (8)

Applying a simple discretization operator results in,

D(x0i ) = D(ki∅
ki
) +D(∑

kij
ki
Sαij(xj, θij)) . (9)

If we denote the ratio of synthesis to decay kinetics with
K =

ki{∅,ij}
ki , we will have,

D(x0i ) = D(Ki∅) +D(∑KijSαij(xj, θij)). (10)

Consequently, the logical K parameters in the general
formalism simply are the ratios of the synthesis to decay
kinetics. After deriving the fundamentals of discrete for-
malism, we are ready to introduce an image function that
is a discrete approximation of Hill-type ODEs. It can be
shown that Eq. 10 might be written as Eq. 11 and solved
iteratively (see [56] for more details),

yi= ∑
I⊆q(i)

Ki.I

⎡
⎢
⎢
⎢
⎢
⎣
∏
j∈I

Suij(xj,wij) ∏
j∈q(i)/I

(1 − Suij(xj,wij))

⎤
⎥
⎥
⎥
⎥
⎦

.(11)

Where q(i) is the in-degree set of component i. Y =
[y1,⋯, yN] is called the image vector of graph G with N
components given its current state vector X = [x1,⋯, xN ].
The image function simply states that when there is no
active interaction modulating xi, the image is equal to its
basal value Ki∅ = D(ki∅) and when more than one inter-
action is applied concurrently, the image is equal to their
joint logical parameter (e.g.K1.12 = D(k11+k12)when both
variable 1 and 2 are modulating variable 1). According
to Eq. 11, the corresponding discrete approximate ODE
model of the HPA axis (see Eqs. 2 – 5) can be expressed in
a generalized discrete form (See Additional file 6 for the
derivation of these equations).
We apply the updating scheme described in the next

section to the image function in order to simulate the
evolution in time of the discrete HPA axis network. This
consists of establishing a protocol for scheduling the tran-
sition of each state variable (e.g. network node) towards
the target state computed by its corresponding image
function. These state transitions towards the next target
state can be scheduled to occur in synchrony or accord-
ing to a physiologically plausible sequence based on an
assigned priority. Thomas et al. [12] was one of the first
researchers to suggest that since cells/genes do not nec-
essarily change their transcription level simultaneously, a
complete stochastic and asynchronous update might be
used. However numerous examples exist, including deter-
mination of cell fate, showing a balance between order and
stochasticity in biology [57]. Accordingly, in this work, we
compare three different types of state transition schemes;
fully synchronous, asynchronous and a hybrid approach
based on assignment to a priority class with a memory of
previous states.
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Update schemes
In this section, we briefly introduce the update schemes
employed in this study. First, we define a tendency func-
tion for the network as;

f (xi)t =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xi + 1, if xi < yi,
xi, if xi = yi,
xi − 1, if xi > yi.

(12)

Where F(x)t = (f1(x), f2(x),⋯, fn(v)) defines tendency
of the network at time t. The tendency function deter-
mines the gradient of change in the concentration of entity
i at time point t. This set of rules simply state that if the
image function yi of a variable is less (more) than its cur-
rent state (xi), its successor tendency state (f (xi)t) is a
single step decreased (increased). This definition is simi-
lar to Chaouiya et al. [56] and it ensures that a stepwise
increase or decrease through each sequential intermediate
state is enforced.

Fully synchronous update
One of the most common updating schemes is fully syn-
chronous update of all state variable nodes. Under syn-
chronous update, the successor of a state for a variable is
computed based on the simultaneous update of all vari-
ables in the network. Therefore, the transition function is
simply defined by taking the conjunction between all of
the variables,

Ti (F(x)t,xt+1) = (xt+1i ↔ f (xi)t) . (13)

TSyn (F(x)t,xt+1) =
N
⋀
i=1

Ti (F(x)t,xt+1) . (14)

Fully asynchronous update
A fully asynchronous update allows only a single variable
at a time in the network to be updated to its successor
state. As a result, a given state might have more than one
possible successor state [22]. Since only one node changes
its expression level at a time, we need to enforce,

Ti (F(x)t,xt+1) = (xt+1i ↔ f (xi)t) ∧⋀
j≠i
(xt+1j ↔ xj) . (15)

TAsy (F(x)t,xt+1) =
N
⋁
i=1

Ti (F(x)t,xt+1) . (16)

Note that taking the disjunction among the nodes
assigns a uniform probability of change to each node
and causes stochasticity contrary to the synchronous case
which is deterministic.

Priority class withmemory
Synchronous update has been criticized [12, 58] for its
oversimplification of biology, since cell abundance or gene
expression do not rigidly change in exact unison accord-
ing to a master clock. On the other hand, it has been

argued [58, 59] that asynchronous update is excessively
random and it might be an exaggeration of the biologi-
cal noise. Therefore, in this study, we introduce a strategy
based on assignment to a priority class with longitudi-
nal memory where each class (e.g. variable) is associated
with a delay counter and a memory. This update scheme
shares a few criteria with asynchronous update but its
transition function is slightly different. The criteria for this
update are:

• Only one variable may make a transition at each
iteration (see Eq. 15)

• The variable with minimum residual memory is
updated first; The memory variable for entity i (mxi )
is initialized as a default non-zero positive integer di
and updated based on the rules below:

F1ci = (y
t−1
i ⊕ yi) . (17)

F2ci = (x
t−1
i ↔ xi) . (18)

mxi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min(di,mxi + 1) if F1ci ∧ F2ci ,
max(1,mxi − 1) if ¬F1ci ∧ F2ci ,
di if¬F2ci .

(19)

Note that xi, yi, xt−1i and yt−1i denote current state,
image, previous state and image respectively. F1ci flag
is true if the current and previous image functions for
node i are in agreement (either both are a command
to increase or decrease in expression). F2ci is true if
the state of entity i, xi does not change its expression
in a transition from iteration t − 1 to t. Finally, a flag
function is computed to check whether residual
memorymxi is the minimum in the network:

F3ci =
⎛

⎝
⋀
j≠i

mxi ≤ mxj
⎞

⎠
. (20)

F3ci is false if there exists at least one variable xj that
has a residual memory smaller thanmxi . The
transition for xi is then defined as,

Ti (F(x)t,xt+1)

= F3ci ∧ (x
t+1
i ↔ f (xi)t) ∧⋀

j≠i
(xt+1j ↔ xj).

(21)

Tpri (F(x)t,xt+1) =
N
⋁
i=1

Ti (F(x)t,xt+1) . (22)

Priority class with memory is an extension of the basic
priority class scheme employed by Fauré et al. [59] that
supports transitions across the various timescales that
govern HPA axis dynamics and where more sophisticated
delayeddifferential equationmodels would typically be needed.
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Interactive parameter tuning algorithm
Thomas [43, 44] was the first to study the cyclic attrac-
tors in terms of qualitative models. The author referred
to these cyclic attractors as singular states and to station-
ary point or node steady states as regular attractors. The
singular states correspond directly to feedback loops in
the regulatory graph. Specifically, the cyclic attractors are
associated with the elementary circuits, i.e. closed loop
feedback circuits, that have negative parity in the regula-
tory networks. Snoussi [55] derived a set of in-equalities
in order to better describe singular steady states. Sin-
gular steady states are also studied as trap-spaces in
[60, 61]. Inspired from the same ideas, we have devel-
oped an algorithm that ensures multi-stability and exis-
tence of cyclic attractors. For a detailed overview and
derivation of our proposed method see Additional file 1.
Our approach is able to find a set of logical values that

guarantee the existence of cyclic steady states(see Fig. 6 for
the work-flow).

Identification of attractors
In order to traverse the State Transition Graph (STG) (e.g.
Fig. 1b) associated with a regulatory network, we employ
a variant of Tarjan’s algorithm [24] in order to search
for both regular (stationary point) and singular (cyclic)
attractors (see Additional file 7 for more details).

Stochasticity analysis
Biological functions are mainly grouped into: barely, mod-
erately and highly stochastic. Examples of such functions
are Ribosome (barely stochastic), Transcription (moder-
ately stochastic) and Scaffolding complexes (completely
stochastic). Stochasticity is modeled similar to Chemical
Master Equation (CME) approach [62] where departure

Fig. 6 Algorithm Outline. Diagram describing the procedural logic linking the different algorithmic unit steps involved in the parameter estimation
of activation threshold values θ and contextual logic weights K used in computing the state transition image for the system
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of an entity from its prescribed order of instantiation
depends on the activity of other nodes in that instant
of time. This biologically inspired criteria helps mod-
eling robustness naturally [34]. We extend these ideas
from binary simulations to multivalued regulatory models
where entities have higher degrees of freedom.

Stochasticity in functions
As mentioned earlier the levels of stochasticity is dif-
ferent depending on the entities and functions being
modeled. Therefore, a probability of fault in function (ε)
is introduced that determines the confidence on occur-
rence of a biological function. A biological function might
behave stochastically only when it is dynamically active
and receives signals from other entities. For instance, a
gene might change its expression only when it receives
a signal to do so and there is a chance of fault in this
purpose. Therefore, among all the entities in the model
only those nodes that are receiving signal might exhibit a
faulty behavior. Then, a Boolean vector B = {β1,⋯,βv}
with cardinality equal to the number of variables in the
model is defined that determines whether at time point t
there is at least one active interaction on node v.

βv = 1↔ {w ∈ V ∣(w, v) ∈ E ∧ (xw ≥ θvw)} ∶≠ ∅ (23)

Then among non-zero bits of B only one is selected with a
uniform probability of:

P(βv∣βv = 1) = 1
⟦{βv ∈ B∣ βv = 1}⟧

(24)

Where ⟦.⟧ is the cardinality. Then a constant probability
of error ε is used for which the selected entity βv might
disobey its expected image function order. Note that this
is a single fault model and that is why only one fault at a
time is allowed in the simulations. Finally, the probability
that the image function associated with βv has a fault (e.g.
P(βv = 1)) is :

P(βv = 1) = βv.ε (25)

The faulty tendency function is defined as;

̂f (xv)
t
=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

xv, if (xv < yv) ∨ (xv > yv),
xv + 1, if xv = 0,
xv − 1, if xv = ρv,
(xv − 1) ∨ (xv + 1), if (xv = yv) ∧ (xv ≠ {0,ρv}).

(26)

Where ρv is the max expression level of node v (com-
pare this to Eq. 12). In order to extend the analysis into
a discrete stochastic simulation, first the basins of attrac-
tions corresponding to each attractor (basinssi ∈ SS) are
computed under ε = 0 probability of fault. This is sim-
ply the set of all backward reachable sets to each attractor
building a destination map for each node in STG. Then,
a probability of fault ε > 0 is introduced and for each
member of the STG a set of monte carlo simulations

are performed for a high number of times (e.g. 1000).
The number of times that a state s belonging to basin of
attractor i is mapped to attractor ssj is then computed.
Therefore, a transition matrix for the attractors of the
model are formed as:

πij = P(s ∈ basinssi ∣s ∈ basinssj). (27)

Using a time homogenousMarkov Chain (MC), one can
predict the transition probability of attractors, given the
initial state as;

Pss(t + 1) =∏Pss(t) (28)

Where ∏ is the transition matrix and Pss(t) the transi-
tion distribution at time point t.
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