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Abstract

Background: Adenocarcinoma in situ (AIS) is a pre-invasive lesion in the lung and a subtype of lung adenocarcinoma.
The patients with AIS can be cured by resecting the lesion completely. In contrast, the patients with invasive lung
adenocarcinoma have very poor 5-year survival rate. AIS can develop into invasive lung adenocarcinoma. The
investigation and comparison of AIS and invasive lung adenocarcinoma at the genomic level can deepen our
understanding of the mechanisms underlying lung cancer development.

Results: In this study, we identified 61 lung adenocarcinoma (LUAD) invasive-specific differentially expressed genes,
including nine long non-coding RNAs (lncRNAs) based on RNA sequencing techniques (RNA-seq) data from normal,
AIS, and invasive tissue samples. These genes displayed concordant differential expression (DE) patterns in the
independent stage III LUAD tissues obtained from The Cancer Genome Atlas (TCGA) RNA-seq dataset. For individual
invasive-specific genes, we constructed subnetworks using the Genetic Algorithm (GA) based on protein-protein
interactions, protein-DNA interactions and lncRNA regulations. A total of 19 core subnetworks that consisted of
invasive-specific genes and at least one putative lung cancer driver gene were identified by our study. Functional
analysis of the core subnetworks revealed their enrichment in known pathways and biological progresses responsible
for tumor growth and invasion, including the VEGF signaling pathway and the negative regulation of cell growth.

Conclusions: Our comparison analysis of invasive cases, normal and AIS uncovered critical genes that involved in the
LUAD invasion progression. Furthermore, the GA-based network method revealed gene clusters that may function in
the pathways contributing to tumor invasion. The interactions between differentially expressed genes and putative
driver genes identified through the network analysis can offer new targets for preventing the cancer invasion and
potentially increase the survival rate for cancer patients.

Background
Lung Adenocarcinoma in situ, is a pre-invasive
non-small-cell lung cancer (NSCLC) lesion. The early di-
agnosed and appropriately treated AIS patients often have
quite high survival rate (almost 100%) [1]. A fraction of
AIS can develop into invasive cancer. The 5-year survival
rate for the invasive lung cancer is decreased to 4% on
average [2]. Presently, about 70% of the lung cancer cases
are diagnosed at the invasive stage [3]. Several studies have
investigated the progression of the lung cancer invasion
[4, 5]. For example, Min et al. followed a case of lung can-
cer that evolved from a pure ground-glass opacity nodule

into an invasive adenocarcinoma for 10 years and studied
the growth and aggressiveness of the lung cancer [6]. An-
other study indicated that the protein transforming
growth factor-ß (TGF-ß) induces epithelial-mesenchymal
transition (EMT) in lung cancer cells and further mediates
the tumor migration and invasion [7]. A recent study in-
vestigated RNA sequencing (RNA-seq) data generated
from AIS and invasive lung cancer tissue samples and
identified several genes that potentially involved in the
progression from AIS to invasion [1]. However, the regula-
tions of the genes and the underlying molecular mecha-
nisms that govern the invasion progression are not well
characterized.
We developed a Genetic Algorithm based method to

infer lung cancer invasion-related gene networks. We first
identified a set of genes that were differentially expressed
in invasive lung adenocarcinoma by comparing gene
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expression alterations in normal, AIS, and invasive tumor
tissues based on a RNA-seq dataset [1]. We found that
these genes showed consistent expression patterns in a
LUAD dataset from The Cancer Genome Atlas. Then, we
employed a global optimal search algorithm to construct
subnetworks for each invasive differentially expressed
gene by integrating gene expression, protein-protein inter-
actions (PPIs), protein-DNA interactions and lncRNA reg-
ulations. Further incorporation of driver mutation
information, we revealed 19 core subnetworks that con-
tained invasive specific genes and putative driver genes.
These subnetworks can lead us to the discovery of new
pathways responsible for invasive tumor progression.

Results
Identification of invasive specifc genes
The RNA sequencing data of normal, AIS, and invasive
tissue sampes for six lung cancer patients were collected
from Gene Expression Omnibus (GSE52248) [1]. Differen-
tial expression analysis revealed diverse gene expression
change patterns. We found that 98 genes were signifi-
cantly differentially expressed between AIS and invasive
(|FC| > 2 and FDR < 0.05). Among these genes, 61 were
also differentially expressed in normal and invasive com-
parison (|FC| > 2 and FDR < 0.05). Hence, we considered
these 61 genes to be lung invasive-specific differentially
expressed genes (DEGs), which consisted of 52
protein-coding genes and 9 lncRNAs (Additional file 1:
Table S1). The expressions of the invasive-specific genes
are able to separate the 18 tissue types with different phe-
notypes by hierarchical clustering (Additional file 2: Figure
S1), only one invasive tissue sample was misclustered.
This sample was clustered together with an AIS sample
from the same patient. This misclustered case might be
related with the sample collection. We further validated
these invasive-specific genes on an independent RNA-seq
data for 59 normal and 84 stage III lung adenocarcin-
oma (LUAD) tissue samples obtained from the TCGA
project. The hierarchical clustering based on the ex-
pression levels of invasive specific genes demonstrated
two unique tissue clusters, normal and stage III
LUAD, and only 5 of 143 (3.5%) tissue samples were
mis-clustered (Additional file 3: Figure S2).
Of the 61 invasive-specific genes, 16 were upregulated

and 45 were downregulated in the invasive tissues com-
pared to their expression levels in normal and AIS tis-
sues (Fig. 1). Similar regulation patterns were observed
in normal vs. stage III LUAD (TCGA) comparison with
a few exceptions. In the TCGA samples, TRIM9 and
CYP4F3 were expressed in the opposite manner, and the
other two protein-coding genes and four lncRNAs were
not differentially expressed (Fig. 1). The functional
annotation by DAVID [8] of the upregulated and
downregulated gene sets revealed several cancer

related biological processes. The inflammatory re-
sponse (P-value = 0.054, downregulated genes) and
negative regulation of cell growth (P-value = 0.063 up-
regulated genes) were enriched, indicating their roles
in invasive cancer development (Additional file 4:
Table S2).

Putative driver somatic mutations
The somatic mutations were identified using MuTect2
(Table 1, Methods) based on paired RNA-seq data (nor-
mal and AIS, normal and invasive). We found a total of
271,064 and 273,292 significant somatic mutations in
AIS and invasive lung tissues respectively. Then we
employed Cancer-specific High-throughput Annotation
of Somatic Mutations (CHASM) to predict driver mu-
tations [9]. Our results showed that 362 of the 6445
mutated genes in AIS tissues reported as driver genes,
while 411 of the 6509 mutated genes in invasive tissues
were identified as drivers (CHAMS score > 0.8 and
P-value < 0.05, Methods).
Meanwhile, the somatic mutation data of stage III

TCGA lung adenocarcinoma were collected. Stage III tu-
mors usually have increased size, extent, or degree of
penetration, but no distant metastasis [10]. We found
201 significant putative LUAD driver genes based on
TCGA stage III cases (CHASM score > = 0.8 & P-value
< 0.05). There was a total of twenty-seven common pu-
tative driver genes between the TCGA stage III dataset
and AIS lung cancer dataset. The two patient datasets
were independent. The relative low concordat rate
(13.4% and 6.6% of TCGA stage III and AIS datasets re-
spectively) here may attribute to the heterogeneity of the
disease. Out of these putative driver genes, 68.2% (137/
201) were consistently highly expressed (median FPKM
> 1) in both the normal and invasive samples, while only
29.9% (60/201) were differentially expressed genes.

Lung adenocarcinoma invasion associated gene
subnetworks
Next, we constructed subnetworks to explore the rela-
tionships between putative driver genes and differentially
expressed genes in the disease. Our analysis showed that
the majority invasive-specific genes had no driver muta-
tions (98.4%, 60/61), ADGRL3 (CHASM score = 0.824,
P-value = 0.0044) was the only predicted LUAD driver
gene, while most (70.1%) putative driver genes were not
differentially expressed. Hence, the subnetworks built
based on the integration of mutations and expression
profiles can connect genotype with transcription and po-
tentially reveal novel pathways in the disease. We then
adopted GA to search for the gene groups that were as-
sociated with lung cancer invasion. Based on the fitness
score, GA searches the optimal resolutions in
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generations, potentially yielding global optimum subnet-
works that discriminate tissues with different
phenotypes.
We used each invasive-specific differentially expressed

gene as a seed for the subnetwork construction. All the
genes directly or indirectly interacted with the seed

genes through PPIs and protein-DNA interactions
formed the original chromosome which is a potential so-
lution for GA (Methods). The indicators, 1 and 0 values,
indicate whether the relative gene would be collected or
not. For each generation of GA, the top 5% of the chro-
mosomes with the smallest fitness scores were kept and

Table 1 Identification of somatic mutations and putative driver genes in LUAD

AIS samples Invasive samples

Data sets Somatic mutations
(PASS)

Mutated genes Putative driver
genes

Somatic mutations
(PASS)

Mutated genes Putative driver
genes

AIS lung cancer
samples

271,064 6445 362 273,292 6509 411

TCGA stage III 58,985 (85 samples) 10,743 201

Fig. 1 Expression alterations of invasive-specific genes. The expression patterns (log2 fold change) of the invasive-specific genes identified by the
comparison between normal and invasive, AIS and invasive samples, and TCGA LUAD normal and stage III samples
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passed no the next generation. The fitness score here
was calculated based on the mutual information. The
LUAD seed genes were always kept in the gene set for
calculating the fitness scores. Compared to the greedy
algorithm, the GA search resulted in the subnetworks
that can better distinguish invasive LUAD from normal
cases. We used 500 generations in GA searching. Our
data showed that no further improvement was observed
by increasing the number (around 300) of generations
(Additional file 5: Figure S3). Among the final networks
identified by GA, some seed genes were associated with
multiple subnetworks with the same smallest fitness
score (Fig. 2). On the other hand, three seed genes had
no interacted genes, either by PPI or protein-DNA inter-
action. Presently, neither PPI nor protein-DNA inter-
action information were available for the lncRNAs.
Hence, the interactions between lncRNAs and genes
were based on the results from the GENIE3 [11] for the
construction of the subnetworks using lncRNAs as seed
(Methods). Furthermore, we generated a single core sub-
network that was associated with each of the seed genes
(Methods). Nineteen (31.1% of 61 seed gene) core sub-
networks that contained at least one predicted driver
gene were revealed (Additional file 6: Table S3). Two
statistical tests based on random gene members and
random tissue types (Methods) suggested that
majority core networks were statistically significant
(Additional file 7: Figure S4).
AGER, an invasive-specific gene, is associated with in-

flammatory response. Inflammation is an important

factor of cancer development including lung cancer. The
core subnetwork of AGER that consisted of 30 genes
with two predicted driver genes and two transcription
factors was constructed (Fig. 3). The functional analysis
of this subnetwork using DAVID identified several
cancer-related KEGG pathways. The top enriched path-
way was the VEGF signaling pathway (P-value = 1.4E-6
and adjust P-value = 1.8E-4). The VEGF pathway has
been reported to regulate tumor angiogenesis and drive
the renal cell carcinoma progression [12, 13]. KRAS was
a putative lung cancer driver gene. This gene interacted
with MAPK3 and indirectly interacted with PTGS2,
RAC1, and AGER in the core subnetwork (Fig. 3). In the
VEGF signaling pathway [14], KRAS locates at the up-
stream of MAPK3 and they are both involved in the
function of cell proliferation (Additional file 8: Figure
S5). Thus, these invasive-specific based subnetworks
(Additional file 9: Figure S6) can lead to identifying
novel pathways involving in cancer invasive process.
HNF4A was another invasive-specific gene suggested

by our study. This gene is one of the best-known tumor
suppressors in liver and pancreas [15] and is related to
the negative regulation of cell growth, a biologic process
contributing to the tumor development and growth [16].
The core subnetwork associated with HNF4A (Fig. 4)
showed its interaction with PDGFRA, a gene encode a
cell surface tyrosine kinase receptor for members in the
platelet-derived growth factor family [17]. HNF4A plays
a role in organ development, wound healing, and tumor
progression. Overexpression of this gene potentially pro-
motes tumor progression and indicates poor prognosis
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Fig. 2 The distribution of the number of the subnetworks associated
with each of the LUAD invasion seed genes

Fig. 3 The core subnetwork of the seed gene AGER. AGER was under-
expressed in invasive tumor cases. KRAS and PIK3CA were driver genes
(yellow and square) predicted by CHASM. SP4 and HIF1A were lung
cancer specific transcription factors (orange) which regulated the
expression of AGER
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[18]. PDGFRA harbored somatic mutations and was pre-
dicted as a driver gene in lung invasive cancer. Thus, ab-
normal expression of HNF4A in the disease could be the
consequence of the mutations in PDGFRA.

Discussion
The investigation of the process of the lung cancer de-
veloping from an unfatal subtype, such as AIS, to the in-
vasive stage provided the insights for understanding the
mechanisms responsible for deterioration of the disease.
We combined the two independent datasets to infer in-
vasive specific subnetworks. The gene expression alter-
ation patterns tend to be more robust than somatic
mutations in different patient groups. Almost 98% DEGs
were the same in GSE52248 and TCGA LUAD patients.
However, the putative somatic driver genes only have
about the 13.4% overlap rate, reflecting the high genetic
heterogeneity for the disease. Two genes, TRIM9 and
CYP4F3, have opposite expression patterns between the
two datasets which may be explained by the diverse iso-
form expression patterns such as HNF4A. Karthikeyani
Chellappa, et al. found that the diverse isoforms of
HNF4A, especially P2-HNF4α, showed different expres-
sion patterns in various tissue samples [19]. As a tumor
suppressor, HNF4A is usually downregulated in tumor
samples. Interestingly, this gene was over-expressed in
lung invasive tumor samples than normal of both
GSE52248 and TCGA data.
The size of the chromosome of GA affects the optimal

solution that the algorithm is able to find. Here, the size
of the chromosome equals to the number of the candi-
date genes which directly or indirectly interact with the
seed genes. The maximum searching distance from the

seed gene was three for our subnetworks construction.
At the outermost layer of the subnetworks, the total
number of candidate genes often reached 18,000, which
covered the majority human protein-coding genes (~
23,000). Compared to the greedy algorithm, GA can
identify global optimum subnetworks associated with
the disease. The fitness function is an important factor
for GA searching. Here, we used mutual information to
calculate fitness score, which was estimated using
discrete expression bins derived from continuous ex-
pression values. When the sample size is small, the num-
ber of final subnetworks can rapidly increase with less
stability. Thus, for a small sample size, GA-based net-
work construction may need a different fitness function
guiding the searching process. In general, we found that
a larger sample size could lead to more stable optimal
gene groups.

Conclusions
We developed a novel GA-based network construction
method for inferring gene subnetworks associated with
invasive lung adenocarcinoma. The method integrated
gene expression, PPI, transcription factor and gene inter-
action, and lncRNA regulation to uncover global optimal
subnetworks underlying invasive progression. The two
independent patient datasets were used to derive
invasive-specific differentially expressed genes. The 19
core subnetworks associated with invasive-specific genes
contained at least one putative driver genes and were
significantly enriched in several biological processes and
pathways involved in tumor growth. These results could
enhance our understanding of cancer progression, which
helps to develop stategies for preventing the cancer inva-
sion and improving the survival of cancer patients.

Methods
Identification of differentially expressed genes (DEGs)
RNA-seq data (GSE52248) generated from normal, AIS,
and invasive tissues of six patients were downloaded
from GEO. The sequencing quality was assessed by
FastQC. The low-quality reads were trimmed by Trim-
momatic (v0.36, LEADING:28 TRAILING:28 SLIDING-
WINDOW:4:24 MINLEN:70) [20]. Tophat2 (v2.1.0) was
applied for reads alignment and human genome hg38
was used as a reference genome for the alignment [21].
HTSeq-count (v0.8) [22] and Cufflinks (v2.2.1) [23] were
performed for calculating the raw read-count and Frag-
ments Per Kilobase of transcript per Million (FPKM), re-
spectively, based on the gene annotation of Ensembl
version GRCh38.87. After filitering out the unexpressed
genes with median raw count equal to zero, edgeR [24]
was used for differential expression analysis. The genes
have the absolute fold-change greater than 2 with FDR <

Fig. 4 The core subnetwork of the seed gene HNF4A. The gene HNF4A
is a lung adenocarcinoma related transcription factor (TF). PDGFRA was
predicted as a lung cancer driver gene
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0.05 were considered as significantly differentially
expressed between different tissue types.

Putative driver mutation identification
The paired RNA-seq reads of GSE52248 for normal vs
AIS, normal vs invasive lung tissues samples were passed
to MuTect2 [25]. The normal samples were used as con-
trols in the comparisons to obtain somatic mutations.
We further collected the mutation profiles (VCF format)
of 84 stage III lung adenocarcinoma cases from TCGA
as comparable invasive tumor samples. After the PASS
filtering of MuTect2, the resulting somatic mutations
were fed into CHASM-5.2 [9], an online tool that calcu-
lates the mutation scores and then reports the putative
driver genes. The lung adenocarcinoma was used as the
disease type for prediction. The somatic mutations with
score > 0.8 and P-value < 0.05 were predicted as putative
driver mutations. The CHASM score ranged from 0
(likely passenger) to 1 (likely driver). The P-value is an
empirical value representing probability that a passenger
mutation is misclassified as a driver.

Global subnetworks construction by GA
For each seed gene, the genes that interacted directly or
indirectly with it through protein-DNA (TF and target
genes) interactions and PPIs were considered as the can-
didate genes of the network. The maximum radius of
the network from the seed gene was set as three. The
unexpressed genes (median FPKM < 1) were removed
from the candidate gene sets. The non-redundant PPIs
were collected from five databases: intAct, MINT, Bio-
Grid, DIP, and Reactome [26–30]. The lung cancer spe-
cific transcription factor and target gene pairs were
downloaded from Regulatory Circuits [31]. GENIE3 [11]
was applied to infer the target genes of the lncRNAs.
GENIE3 adopts Random Forest to predict the regulatory
relationships between genes according to the expression
levels. The top 200 target genes that were potentially
regulated by the lncRNAs were selected for network
construction.
The R package genalg [32] was used for performing

the GA analysis. We used the binary GA (0 represents
the correspond gene is unselected, whereas 1 means the
genes is selected) to search the optimum subnetwork
member genes. The length of the chromosome is equal
to the number of the candidate subnetwork genes for
each seed. The mutation rate was set as 5%, and the ar-
gument zeroToOneRate of the genalg was 19 for con-
trolling the gene selection. A larger zeroToOneRate
value results in a smaller number of genes remained in
each generation. To find the core subnetwork, the sub-
networks that did not contain any of putative driver
genes were removed first. Then, we calculated the fre-
quency of each gene in the remaining subnetworks and

filtered out the genes with low frequency. Here, the cut-
off frequency was set as 50%. We further conducted two
statistical tests to evaluate the significance of subnet-
works compared to genomic background. We con-
structed two null distributions of fitness scores through
permutation of the sample labels and randomly selected
network members, respectively, for 1000 times. Then,
we calculated the corresponding P-values for each core
networks to assess its significance.
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