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Abstract

Background: Single-cell RNA sequencing (scRNA-seq) technology provides an effective way to study cell
heterogeneity. However, due to the low capture efficiency and stochastic gene expression, scRNA-seq data often
contains a high percentage of missing values. It has been showed that the missing rate can reach approximately
30% even after noise reduction. To accurately recover missing values in scRNA-seq data, we need to know where
the missing data is; how much data is missing; and what are the values of these data.

Methods: To solve these three problems, we propose a novel model with a hybrid machine learning method,
namely, missing imputation for single-cell RNA-seq (MISC). To solve the first problem, we transformed it to a binary
classification problem on the RNA-seq expression matrix. Then, for the second problem, we searched for the
intersection of the classification results, zero-inflated model and false negative model results. Finally, we used the
regression model to recover the data in the missing elements.

Results: We compared the raw data without imputation, the mean-smooth neighbor cell trajectory, MISC on
chronic myeloid leukemia data (CML), the primary somatosensory cortex and the hippocampal CA1 region of
mouse brain cells. On the CML data, MISC discovered a trajectory branch from the CP-CML to the BC-CML, which
provides direct evidence of evolution from CP to BC stem cells. On the mouse brain data, MISC clearly divides the
pyramidal CA1 into different branches, and it is direct evidence of pyramidal CA1 in the subpopulations. In the
meantime, with MISC, the oligodendrocyte cells became an independent group with an apparent boundary.

Conclusions: Our results showed that the MISC model improved the cell type classification and could be
instrumental to study cellular heterogeneity. Overall, MISC is a robust missing data imputation model for single-cell
RNA-seq data.
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Background
Single cell genomic analysis has made it possible to
understand cellular heterogeneity [1]. Advances in single
cell genomics research have also provided unprece-
dented opportunities in biomedical research where it is
important to identify different cell types pertinent to
aging and cellular malignancy. Currently, completely
eliminating cancer using molecularly targeted therapies
is still a distant goal for many types of malignancy. Thus,

investigating rare cancer stem cells that are resistant to
therapy and studying intratumoral heterogeneity with
differential drug responses in distinct cell subpopulations
provides a basis for approaching this goal [2]. Over the
past 5 years, single cell studies that aimed at the scale
and precision of the genome-wide profiling of DNA [3],
RNA [4], protein [5], epigenetics [6], chromatin accessi-
bility [7], and other molecular events [8] have reached
tens of thousands of cells for massively parallel
single-cell RNA sequencing [9] and millions of cells for
mass cytometry signature protein measurements [10].
Newer and better methods for conducting single cell
analyses can capture cell population heterogeneity, in-
cluding cancer’s heterogeneous nature, and facilitate the
discovery of the underlying molecular mechanisms.
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Although single-cell RNA sequencing (scRNA-seq)
data analysis provides us an opportunity to study the
heterogeneity of cells and the genes that are differen-
tially expressed across biological conditions, it is a
challenging process to perform the analysis. With the
fast-increase in scRNA-seq data, computational
methods need to overcome challenges ranging from
handling technical noise to constructing and charac-
terizing cell identities, and to cell lineage analysis
through computing high-dimensional sparse matrixes.
Therefore, innovative, efficient, robust, and scalable
computational analysis methods are essential to this
new frontier.
Currently, the main obstacle in scRNA-seq data ana-

lysis, stems from low capture efficiency and stochastic
gene expression, which increases gene dropout events in
genome-wide scRNA-seq data. We designate these drop-
out events as the missing data events of single-cell data.
Previous studies indicate that the overall missing rates
are consistently high in some single-cell data. For ex-
ample, in a mouse embryo cell, the missing rate can
reach nearly 30%, even after noise reduction [11] With a
high fraction of missing data, direct deletion of the miss-
ing data can result in a loss of valuable information [12].
To yield better separation of different cell types and re-
veal new biologically meaningful subpopulations, several
publications have reported the missing data as censored
data and false negative error [13–15]. All these method-
ologies assume the distribution of the missing data; how-
ever, deriving adequate probability distributions is a
difficult problem [12]. In 2016, Regev et al. noted that
missing data (false negatives), false positives, and data
sparsity can strongly affect the estimates of cell hetero-
geneity, thus new methods as well as the effectively
adaption of existing algorithms are required [1]. Add-
itionally, traditional missing data imputation, such as
user-based and item-based joint filtering, often assumes
that the missing positions are already known in the
matrix [16]. Nevertheless, there are still key questions
about scRNA-seq expression matrices that need to be
addressed. Without the missing position information,
the aforementioned data imputation methods cannot be
utilized.
To solve the key problems in missing value imput-

ation, we proposed a novel model with a data-driven
machine learning method, namely, missing imputation
on single-cell RNA-seq (MISC). The MISC was designed
to address three problems: where the missing data is?;
how many pieces of data are missing?; and what their
values are?. Its initiation involves modeling the problem
to transform the missing data imputation into two ma-
chine learning problems for detection and imputation of
the missing data events. Then, we proposed a model
based on classification and regression methods to solve

the aforementioned problems. Finally, we evaluated the
missing imputation method on two real datasets for
studies of differentiating cells and cell - type detection.

Methods
There are four modules (data acquisition, problem mod-
eling, machine learning approach and downstream valid-
ation) in our scRNA-seq missing data discovery
flowchart (Fig. 1). First, the scRNA-seq genome-wide
data are collected. In our experiments, we collected
datasets from stem cells of chronic myeloid leukemia [2]
from mouse brain cortex and the hippocampus [17], re-
spectively. Then, using problem modeling and machine
learning approaches, the RNA-seq expression of the
missing data can be detected and recovered. For the first
problem, where data is missing, we transformed this
problem into a binary classification on the RNA-seq ex-
pression matrix in which each element represented a
sample. Then, for the second problem, how many data
points are missing, we searched for the intersection of
the classification results, between the zero-inflated
model (ZIM) and the false negative model (FNC) results.
Because the latter two models are not mainly focused on
the missing data problem (one is for the identification of
the subpopulations of cells, and the other is for the
visualization of the single-cell data), they only provide
the probability matrixes of the missing data. We selected
the top missing elements in the matrixes with a thresh-
old η. In which, η can be computed using the rate of
classification results and the counts of the test dataset.
Finally, to determine their values, we used a regression
model to impute the data in the missing elements.
In the second module, the problem modeling,

single-cell missing data was first transformed into a bin-
ary classification set. The hypothesis is: if the classifier
finds a group of richly expressed genes, whose expres-
sion values are equal to zero, than these expressions
should be non-zeros and missing values. For the differ-
ent data, the richly expressed genes can be projected on
different gene sets from other genomics data. We used
the expression values of these genes as a training set to
guide the binary classification model and detect the
missing elements in the whole RNA-seq matrix. First, to
pursue the latent patterns of the missing data, we con-
structed a training set based on the matrix transform-
ation of richly expressed genes. All the genes are split
into richly expressed gene sets and non-richly expressed
gene sets. With these two gene sets, we can construct
the richly expressed gene expression matrix as training
data and the non-richly expressed gene expression
matrix as test data. The positive set is all the gene ex-
pression values larger than zero in a single-cell RNA-seq
expression matrix and the negative set is all the values
equal to zero.
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Suppose an element x[i, j] in which X indicates the ex-
pression matrix of the richly expressed genes, 0 < i < m,
0 < j < n, where m indicates the number of genes, and n
is the number of cells. In generated training set, each
element x[i, j] is a sample and the its features j’ are j’ ≠ j,
0 < j’ < n. The missing data value yi,j of a typical gene j in
one cell i can be predicted with the gene expression
values.

Y i; j ¼ sgn F x i; j’
� �� �� �

; j’¿ j; 0 < j’ < n

where sgn(•) is the sign function, and F is the machine
learning function. Therefore, the training set s has m × n
samples, and the feature set f contains n-1 features. In
our case, we took the mouse cortex and hippocampus
data as an example for the process. The training set has
406 genes (m), 3,005 cells (n), 1,220,030 samples (m x n
= 406 × 3005) and 3,004 features. Similarly, the test set
contains t × n samples and t is the number of non-richly
expressed genes. In the example, the test set has 19,566
genes (m), 3,005 cells (n), 58,795,830 samples and 3,004
features.
In the third module, with the aforementioned problem

modeling, it can be seen that the computational complex-
ity reaches O(mn2). Considering the fast development of

the single cell experiments, which can perform up to tens
of thousands of single cells [1], we employed a large linear
classification (LLC) F to discover the missing data, which
is of much efficiency for the large data set. The method in-
volves solving the following optimization problem:

min
w

1
2
wTwþ C

Xl

i¼1

ξ w; si; yið Þ;

where s is the sample, y is the class label for the classifi-
cation and the expression value for regression, w is the
weight vector and w∈Rn, C is the penalty factor, C > 0.
We adopted two popular binary linear classifiers, named
Logistic Regression (LR) and a Support Vector Machine
(SVM) with a linear kernel. LR with L2-regularization
employs the following unconstrained optimization
function.

min
w

1
2
wTwþ C

Xl

i¼1

log 1þ e−yiw
T si

� �
:

The correspondence dual form is

Fig. 1 Flowchart of missing imputations on single-cell RNA-seq (MISC). It consists of data acquisition, problem modeling, machine learning and
downstream validation. The machine learning approach includes binary classification, ensemble learning and regression
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min
α

1
2
αTQαþ

Xl

i:ai>0

ai logai þ
X
i:ai<C

C−αið Þ log C−αið Þ;

Subject to 0≤αi≤C; i ¼ 1;…; l:

Then, the problem can be solved with a trust region
Newton method [18] or dual coordinate descent method
[19] SVM with L2-regularization on L2-loss uses the fol-
lowing unconstrained optimization function

min
w

1
2
wTwþ C

Xl

i¼1

log max 0; 1−yiw
T si

� �� �2
:

The dual form is

min
α

1
2
αTQα−eTα;Qij ¼ yiy js

T
i s j; Subject to 0≤α≤U ; i

¼ 1;…; l:

Then, the problem can be solved with a coordinate
descent algorithm [20].
To further validate the missing data and their percent-

age, we employed our linear classification model, the
zero-inflated model [14] and false-negative curves [15]
to construct an ensemble learning method. The
zero-inflated model was used as a mixture model for
read counts in which the first one is a negative binomial
(NB) and the second is a low-magnitude Poisson. For
example, given a single cell c, the reads rc were modeled
as a mixture of “drop-out” data with Poisson (λ0) and
“amplified” components with NB(e), where e is the ex-
pected expression magnitude, and the background read
frequency for dropout was λ0 = 0.1. To fit the mixture
model, a subset of genes should be selected. First, given
a subpopulation of cells, all the pairs of individual cells
(ri, rj) were analyzed with the following model.

ri � P λ0ð Þ dropout in ci
ri � NB r j

� �
r j � NB rið Þ

�
amplified

r j � P λ0ð Þ dropout in c j

8>><
>>:

;

Then, a multinomial logistic regression (the mixing
parameter m = log(ri) + log(rj)) and an expectation–
maximization algorithm was used to fit the model. The
genes that were assigned to the “amplified” components
could be noted, and the set of genes appearing in the
amplified components in at least 20% of all the compari-
sons of the same subpopulation of cells were used to fit
the model.
False-negative curves employ housekeeping genes to

fit a logistic regression function Fc(μ) whose odds quan-
tify the cell’s technical detection efficiency [1] In a given
gene, its expected expression μ* is conditioned to be de-
tected and 1- Fc(μ*) is the missing probability of this
gene in cell c.

The differences among the three methods for missing
data detection are the training set (subset of genes) and
training (fitting) method. First, all three methods need a
subset of genes to train or fit the model. From the biol-
ogy view, the false negative model and large linear classi-
fication use the richly expressed genes. However, from
the statistical view, the zero-inflated model uses a mix-
ture model of Poisson and negative binomial (NB) to se-
lect a subset of genes. Moreover, both the zero-inflated
model and false negative model employ logistic regres-
sion to fit a model for each cell RNA-seq expression
value. The large linear classification uses a linear model
instead of a logistic function, which is efficient for big
data. Therefore, all three methods try to detect the miss-
ing data from different views, which satisfied the
heterogenous rule of ensemble learning.
After obtaining the ensemble learning and obtaining

the missing positions in the RNA-seq expression matrix,
we employed a linear regression model to recover the
missing values. In our experiments, we employed the
support vector regression (SVR) model with a linear ker-
nel. The training set is the same as the classification
task; however, the label of the training samples using
normalized RNA-seq expression values, such as reads
per kilobase per million (RPKM). For the regression
optimization function, we employed three L2-regularized
methods, which are the dual problem solutions of
L1-loss support vector regression, the primal problem
solution and the dual problem solution of the L2-loss
support vector regression. The L2-regularized SVR is
modeled using the following optimization problems:

min
w

1
2
wTwþ C

Xl

i¼1

log max 0; jyi‐wTxij−ε
� �� �p

;

where p = 1 indicates the L1 loss and p = 2 is the L2
loss, and ε ≥ 0 is the sensitiveness of the loss. The dual
forms of the problem are:

min
αþ;α−

1
2
αþa−½ � Q0 −Q

−Q Q0

	 

αþ

α−

	 

−yT αþ−a−ð Þ þ εeT αþ þ a−ð Þ

where e is the vector of all ones, Q’ =Q +D, Qij = xi
Txj, D

is the diagonal matrix and p = 1, Dii = 0; p = 2, Dii = 1/2C;
0 ≤ αi

+,αi
+ ≤U, i = 1,…,l, U=C when p = 1; U =∞, and

when p = 2. We use LIBLINEAR tool to solve this prob-
lem [20].
In addition, based on the classification results (which

show the missing positions in RNA-seq expression
matrix), a mean-smooth curve with the neighbor cell
method on the cell trajectories is also proposed to make
a comparison with the MISC. This method recovers the
missing values with the expressions of the γ of the previ-
ous and following cells (γ = 3 in our experiments).
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For the fourth module, we employed the trajectory
analysis and subpopulation analysis to directly show the
effectiveness of our MISC method.
Two real scRNA-seq datasets were used to verify the ef-

fectiveness of our model. One is chronic myeloid leukemia
(CML) data (Gene Expression Omnibus: GSE76312) [2]. It
is used to reveal the heterogeneity of CML stem cells and
the identification of subclasses of CML stem cells. It in-
cludes five types of stem cells from either patients or nor-
mal donors, which are analyzed at different stages of the
disease. The other one is the genome-wide single-cell
RNA-seq data of the primary somatosensory cortex and
the hippocampal CA1 region of mouse brain cells in [17]
(Gene Expression Omnibus: GSE60361). It includes 3,005
single cell transcriptomes (19,972 genes) and each RNA
molecule was counted using a unique molecular identifier
(UMIs) (essentially tags that identify individual molecules)
and confirmed by single-molecule RNA fluorescence in
situ hybridization (FISH).

Results
The CML data includes 2,287 stem cells throughout the
disease course and 23,384 genes. To analyze the hetero-
geneity of the stem cells from normal HSCs, we selected
1,102 stem cells without tyrosine kinase inhibitor treat-
ments. Then, the t-SNE analysis of these samples was
performed using the top 234 differentially expressed
genes with a false-discovery rate (FDR) cutoff of 0.05
and an absolute log fold change cutoff of 1. The training
dataset of our MISC machine learning model is based
on the richly expressed gene set, which employs human
housekeeping genes from reference [21] for CML stem
cell data. It contained 38 genes, 1,102 stem cells, and
41,876 samples. The corresponding test dataset includes
196 genes, 1,102 stem cells and 215,992 samples. For the
large linear classifiers, we used 5-fold cross validation on
the training set and achieved a classification accuracy of
0.80. Finally, for the two L2-regularization based LLCs,
we selected an L2-loss support vector machine (with
parameter C = 2) due to better accuracy. The missing
rate threshold η = 0.35 for the false negative curve (the
raw reads count data is not provided, therefore, we only
use FNC method to determine the intersection). The
final missing rate of CML data (the overlap of the miss-
ing data sets between MISC and FNC method) is 13.6%.
After several parameter selection experiments, we se-
lected L2-loss support vector regression with primal
problem solution (parameter C = 0.125) due to its lowest
mean-square error among the three regression methods.
For single-cell trajectory analysis, five different types of

stem cell chronic-phase CMLs (CP-CML), normal
hematopoietic stem cells (HSCs), pre-BC samples taken
from the patients who were presented in CP (pre-BC)
12 months and 3 months before transformation to

myeloid and lymphoid blast crisis (BC), blast crisis CML
(BC-CML), K562 human erythroleukemic cell lines de-
rived from a patient in CML blast crisis appear in
branches in trajectories during cell development in Fig. 2.
Using the top 234 differentially expressed genes, 1102
stem cells without any imputation methods (Fig. 2a)
show the branches of CP-CML but failed to divide the
pre-BC and BC-CML cells. The mean-smooth neighbor
cells on the trajectory method (Fig. 2b) strips the
BC-CML from the pre-BC cells; however, the branches
of CP-CML have been weakened. The MISC method
(Fig. 2c) clearly divides the BC-CML and pre-BC cells.
Furthermore, the RNA-seq expression data shows a tra-
jectory branch from CP-CML to BC-CML, which pro-
vides direct evidence of the evolution from CP to BC
stem cells. In reference [2], a similar result was achieved
by clustering, which consists of both of CP and BC stem
cells. In addition, normal HSCs are also divided into
three branches, which provide further analysis potential.
One of them shows a branch mix with normal and
pre-BC stem cells, which can provide clinical research
opportunity.
With t-SNE analysis, all five different types of stem cells

are visualized in Fig. 3. The original distribution of the five
cell types is a mess (Fig. 3a), especially for the BC-CML
type in the red oval. Moreover, the CP-CML cells mix with
the pre-BC cells, normal cells and K562 cells. With the
mean-smooth method with neighbor cells on the trajectory,
the split groups in Fig. 3b are clearer than those without
missing imputation. However, there are two cells are mixed
with normal HSCs. The t-SNE visualization on the
single-cell RNA-seq data using MISC imputation (Fig. 3c)
shows the clearest groups among the three figures. Further-
more, the lowest red oval also proves the evolution from
CP to BC stem cells as our trajectory analysis. In addition,
the MISC imputed single-cell RNA-seq data present more
compact clusters in Fig. 3c, which provides opportunities
for subpopulations and rare cell type analysis on CML stem
cells. From Figs. 2 and 3, it can be seen that the MISC data
imputation method can help to analyze the trajectory
branches of CML stem cells and their subpopulation
detection.
For the primary somatosensory cortex and hippocam-

pal CA1 region, the single cell data contains 19,972
genes, including 406 housekeeping genes (using the
same list in reference [15]) and 3,005 cells. Therefore,
the training set contains 1,220,030 samples and the test
set, includes 58,795,830 samples. For the large linear
classifier (LLC), we used 5-fold cross validation on the
training set and achieved 80% accuracy as the CML data.
Finally, for the two L2-regularization based LLCs, we se-
lected the L2-loss Logistic Regression (with parameter C
= 104.858) due to better accuracy. The missing rate
threshold η = 0.397 for the false negative curve (FNC)
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and zero-inflated model (ZIM). The final missing rate of
the primary somatosensory cortex and hippocampal
CA1 region of mouse data is 23.4% (Fig. 4). It is approxi-
mately 10% higher than the CML data due to these data
using 19, 972 genes without differential gene filters. At
last, after several parameter selection experiments, we
selected L2-loss support vector regression with the pri-
mal problem solution (parameter C = 4) due to its lowest
mean-square error among the three regression methods.

For single-cell trajectory analysis, seven different types
of cells, astrocytes-ependymal, interneurons, oligoden-
drocytes, pyramidal SS, endothelial-mural, microglia and
pyramidal CA1, appeared in branches in trajectories in
Fig. 5. Using all the 19,972 genes, 3,005 brain cells
without any imputation methods (Fig. 5a) show the
branches of astrocytes-ependymal, interneurons, oligo-
dendrocytes, endothelial−mural and microglia, but failed
to divide the pyramidal SS and pyramidal CA1 cells. The

a

c

b

Fig. 2 Missing data imputation benefits to reveal CML stem cell trajectories associated with disease progression in CML. The trajectories include
five types of stem cells, CP-CML in black (n = 477), normal HSCs in blue (n = 232), pre-BC samples taken as the patients presented in CP (pre-BC)
12 months and 3 months before transformation to myeloid and lymphoid BC in green (n = 185), BC-CML in purple (n = 155) and K562 in red (n =
53) using the top 234 differentially expressed genes. a The single-cell RNA-seq expression trajectories analyzed on CML stem cells without data
imputation. b The trajectory analysis on CML stem cells using the mean-smooth method with neighbor cells on the trajectory. c The trajectory
analysis on CML stem cells using MISC methods to recover the CML data

Fig. 3 t-SNE analysis on imputed single-cell RNA-seq reveals more clearly subpopulations of CML stem cells. All types of these stem cells are of
CP-CML in black (n = 477), normal HSCs in blue (n = 232), pre-BC samples taken from the patients presented in CP (pre-BC), 12 months and
3 months before transformation to myeloid and lymphoid BC in green (n = 185), BC-CML in purple (n = 155) and K562 in red (n = 53). Red ovals
focus on the group of BC-CML stem cells. a The t-SNE analysis on the CML stem cell data without missing the imputation. b The t-SNE analysis
on the CML stem cell data using the mean-smooth method with neighbor cells on the trajectory. c The t-SNE analysis on CML stem cell data
using the MISC method
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mean-smooth neighbor cells method (Fig. 2b) strips the
pyramidal SS from the pyramidal CA1 cells; however, all
the pyramidal CA1 in purple 939 cells stay in one
branch. The MISC method (Fig. 2c) clearly divides the
pyramidal CA1 into different branches, which is direct

evidence that pyramidal CA1 has subpopulations [17].
Furthermore, the RNA-seq expression data shows a
sub-branch at the middle left of Fig. 5a, which provides
direct evidence of the subclasses of brain cells.
The complex brain cognitive functions, such as social

behaviors and sensorimotor integration, rely on a diverse
set of differentiated cells [17]. Therefore, accurate classi-
fication of the brain cell types is essential to understand
the cognitive functions of the brain. Using MISC, we im-
puted the scRNA-seq data of the primary somatosensory
cortex and the hippocampal CA1 region of the mouse
brain cells. The imputation results are shown in Fig. 6.
The oligodendrocyte cells in the original data without
data imputation were divided into two groups (Fig. 6a).
Using mean-smooth neighbor cells on trajectory imput-
ation, these divided cells that previously were merged to-
gether (Fig. 6b); however, it can be seen that these
oligodendrocyte cells connect to the other big group,
which mainly constitutes interneurons, pyramidal SS,
and pyramidal CA1. With MISC, the oligodendrocyte
cells became an independent group and its boundary
was apparent, although there are few cells in the group
that still need further study. The detailed branches in
Fig. 5 and the more apparent groups in Fig. 6 indicates
that the MISC model can also recover the primary som-
atosensory cortex and the hippocampal CA1 region of
mouse brain cells.

Discussion
The dropout events are abundant in the single-cell se-
quencing data [13, 22]. The missing data imputation is

Fig. 4 The overlap of the missing data discovered by ZIM, FNC and
LLC. The red circle is the missing data discovered by the zero-
inflated model (ZIM); the green circle is false negative curve (FNC);
the blue circle is from large linear classification (LLC). LLC∩ZIM =
11,117,664,47.6%; LLC∩FNC = 11,040,187, 47.2%; ZIM∩FNC =
11,745,190, 50.2%; LLC∩ZIM∩FNC = 5,493,856, 23.4%

a

c

b

Fig. 5 Missing data imputation benefits to recover the trajectories of the primary somatosensory cortex and the hippocampal CA1 region single-
cell RNA-seq data. The trajectories include seven cell types, such as astrocytes_ependymal in orange (n = 224), interneurons in chartreuse (n =
290), oligodendrocytes in aqua (n = 820), pyramidal SS in pink (n = 399), endothelial−mural in khaki (n = 235), microglia in green (n = 98) and
pyramidal CA1 in purple (n = 939). a The single-cell RNA-seq expression trajectory analysis on the mouse brain cells without data imputation. b
The trajectory analysis on the mouse brain cells using the method of mean-smooth neighbor cells on the trajectory. c The trajectories analysis on
the mouse brain cells using MISC method to impute CML data
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essential for reliable downstream analysis. Most existing
data imputation methods are designed to handle
bulk-level data. The latent missing data distributions be-
tween single-cell and bulk-level data are very distinct. The
data missing rate for scRNA-seq data is significantly
higher than the one for bulk-level data. For example, the
missing rate of a scRNA-seq dataset can be over 80% [17].
Additionally, the zeros in the scRNA-seq matrix either re-
flect the true biological values or cause by dropout. To ac-
curately impute missing values, we developed a new
method that decomposed the data imputation into three
subsequent steps: missing position detection, position re-
finement via ensemble learning, and imputation. Our
method was designed for imputing only the expression
levels of the dropout genes. To achieve this, we included a
refinement step to identify the missing positions with high
confidence. The positions that were simultaneously de-
tected by our model and the other two methods [14, 15]
were considered as true missing positions. This strategy
can improve the specificity of missing value detection. We
examined the MISC model using the chronic myeloid
leukemia and mouse brain scRNA-seq datasets [2, 17].
The experimental evidences suggested that our model
could help to optimize the construction of cell trajectory
and enable more accurate cell type detection.
The linear classification was used to achieve efficiency

in computational time in our method. A more sophisti-
cated model might provide better performance at the
cost of computational expense. Hence, the method
coupling parallel computing and advanced modeling
could help to enhance the efficiency and accuracy of sin-
gle cell data imputation. Our missing position refine-
ment via ensemble learning may potentially exclude true

missing positions. With a better model, we can also ad-
dress this limitation.

Conclusions
Single-cell RNA-seq expression profiling offers a static
snapshot of the gene expression, provides estimates of cell
heterogeneity and rare cell type detection. Through suc-
cessfully solving the three problems of missing data, the
proposed model MISC can effectively recover the missing
values in the scRNA-seq data. Regarding the chronic mye-
loid leukemia data, MISC discovered a trajectory branch
from CP-CML to BC-CML, which provides direct evidence
of evolution from CP to BC stem cells. Meanwhile, t-SNE
on MISC imputed data proves the evolution from CP to
BC stem cells as our trajectory analysis and presents more
compact clusters. On the primary somatosensory cortex
and the hippocampal CA1 region of mouse brain cells, it
clearly divides the pyramidal CA1 into different branches, it
is a direct evidence of pyramidal CA1 has subpopulations.
In addition through the use of MISC, oligodendrocyte cells
became an independent entity with an apparent boundary.
Furthermore, for filtered CML data, the MISC model can
present a clear trajectory and cell type classification. For the
scRNA-seq data with a large number of genes,, MISC can
also help us study the cellular heterogeneity. All this indi-
cates that MISC is a robust missing data imputation model
for single-cell RNA-seq data.
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Fig. 6 t-SNE analysis on imputed single-cell RNA-seq reveals cell populations of the primary somatosensory cortex and the hippocampal
CA1 region of mouse brain cells. All types of these stem cells are interneurons in red (n = 290), pyramidal SS in yellow (n = 399),
pyramidal CA1 in blue (n = 939), oligodendrocytes in cyan (n = 820), microglia in black (n = 98), endothelial-mural in teal (n = 235) and
astrocytes-ependymal in pink (n = 224). Red ovals focus on the group of oligodendrocyte cells. a The t-SNE analysis on the mouse brain
cell data without missing data imputation. b The t-SNE analysis on the mouse brain cell data using the mean-smooth method with
neighbor cells on the trajectory. c The t-SNE analysis on mouse brain cell data using the MISC method
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