
Chen et al. BMC Systems Biology 2018, 12(Suppl 9):139
https://doi.org/10.1186/s12918-018-0654-y

RESEARCH Open Access

Multi-CSAR: a multiple reference-based
contig scaffolder using algebraic
rearrangements
Kun-Tze Chen†, Hsin-Ting Shen† and Chin Lung Lu*

From 29th International Conference on Genome Informatics
Yunnan, China. 3-5 December 2018

Abstract

Background: One of the important steps in the process of assembling a genome sequence from short reads is
scaffolding, in which the contigs in a draft genome are ordered and oriented into scaffolds. Currently, several
scaffolding tools based on a single reference genome have been developed. However, a single reference genome
may not be sufficient alone for a scaffolder to generate correct scaffolds of a target draft genome, especially when the
evolutionary relationship between the target and reference genomes is distant or some rearrangements occur
between them. This motivates the need to develop scaffolding tools that can order and orient the contigs of the
target genome using multiple reference genomes.

Results: In this work, we utilize a heuristic method to develop a new scaffolder called Multi-CSAR that is able to
accurately scaffold a target draft genome based on multiple reference genomes, each of which does not need to be
complete. Our experimental results on real datasets show that Multi-CSAR outperforms other two multiple
reference-based scaffolding tools, Ragout and MeDuSa, in terms of many average metrics, such as sensitivity,
precision, F-score, genome coverage, NGA50, scaffold number and running time.

Conclusions: Multi-CSAR is a multiple reference-based scaffolder that can efficiently produce more accurate
scaffolds of a target draft genome by referring to multiple complete and/or incomplete genomes of related
organisms. Its stand-alone program is available for download at https://github.com/ablab-nthu/Multi-CSAR.

Keywords: Bioinformatics, Sequencing, Contig, Scaffolding, Multiple reference genomes

Background
Although sequencing technologies have greatly advanced
in recent years, assembling a genomic sequence from
a large number of generated reads still remains a chal-
lenging task [1, 2]. Largely because of the presence of
repetitive sequences, most of assembled genomes are just
draft genomes that may be composed of several hundreds
of fragmented sequences called contigs. The completeness
of an assembled genome actually is significant to its down-
stream analysis and interpretation in many biological

*Correspondence: cllu@cs.nthu.edu.tw
†Kun-Tze Chen and Hsin-Ting Shen contributed equally to this work.
Department of Computer Science, National Tsing Hua University, Hsinchu
30013, Taiwan

applications [3]. For the purpose of producing a more
complete genome, the contigs in a draft genome usually
are ordered and oriented into larger gap-containing scaf-
folds, in which their gaps can be filled in the subsequent
gap-closing process [4].

Although a lot of reference-based scaffolders have been
developed, most of them utilize only one genome as the
reference to scaffold (i.e., order and orient) the contigs
of a target draft genome [5–12]. Actually, the algorithmic
methods of all these single reference-based scaffolders
can be classified into either alignment-based approaches
[5–8] or rearrangement-based approaches [9–12]. For the
alignment-based scaffolding approaches, they align contig
sequences from a draft genome with the sequence of a ref-
erence genome and scaffold these contigs based on their

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-018-0654-y&domain=pdf
https://github.com/ablab-nthu/Multi-CSAR
mailto: cllu@cs.nthu.edu.tw
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Chen et al. BMC Systems Biology 2018, 12(Suppl 9):139 Page 70 of 134

matched positions on the reference genome. As for the
rearrangement-based scaffolding approaches, they utilize
the information of genome structures to scaffold the con-
tigs in a draft genome such that the order and orientation
of conserved genes (or sequence markers) between the
scaffolded contigs and the reference genome are as similar
as possible. Among the single reference-based scaffold-
ers mentioned above, CAR [11] and CSAR [12] were
developed by us based on different rearrangement-based
algorithms [13, 14]. In principle, CSAR can be considered
as an improved version of CAR, because the reference
genome used by CAR is required to be complete, but the
one used by CSAR can be incomplete.

In fact, a single reference genome may not be suf-
ficient alone for a scaffolding tool to correctly gener-
ate the scaffolds of a target draft genome, especially
when the evolutionary relationship between target and
reference genomes is distant or some rearrangements
(e.g., reversals, transpositions and translocations) occur
between them. This motivates the need to develop mul-
tiple reference-based scaffolders that can scaffold the
contigs of the target draft genome using multiple refer-
ence genomes derived from related organisms, which may
provide different but complementary types of scaffolding
information.

Previously, we utilized a heuristic approach to extend
our single reference-based scaffolder CAR to a multi-
ple reference-based scaffolder called Multi-CAR [15] and
demonstrated that it performed better than other similar
existing tools, such as Ragout [16] and MeDuSa [17], when
all the reference genomes are complete. Unlike Ragout
and MeDuSa, however, Multi-CAR is not able to accept
an incomplete genome as a reference, which ultimately
limits its widespread adoption because in practice com-
plete reference genomes are not always available for a
target draft genome [18]. In principle, Ragout constructed
a breakpoint graph by representing each contig in a target
draft genome by two vertices and a contig adjacency sup-
ported by reference genomes by an edge with a parsimony
cost. The parsimony cost of an edge was computed based
on a given phylogenetic tree for the target and reference
genomes. Ragout then inferred the contig adjacencies in
the target genome from a perfect matching with mini-
mum parsimony cost in the breakpoint graph. By contrast,
MeDuSa formulated the contig scaffolding problem as
finding a path cover with maximum weight in a scaffolding
graph, in which each vertex represents a contig in a target
draft genome and each edge represents a contig adjacency
with a weight denoting the number of supported refer-
ence genomes. Since the computation of an optimal path
cover is NP-hard, MeDuSa adopted a 2-approximation
algorithm to compute an approximate path cover from the
scaffolding graph and then inferred the scaffolds of the
target genome from this approximate path cover.

In this study, we further improve our Multi-CAR into
a new multiple reference-based scaffolding tool called
Multi-CSAR that can utilize multiple complete and/or
incomplete genomes as the references to scaffold the
contigs of a target draft genome. Our experimental results
on real datasets containing multiple incomplete genomes
as the references have finally shown that Multi-CSAR
still outperforms Ragout and MeDuSa in terms of many
average evaluation metrics, such as sensitivity, precision,
F-score, genome coverage, NGA50, scaffold number and
running time.

Methods
The algorithmic method we use to implement our mul-
tiple reference-based scaffolder Multi-CSAR is a graph-
based heuristic approach, which (i) utilizes our CSAR
[12] to infer single reference-derived scaffolds for a tar-
get draft genome based on each of multiple reference
genomes, (ii) uses all single reference-derived scaffolds to
build an edge-weighted contig adjacency graph, (iii) finds
a maximum weighted perfect matching from the contig
adjacency graph, and (iv) constructs a multiple reference-
derived scaffold of the target draft genome according to
the maximum weighted perfect matching. In the follow-
ing, we describe the details of these four steps in our
multiple reference-based scaffolding algorithm.

Suppose that we are given a target draft genome T con-
sisting of n contigs c1, c2, . . . , cn, as well as k references
of complete or incomplete genomes R1, R2, . . . , Rk with
weights w1, w2, . . . , wk , respectively. We first utilize our
single reference-based scaffolder CSAR [12] to obtain a
scaffolding result Si of T based on each Ri, where 1 ≤
i ≤ k. After that, we construct a contig adjacency graph
G = (V , E) [15], which is an undirected edge-weighted
graph as defined below. In principle, a contig cj ∈ T ,
where 1 ≤ j ≤ n, is a fragmented sequence of DNA with
two extremities, respectively called head and tail. For our
purpose, two vertices, denoted by ch

j and ct
j , are used to

represent the head and tail of cj in G, respectively, and
an undirected edge is used to connect any two vertices
in G that are not the extremities from the same con-
tig. In other words, we have V =

{
ct

j , ch
j |1 ≤ j ≤ n

}
and

E = {(u, v)|u, v ∈ V and both u and v are not the
extremities of the same contig}. We say that an edge in
G is supported by Ri if both of its vertices are adjacent
extremities from two different but consecutive contigs in a
scaffold of Si. If an edge in G can be supported by multiple
reference genomes simultaneously, it has a weight equal
to the sum of the weights of all these reference genomes.
However, if an edge in G is not supported by any reference
genome, it receives a weight of zero. Next, we use the Blos-
som V program [19] to find a maximum weighted perfect
matching M in G, where a subset of edges in G is called a



Chen et al. BMC Systems Biology 2018, 12(Suppl 9):139 Page 71 of 134

perfect matching if every vertex in G is incident to exactly
one edge in this subset. Let C =

{(
ct

j , ch
j

)
|1 ≤ j ≤ n

}

and M′ be a subset of edges obtained from M by deleting
some of its edges with the minimum total weight such that
M′ ∪ C contains no cycle. Finally, we order and orient the
contigs of T into scaffolds based on the edge connections
in M′. Note that CSAR was developed by us based on a
near-linear time algorithm [14] and the running time of
Blossom V is O

(
n4) for a graph with n vertices. Therefore,

the above multiple reference-based scaffolding method
we used to implement Multi-CSAR is a polynomial-time
algorithm. We refer the reader to Fig. 1 for its pseudo-code
description.

Below, we give an example to illustrate how our scaffold-
ing algorithm works (see Fig. 2 for an example). As men-
tioned previously, a contig is a fragmented sequence of
DNA with two extremities, a head and a tail. Given a scaf-
fold, we scan its ordered and oriented contigs in the left-
to-right direction. If the tail of a contig, say ci, precedes

its head, we write this contig as +ci in the scaffold;
otherwise, we write it as −ci. Suppose that we have the
following three scaffolding results S1 = (+c1, +c2, +c3),
S2 = (+c2, +c3, +c4) and S3 = (−c2, −c1, −c4, −c3)
that are respectively obtained by applying the CSAR
program on a target genome consisting of four con-
tigs T = {c1, c2, c3, c4} and three reference genomes
R1, R2 and R3 with equal weight of one. We then uti-
lize S1, S2 and S3 to construct the contig adjacency graph
G = (V , E) of T and apply the Blossom V program
on G to derive a maximum weighted perfect matching
M =

{(
ch

1, ct
2

)
,
(

ch
2, ct

3

)
,
(

ch
3, ct

4

)
,
(

ch
4, ct

1

)}
. By defini-

tion, we have C =
{(

ct
1, ch

1

)
,
(

ct
2, ch

2

)
,
(

ct
3, ch

3

)
,
(

ct
4, ch

4

)}

in this instance. Clearly, M ∪ C forms a cycle. In this
case, we can remove the minimum weighted edge

(
ch

4, ct
1

)

from M to obtain M′ =
{(

ch
1, ct

2

)
,
(

ch
2, ct

3

)
,
(

ch
3, ct

4

)}

such that M′ ∪ C contains no cycles. Finally, we can
derive the scaffold (+c1, +c2, +c3, +c4) of T, which is

Fig. 1 Pseudo-code description for the multiple reference-based scaffolding algorithm we used to implement Multi-CSAR



Chen et al. BMC Systems Biology 2018, 12(Suppl 9):139 Page 72 of 134

(a)

(b)

(c)

(d)

(e)

Fig. 2 Schematic workflow of Multi-CSAR: a A target genome T = {c1, c2, c3, c4} and three single reference-derived scaffolds S1 = (+c1, +c2, +c3),
S2 = (+c2, +c3, +c4) and S3 = (−c2, −c1, −c4, −c3) that are assumed to be obtained by applying CSAR on three reference genomes R1, R2 and R3,
respectively, with equal weight of one. b The contig adjacency graph G constructed by using S1, S2 and S3, where the dashed lines denote the
edges with zero weight. c A maximum weighted perfect matching M = {(

ch
1 , ct

2

)
,
(

ch
2 , ct

3

)
,
(

ch
3 , ct

4

)
,
(

ch
4 , ct

1

)}
derived by applying Blossom V on G. d

By removing the minimum weighted edge
(

ch
4 , ct

1

)
from M, we obtain M′ = {(ch

1 , ct
2), (ch

2 , ct
3), (ch

3 , ct
4)} such that M′ ∪ C contains no cycles, where the

dotted lines denote the edges in C. e The final scaffold (+c1, +c2, +c3, +c4) of T constructed based on the edge connections in M′



Chen et al. BMC Systems Biology 2018, 12(Suppl 9):139 Page 73 of 134

equivalent to (−c4, −c3, −c2, −c1), according to the edge
connections in M′.

It is worth mentioning that the weights of the reference
genomes mentioned before can be derived by Multi-CSAR
automatically using the following sequence identity-based
weighting scheme. As mentioned in our previous study
[12], CSAR utilizes either NUCmer or PROmer to iden-
tify aligned sequence markers between the target genome
T and each reference genome Ri, where 1 ≤ i ≤ k.
NUCmer and PROmer are from the MUMmer sequence
alignment package [20] that is a set of programs to detect
similar regions (i.e. sequence markers) between biological
sequences. Particularly, NUCmer detects markers directly
on input DNA sequences, while PROmer detects mark-
ers on the six-frame protein translation of the input DNA
sequences. Suppose that there are τ such sequence mark-
ers, say m1, m2, . . . , mτ , between T and Ri. In principle,
each such marker mj actually is a local alignment between
T and Ri, where 1 ≤ j ≤ τ . Let L(mj) and I(mj) be the
alignment length and percent identity of mj, respectively.
The weight of Ri is then given as wi = ∑τ

j=1 L(mj)× I(mj).
Note that the weights of the reference genomes are all
defaulted to one when running Multi-CSAR, unless the
sequence identity-based weighting scheme is used.

From algorithmic point of view, Multi-CSAR has the
following two new features when compared with its previ-
ous version Multi-CAR. First, Multi-CSAR utilizes CSAR,
rather than CAR as used in Multi-CAR, to obtain the sin-
gle reference-derived scaffold of the target draft genome.
As mentioned in the introduction, the reference genome
used by CAR is required to be complete, but the one used
by CSAR can be incomplete. Due to this reason, Multi-
CSAR therefore can accept incomplete genomes as refer-
ences. Second, Multi-CSAR can be run with the sequence
identity-based weighting scheme to automatically mea-
sure the weight of each reference genome. Generally, the
more similar a reference genome is to the target genome,
the more weight it receives to support an edge in the con-
tig adjacency graph. In Multi-CAR, however, the weights
of all reference genomes must be assigned by the user;
otherwise, they are defaulted to one.

Results
We tested Multi-CSAR, as well as other two multi-
ple reference-based scaffolders Ragout (version 1.0) and
MeDuSa (version 1.6), on five real bacterial datasets as
shown in Table 1, which were originally prepared and
analyzed by Bosi et al. in the study of MeDuSa [17].
Each testing dataset comprises a draft genome to be
scaffolded (hereafter called target genome) and two or
more references of complete and/or incomplete genomes.
All the multiple reference-based scaffolders evaluated in
this study were run with their default parameters, except
Ragout for which a reliable phylogenetic tree for each

Table 1 Summary of the five testing datasets

Organism No. of
replicons

No. of
contigs

No. of
references

Genome
size
(Mbp)

GC%

B. cenocepacia j2315 4 1,223 4 8.05 65.9

E. coli K12 1 451 25 4.64 50.8

M. tuberculosis 1 116 13 4.41 65.6

R. sphaeroides 2.4.1 7 564 2 4.60 67.4

S. aureus 3 170 35 2.90 32.0

testing dataset was unknown and hence a star tree was
used instead. Consequently, their average performance
results over the five bacterial datasets are shown in
Table 2. In addition, the average performance results of
Multi-CSAR when running with the sequence identity-
based weighting scheme are shown in Table 3.

Discussion
For the target genome in each testing dataset, Bosi et al.
also provided a reference order of its contigs, which actu-
ally was derived from the complete sequence of the target
genome and hence can be served as a truth standard in
our evaluation. All the tested multiple reference-based
scaffolders were evaluated using several different metrics,
such as sensitivity, precision, F-score, genome coverage,
NGA50, scaffold number and running time. In principle,
sensitivity, precision and F-score are measures to access
the accuracy of scaffolds, genome coverage to access the
coverage of scaffolds on the target genome, and NGA50
and scaffold number to access the contiguity of scaffolds.
In the following, we describe their definitions in detail.

Given two consecutive contigs in a scaffold, they are
considered as a correct join if they also appear in con-
secutive order and correct orientation in the reference
order. The number of the correct contig joins in a scaf-
folding result is then called as true positive (TP) and the
number of the others (i.e., incorrect joins) as false posi-
tive (FP). Denote by P the number of all contig joins in the

Table 2 Average performance of the evaluated multiple
reference-based scaffolders on the five testing datasets

Scaffolder Sen. Pre. F-score Cov. NGA50 #Scaf. Time

Multi-
CSAR
(NUCmer)

89.6 90.8 90.2 93.2 1,038,257 9 1.7

Multi-
CSAR
(PROmer)

89.3 90.4 89.8 92.5 1,016,308 7 6.3

Ragout 79.0 92.5 84.4 87.4 992,966 84 24.8

MeDuSa 78.2 81.9 80.0 83.3 671,001 26 3.8

The values of sensitivity (abbreviated as ‘Sen.’), precision (abbreviated as ‘Pre.’),
F-score and genome coverage (abbreviated as ‘Cov.’) are displayed in percentage
(%), and the size of NGA50 in base pairs (bp). The column ‘#Scaf.’ gives the number
of scaffolds returned by each scaffolder and the column ‘Time’ displays the running
time in minutes. The best result in each column is shown in bold



Chen et al. BMC Systems Biology 2018, 12(Suppl 9):139 Page 74 of 134

Table 3 Average performance of Multi-CSAR on the five testing
datasets when using the sequence identity-based weighting
scheme

Scaffolder Sen. Pre. F-score Cov. NGA50 #Scaf. Time

Multi-
CSAR
(NUCmer)

89.9 91.3 90.6 93.5 1,046,288 10 1.7

Multi-
CSAR
(PROmer)

89.4 90.5 89.9 92.8 1,045,489 7 6.3

The values of sensitivity (abbreviated as ‘Sen.’), precision (abbreviated as ‘Pre.’),
F-score and genome coverage (abbreviated as ‘Cov.’) are displayed in percentage
(%), and the size of NGA50 in base pairs (bp). The column ‘#Scaf.’ gives the number
of resulting scaffolds and the column ‘Time’ displays the running time in minutes.
The best result in each column is shown in bold

reference order. The sensitivity of a scaffolding result is
thus defined as TP

P , its precision as TP
TP+FP , and its F-score

(i.e., the harmonic mean of sensitivity and precision) as
2×sensitivity×precision

sensitivity+precision [21]. In principle, F-score is a balanced
measure between sensitivity and precision and it is high
only when both sensitivity and precision are high. To con-
veniently define the metric of genome coverage below,
we assume that the target genome contains only circular
DNAs. In this case, therefore, each contig has two neigh-
bor contigs respectively on its both sides. Given a contig
in a scaffolding result, if it is correctly joined with its
two neighbor contigs on its both sides, its whole length is
counted as contributing to the genome coverage (as will
be defined later). If this contig is correctly joined with
exactly one neighbor contig, half of its length is counted.
If it is incorrectly joined with other contigs on its both
sides, its length is not counted entirely. The genome cover-
age of a scaffolding result is thus defined as the ratio of the
sum of the contig lengths counted using the rules men-
tioned above to the sum of all contig lengths [10]. Note
that if the target genome contains linear DNAs, the first
and last contigs located in the reference order of each lin-
ear DNA have only one neighbor contig and hence just
half of their lengths will be counted in the numerator (if
they are correctly joined with their neighbor contigs) and
denominator of the genome coverage. The NGA50 value
of a scaffolding result is obtained by aligning its scaf-
folds to the target complete sequence, breaking them at
misassembly breakpoints, deleting unaligned regions, and
finally computing the NG50 value of the resulting scaf-
folds that is the size of the smallest scaffold satisfying that
50% of the genome is contained in scaffolds of size NG50
or larger [22].

Clearly, as shown in Table 2, Multi-CSAR running with
NUCmer achieves the best scaffolding results in sensitiv-
ity, F-score, genome coverage, NGA50 and running time,
while still exhibiting the second best scaffolding results in
precision and scaffold number. On the other hand, when

using PROmer to identify sequence markers, Multi-CSAR
obtains the best performance in scaffold number, whereas
the second best performance in sensitivity, F-score,
genome coverage and NGA50. From the viewpoint of pre-
cision, Ragout performs the best among the evaluated
scaffolders. However, its sensitivity is much lower than
those obtained by Multi-CSAR running with NUCmer
and PROmer, resulting in that its F-score is substan-
tially inferior to those of Multi-CSAR with NUCmer and
PROmer. In addition, Ragout gives the worst performance
in scaffold number and running time. As for MeDuSa, it
yields the second best result in running time, but the worst
results in sensitivity, precision, F-score, genome coverage
and NGA50.

On the other hand, it is worth mentioning that, as
shown in Table 3, several average accuracy measures
of Multi-CSAR, such as sensitivity, precision, F-score,
genome coverage and NGA50, can be further improved
if it is run with the sequence identity-based weighting
scheme.

Conclusions
Scaffolder is a helpful tool for a sequencing project to
obtain a more complete sequence of a genome. In this
study, we presented Multi-CSAR, an easy-to-use multi-
ple reference-based scaffolder that can efficiently produce
more accurate scaffolds of a target draft genome by refer-
ring to multiple complete and/or incomplete genomes of
related organisms. Multi-CSAR was implemented by a
graph-based heuristic approach that utilizes our CSAR to
obtain all the single reference-derived scaffolding results,
uses them to build an edge-weighted contig adjacency
graph, finds a maximum weighted perfect matching from
this graph, and finally constructs a multiple reference-
derived scaffolding result based on this matching. All the
steps in this heuristic approach can be done in polynomial
time. Compared with its previous version Multi-CAR,
Multi-CSAR has the following two new features: (i) it
can accept an incomplete genome as a reference, thus
greatly improving its applicability since most of avail-
able reference genomes are still incomplete, and (ii) it
can automatically derive the supporting weights of ref-
erence genomes using a sequence identity-based weight-
ing scheme. By testing on five real prokaryotic datasets
containing multiple references of incomplete genomes,
our Multi-CSAR indeed outperforms other two multi-
ple reference-based scaffolders Ragout and MeDuSa in
terms of average sensitivity, precision, F-score, genome
coverage, NGA50, scaffold number and running time. In
the future, it will be interesting to investigate whether
the performance quality of our Multi-CSAR can be fur-
ther enhanced by incorporating other single reference-
based scaffolders, such as OSLay [6], Mauve Aligner [7]
and r2cat [8].



Chen et al. BMC Systems Biology 2018, 12(Suppl 9):139 Page 75 of 134

Abbreviations
CAR: Contig assembly using rearrangements; CSAR: Contig scaffolding using
algebraic rearrangements; DNA: Deoxyribonucleic acid; FP: False positive;
Mbp: Megabase pair; MeDuSa: Multi-draft based scaffolder; Multi-CAR:
Multiple reference-based contig assembly using rearrangements; Multi-CSAR:
Multiple reference-based contig scaffolder using algebraic rearrangements;
MUMmer: Maximal unique match-mer; NG50: Length of the shortest scaffold
for which longer and equal length scaffolds cover at least 50% of the genome;
NGA50: Analogous to NG50 where the scaffolds are replaced by regions that
can be aligned to the target complete sequence; NUCmer: Nucleotide
MUMmer; OSLay: Optimal syntenic layouter; PROmer: Protein MUMmer; r2cat:
Related reference contig arrangement tool; Ragout: Reference-assisted
genome ordering utility; TP: True positive

Acknowledgements
This study was partially supported by Ministry of Science and Technology of
Republic of China under grant MOST107-2221-E-007-066-MY2.

Funding
The publication costs of this paper were funded by Ministry of Science and
Technology of Republic of China under grant MOST107-2221-E-007-066-MY2.

Availability of data and materials
All data analyzed during this study are included in this published article.

About this supplement
This article has been published as part of BMC Systems Biology Volume 12
Supplement 9, 2018: Proceedings of the 29th International Conference on Genome
Informatics (GIW 2018): systems biology. The full contents of the supplement are
available online at https://bmcsystbiol.biomedcentral.com/articles/
supplements/volume-12-supplement-9.

Authors’ contributions
CLL conceived of the study, designed the algorithm, carried out experimental
analyses and wrote the manuscript. KTC participated in the design of
algorithm, implemented the software, conducted the experiments and
analyzed experimental results. HTS participated in the software
implementation, dataset experiments and analyses of experimental results. All
authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 31 December 2018

References
1. Pop M, Salzberg SL. Bioinformatics challenges of new sequencing

technology. Trends Genet. 2008;24:142–9.
2. Pop M. Genome assembly reborn: recent computational challenges. Brief

Bioinform. 2009;10:354–66.
3. Mardis E, McPherson J, Martienssen R, Wilson RK, McCombie WR. What

is finished, and why does it matter. Genome Res. 2002;12:669–71.
4. Hunt M, Newbold C, Berriman M, Otto TD. A comprehensive evaluation

of assembly scaffolding tools. Genome Biol. 2014;15:R42.
5. van Hijum SA, Zomer AL, Kuipers OP, Kok J. Projector 2: contig mapping

for efficient gap-closure of prokaryotic genome sequence assemblies.
Nucleic Acids Res. 2005;33:W560—6.

6. Richter DC, Schuster SC, Huson DH. OSLay: optimal syntenic layout of
unfinished assemblies. Bioinformatics. 2007;23:1573–9.

7. Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT.
Reordering contigs of draft genomes using the Mauve Aligner.
Bioinformatics. 2009;25:2071–3.

8. Husemann P, Stoye J. r2cat: synteny plots and comparative assembly.
Bioinformatics. 2010;26:570–1.

9. Munoz A, Zheng C, Zhu Q, Albert VA, Rounsley S, Sankoff D. Scaffold
filling, contig fusion and comparative gene order inference. BMC
Bioinformatics. 2010;11:304.

10. Dias Z, Dias U, Setubal JC. SIS: a program to generate draft genome
sequence scaffolds for prokaryotes. BMC Bioinformatics. 2012;13:96.

11. Lu CL, Chen KT, Huang SY, Chiu HT. CAR: contig assembly of prokaryotic
draft genomes using rearrangements. BMC Bioinformatics. 2014;15:381.

12. Chen KT, Liu CL, Huang SH, Shen HT, Shieh YK, Chiu HT, et al. CSAR: a
contig scaffolding tool using algebraic rearrangements. Bioinformatics.
2018;34:109–11.

13. Li CL, Chen KT, Lu CL. Assembling contigs in draft genomes using
reversals and block-interchanges. BMC Bioinformatics. 2013;14(Suppl 5):9.

14. Lu CL. An efficient algorithm for the contig ordering problem under
algebraic rearrangement distance. J Comput Biol. 2015;22:975–87.

15. Chen KT, Chen CJ, Shen HT, Liu CL, Huang SH, Lu CL. Multi-CAR: a tool
of contig scaffolding using multiple references. BMC Bioinformatics.
2016;17:469.

16. Kolmogorov M, Raney B, Paten B, Pham S. Ragout: a reference-assisted
assembly tool for bacterial genomes. Bioinformatics. 2014;30:i302—9.

17. Bosi E, Donati B, Galardini M, Brunetti S, Sagot MF, Lio P, et al. MeDuSa:
a multi-draft based scaffolder. Bioinformatics. 2015;31:2443–51.

18. Pagani I, Liolios K, Jansson J, Chen IMA, Smirnova T, Nosrat B, et al. The
Genomes OnLine Database (GOLD) v.4: status of genomic and
metagenomic projects and their associated metadata. Nucleic Acids Res.
2012;40:D571—9.

19. Kolmogorov V. Blossom V: a new implementation of a minimum cost
perfect matching algorithm. Math Program Comput. 2009;1:43–67.

20. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al.
Versatile and open software for comparing large genomes.
Genome Biol. 2004;5:R12.

21. Mandric I, Zelikovsky A. ScaffMatch: scaffolding algorithm based on
maximum weight matching. Bioinformatics. 2015;31:2632–8.

22. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment
tool for genome assemblies. Bioinformatics. 2013;29:1072–5.

https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-12-supplement-9
https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-12-supplement-9

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Results
	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

