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Abstract

Background: Signaling pathways are the key biological mechanisms that transduce extracellular signals to affect
transcription factor mediated gene regulation within cells. A number of computational methods have been developed
to identify the topological structure of a specific signaling pathway using protein-protein interaction data, but they are
not designed for identifying active signaling pathways in an unbiased manner. On the other hand, there are statistical
methods based on gene sets or pathway data that can prioritize likely active signaling pathways, but they do not make
full use of active pathway structure that link receptor, kinases and downstream transcription factors.

Results: Here, we present a method to simultaneously predict the set of active signaling pathways, together with their
pathway structure, by integrating protein-protein interaction network and gene expression data. We evaluated
the capacity for our method to predict active signaling pathways for dental epithelial cells, ocular lens epithelial cells,
human pluripotent stem cell-derived lens epithelial cells, and lens fiber cells. This analysis showed our approach could
identify all the known active pathways that are associated with tooth formation and lens development.

Conclusions: The results suggest that SPAGI can be a useful approach to identify the potential active signaling
pathways given a gene expression profile. Our method is implemented as an open source R package, available via
https://github.com/VCCRI/SPAGI/.

Keywords: Signaling pathway, Gene expression, Protein-protein interaction, Dental epithelial cells, Lens epithelial cells,
Lens fiber cells, Pluripotent stem cells, ROR1+ cells

Background
A key role cell signaling (also known as signal transduction)
plays within biological systems is to relay extracellular sig-
nals in order to regulate intracellular gene expression. The
signal transduction process is typically initiated by the bind-
ing of a ligand to a membrane-bound receptor, which trig-
gers a cascade of intercellular signaling activities through
multiple kinases - ultimately impacting on how transcrip-
tion factors regulate downstream gene expression [1]. The
coordinated activity of different signaling pathways within

and between multiple cell types is the basis of many im-
portant biological processes, such as development, tissue
repair and immunity [2, 3].
Activation of different signaling pathways can lead to

numerous physiological or cellular responses, such as
cell proliferation, death, differentiation, and metabolism
[4, 5]. Any interruption that occurs within these extra
−/intra-cellular communication chains can cause dis-
eases including developmental disorders and cancers [6–
9]. Conversely, a clear understanding of the activity of,
and interaction between, signaling pathways can help to
design rational disease treatment and tissue regeneration
strategies [10]. It is therefore important to understand
the signaling pathways that are activated in a cell, in
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order to provide a framework for understanding critical
pathways affected by disease.
In principle, it should be possible to identify the im-

portant signaling pathways of a cell by using gene ex-
pression and protein-protein interaction (PPI) data sets.
Extensive, publically-available PPI data provide an op-
portunity to establish a general signaling pathway blue-
print, to which cell type-specific gene expression data
can be mapped so as to refine the general signaling path-
way blueprint into a cell-type specific blueprint. In this
way it should be possible to construct a set of cell-type
specific active signaling pathways for any cell that sum-
marizes the information flow from a receptor (R) to ki-
nases (Ks), then to transcription factors (TFs).
PPI data is a direct source of information about the

structure of signaling pathways [3, 11]. A number of PPI
databases are available for human and model organisms
such as STRING [12]. A number of bioinformatics
methods have been proposed for the reconstruction of
known signaling pathways by using PPI data. For ex-
ample, CASCADE_SCAN generates a specific pathway
for a list of protein molecules using a steepest descent
method. That is, the method takes the input proteins
and then finds their interaction partners iteratively based
on some evidences (i.e., high scored interactions) [1]. On
the other hand, Pathlinker reconstructs the known sig-
naling pathways by taking a subnetwork of PPI that con-
sists of the Rs and TFs of interest [13]. The PathLinker
App is a software tool of the Pathlinker method imple-
mented as a Cytoscape app [14]. PathFinder identifies
signaling pathways from a specific R protein to a TF pro-
tein in PPI networks by extracting the characteristics of
known signal transduction pathways and their functional
annotations in the form of association rules [15].
A number of methods use PPI data alone to infer sig-

naling pathway structure. Gitter et al. proposed a
method to handle the orientation problem in weighted
protein interaction graphs as an optimization problem
and present three approximation algorithms based on ei-
ther weighted Boolean satisfiability solvers or probabilis-
tic assignments [16]. Mei et al. proposed a multi-label
multi-instance transfer learning method to simultan-
eously reconstruct 27 human known signaling pathways,
and model their cross-talk [17]. Scott et al. proposed a
method to reconstruct the known signaling pathways ef-
ficiently in protein interaction networks by assigning
well-founded reliability scores to PPI data and by apply-
ing a color coding algorithm [18].
There are also methods that combine PPI and genetic

interaction data to identify signaling pathway structure.
The activity pathway network (APN) approach utilizes
high-throughput genetic interaction data and applies the
Bayesian learning method to identify detailed structure of
known signaling pathways [19]. Another method utilizes

the same approach to restructure the pathway by also
combining PPI data with genetic interaction data [20].
A number of computational methods utilize PPI data

along with gene expression data to uncover known sig-
naling pathways [2, 3, 21, 22]. In these methods the gene
expression data sets are usually used to calculate the
edge weight by gene expression correlation for the net-
work. One approach utilizes PPI and gene expression
data sets and applies integer linear programming to get
an optimal subnetwork from the PPI network starting
from membrane proteins and ending at transcription
factors [3]. A recently published method called HISP
uses the same approach, but in addition applies genetic
algorithms with operations including selection, cross-
over, and mutation to select the candidate topologies of
resultant signaling pathways and uses gene knockout
data to get directionality of the signaling pathways [2].
Netsearch determines networks by integrating protein-
protein interaction data with microarray expression data
by extracting subnetworks of the protein interaction
dataset whose members have the most correlated ex-
pression profiles [22]. It generates a specific pathway
based on the input proteins (R and TF) and the PPI net-
works. Another method highlights the order of signaling
pathway components, assuming all the components on
the pathways are known [21]. It constructs a score func-
tion based on the correlations between each gene pair to
determine the final signal transduction network.
All of the above methods aim to restructure the top-

ologies of known signaling pathways. However, to our
knowledge, no open-source methods have been reported
that simultaneously and comprehensively identify the set
of active signaling pathways and the likely pathway
structures for a gene expression profile (i.e., all R, K and
effector TF paths for each identified pathway). Addition-
ally, most of the above methods were evaluated and ap-
plied to yeast PPI data, with only a few methods
designed specifically to deal with the significantly greater
complexity of mammalian data. Here we propose an ap-
proach to systematically identify the set of active recep-
tor-mediated signaling pathways within any given cell,
by combining PPI and gene expression data. This
method is implemented as an open source packaging
using the ‘R’ programming language. This open source
software is called SPAGI (Signaling Pathway Analysis for
putative Gene regulatory network Identification), and is
available via https://github.com/VCCRI/SPAGI/.

Methods
Building background pathway data
The overall workflow of the SPAGI approach is approach
is depicted in Fig. 1. First we collected the known R, K
and TF signaling molecules (2134 genes/proteins in total)
from public data sets [23–25]. The list of R proteins was
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collected from a curated database of the Fantom5
project [24]. The list of K proteins was collected from
the Uniprot curated database [23]. The list of TF pro-
teins was obtained from a database of sequence-spe-
cific DNA-binding TFs identified by gene ontology
(GO) based annotation [25]. Next we separately used
both the mouse and human PPI data from STRING
database (version 10) [26] to obtain all currently
known PPIs for the 2134 known R/K/TF signaling
molecules - while keeping the human and mouse sep-
arate. Please note that we have considered here all
the physical and other inferred (e.g., co-expression)
interactions when defining PPIs to maximize our abil-
ity to detect the full network structure. The confi-
dence (combined_score) values assigned to interactions
within STRING range from 0 to 999. We selected
PPIs defined by STRING as ‘high confidence’ (i.e.
confidence_score > = 700) to further maximise our

ability to construct networks representative of true
biological pathways. This thresholding yielded 16,550
and 19,502 PPIs for mouse and human respectively.
After obtaining these highly scored PPIs both for the
human and mouse organisms we have merged all the
PPIs by assuming that the molecules have one-to-one
homology mapping between the organisms. Note that
after filtering and considering the presence of
bi-directional interactions within STRING (e.g., R to
K and K to R), the set of all known R/K/TF interac-
tions involves 39,004 PPIs in human and 33,100 PPIs
in mouse (with 27,790 PPIs common to both). We
then took the union of all PPIs and have assigned the
larger score value of a PPI if it is present in both or-
ganisms. The merged PPI network has 44,314 edges
(See Table 1 for details).
From the combined high scored PPIs, we collected

only the PPIs for the signaling pathways that have

Fig. 1 The workflow diagram of the SPAGI method

Table 1 SPAGI pathway path background data summary

For Mouse For Human

# R, K, TF 2134 2134

# R/K, K/K, K/TF interactions (combined_score > 0) 234,603 249,571

# high-confidence (combined_score > = 700) R/K, K/K, K/TF interactions (assuming bi-directional interaction) 33,100 39,004

# common interaction 27,790

# combined unique interaction 44,314

# high-confidence complete R/K/TF paths 102,842

# high-confidence complete R/K/TF paths without housekeeping gene paths (# of R-defined pathways) 89,161 (548)
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interactions able to make full paths from R to K to TF.
This process included interactions from:

(a) R (not directly connected with K) to R (directly
connected with K)

(b) R to K
(c) K to K and
(d) K to TF

Finally, we collected all the filtered PPIs from the
above step, keeping their associated PPI combined_score
value for each of the interactions. Note that for clarity,
the word ‘path’ is defined as a single R/K/TF prediction,
whereas the word ‘pathway’ is defined as the collection
of paths that all start from the same R (i.e., all paths de-
fined by a single R constitutes a pathway).
To make the signaling pathway paths, we first made a

directed weighted graph from the PPI data using the
igraph R package. As igraph considers the weight of the
interaction as a cost (i.e., higher weight means it needs
more effort to travel), we have modified the PPI combi-
ned_score value as weight by calculating 1000-combi-
ned_score. After assigning the combined_score as weight
we collected the reachable shortest paths from each R
protein to each TF protein by utilizing the shortest_path
function of the package. The shortest_path function uses
the Dijkstra’s graph algorithm for the weighted directed
graph. We have collected all the complete paths (a path
is being called complete if it starts from a R protein and
ends up to a TF protein) that have a length from 3 to 7,
allowing for at most 2 layers for RP, 5 layers for KN and
1 layer for TF. To identify cell type-specific paths, we
then filtered out the complete paths where all factors
were designated as housekeeping genes (see the next
section for how the list of housekeeping genes was gen-
erated). As a result of these steps, the final collection of
complete paths consists only of those that are not desig-
nated as housekeeping paths. These paths are used as
background pathway path data for our method.

Housekeeping genes identification
We collected the published RNA-seq gene expression
data sets for different cells and tissues both for mouse
and human from the ENCODE project [27, 28], and
processed them separately. We examined the expression
distribution pattern of these data sets and found that on
average the log2 (FPKM+ 1) = 1.5 value could be used as
the expression cut-off for the data sets. Using this
cut-off we identified the expressed genes for all the cells
and tissues. We then designated a gene as a housekeep-
ing gene if it was found to be expressed in at least 75%
of the total number of cells and tissues for that particu-
lar organism. This approach was used to identify both
the mouse and human housekeeping genes. These 2 lists

of housekeeping genes were then combined to generate
a unique list of housekeeping genes, assuming one-
to-one homology mapping between human and mouse
genes. This combined list of unique housekeeping genes
was used as background data.

Potential signaling pathway identification
The background signaling pathway path data was used
to identify the potential signaling pathways for a particu-
lar gene expression data set. As input we took the gene
expression data matrix of log2 transformation of RPKM/
FPKM/CPM values, an expression cut-off threshold to
identify the expressed genes, and a high expression
threshold (generally an expression value greater that the
expression value of the peak of distribution) to calculate
the activity score of the pathways.
Processing steps

(1) From the gene expression data set, first we
calculated the average expression value of the
replicates and then identified the expressed genes
by using the cut-off threshold described above.

(2) From the background path data we obtained only
those paths for which all the protein factors are
expressed according to the input gene expression
data. This set of paths is treated as potential
signaling pathway paths for the gene expression
data set.

Ranking of the potential signaling pathways
For each potential signaling pathway, we first calculated
the proportion of active molecules (defined as highly
expressed genes based on the above high expression
threshold) for each path. We then summed all the pro-
portions of all the paths for the pathway and divided the
total proportion value by the total number of paths of
the pathway. This final value was termed the Activity
score (As) for a pathway and mathematically can be writ-
ten as:

As ¼
Pn

i¼1pi
n

Where pi denotes the proportion of active molecules
in each path and n denotes the number of downstream
TFs for the pathway. Next we plotted the values of n
and As to display the results of top ranked active signal-
ing pathways in the upper positions.

Assessment of SPAGI false positive rate
The SPAGI false positive rate was obtained by randomly
assigning gene expression data and then re-performed
the SPAGI analyses. The number of highly ranked active
pathways for each sample was then counted. The false
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positive rate for highly ranked pathways was obtained by
dividing the number of highly ranked pathways obtained
from the randomly assigned data by the number of
highly ranked pathways obtained from the original sam-
ple. GO analysis was also performed on the randomly
assigned gene expression data used to determine the
SPAGI false discovery rate. Each GO analysis was per-
formed separately using the online version of Enrichr for
biological processes [29]. Results were filtered to retain
only the significant terms and for signaling GO terms
using the raw p-value. The false positive rate for the GO
analysis was calculated by dividing the number of highly
ranked pathways obtained via the randomly assigned
data by the number of highly ranked pathways obtained
from the original data.

Results
The ability of SPAGI to identify known, critical,
tissue-specific signaling pathways was tested using four
cell types obtained from three different gene expression
data sets (two are RNA-seq and one is microarray).
These four cell types were chosen as there is an exten-
sive body of literature for them that has already identi-
fied critical pathways, thus enabling biological validation

of the SPAGI output. The first data set used is from
mouse dental epithelial cells at the development stage
E13.5 (n = 3) [30]. The remaining two data sets were
from the ocular lens: one is a newborn mouse lens data
set that consists of gene expression profiles from lens
epithelial cells (LECs; n = 3) and lens fiber (LF) cells (n
= 3) [31]; the other data set is from human pluripotent
stem cell-derived ROR1+ LEC–like cells (n = 2) [32].

SPAGI analysis of tooth
Published data have shown that BMP and WNT
(through FZD receptors) signaling pathways are import-
ant for embryonic mouse tooth development [30]. Loss
of function of BMPR1A in dental epithelial cells reduces
WNT expression and prevents tooth formation [30]. To
test whether SPAGI can identify BMP and WNT/FZD
pathways from published dental epithelial cell gene ex-
pression data, we applied the SPAGI method to gene ex-
pression data from embryonic development stage E13.5.
After all filtering, we have obtained 14,657 specific paths
(i.e., 14.25% of total paths) for the dental epithelial cell.
This analysis revealed SPAGI identified both the
BMPR1A and FZD7 receptor-mediated pathways (Fig. 2),
together with a range of other pathways.

Fig. 2 The result of mouse embryonic dental epithelium cell at E13.5. The red color indicates the known pathways. The details of BMPR1A pathway is
shown in the figure
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SPAGI analysis of lens gene expression data
A large number of studies over decades have described
the requirement for different signaling pathways during
lens development. As summarized in a recent review by
Cvekl and Zhang [33], while critical lens pathways have
been broadly identified, the precise R/K/TF signaling
paths utilized within each pathway are not fully under-
stood, nor are the path nodes (typically Ks and TFs)
where different signaling pathways intersect. An accurate
method for comprehensively identifying R/K/TF paths
that operate within lens (and other) tissue is therefore
needed. For example, the FGF pathway induces the
pre-placodal region required for lens formation, as well
as subsequent proliferation of LECs and differentiation
of LECs to LF cells. The BMP pathway is also involved
in pre-placodal induction, invagination of the lens pla-
code, LEC proliferation and survival, and LF cell differ-
entiation. The FZD pathway works as an inhibitor at the
pre-placodal region, and in LEC adhesion, integrity and

polarity. NOTCH signaling controls lens growth and
acts as a differentiator for both LECs and LF cells. Sig-
naling through different integrins is required early in
lens differentiation, and for cell adhesion, lens capsule
assembly and normal development of both LECs and
LFs. Cadherins are required for appropriate polarity, ad-
hesion and survival of LECs, and for LF cell elongation.
EPHs and Ephrins are involved in cell adhesion and po-
larity, and LF cell elongation and alignment. The TGFβ
pathway acts as an inhibitory signal in the pre-placodal
region for proper lens growth, and is implicated in lens
diseases such as anterior subcapsular cataract and pos-
terior capsule opacification. Critically, how molecular in-
tegration of all these pathways occurs during lens
development or formation of different cataract subtypes
is currently unclear [34].
Analysis of published mouse LEC gene expression data

[31] using our SPAGI method identified all of the path-
ways mentioned above (Fig. 3). After all filtering this

Fig. 3 The result of newborn mouse lens epithelial cell. The red color indicates the known pathways. The details of FGFR1 pathway is shown in
the figure
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analysis gave us 25,624 specific paths (i.e., 24.92% of
total paths) for the mouse LEC. Moreover, the activity
score with the number of downstream TFs was able to
preferentially rank these known critical lens pathways
over other pathways identified within the mouse LEC
data. Analysis of a large-scale source of human LECs
(ROR1+ cells) [32] similarly identified the known lens
signaling pathways (Fig. 4). This analysis also gave us
23,665 specific paths (i.e., 23.01% of total paths) for
ROR1+ cell after all filtering.
Analysis of published mouse LF cell data shows

that, as expected, LF cell signaling pathways are very
similar to LECs (Fig. 5). We have obtained 13,790
specific paths (i.e., 13.41% of total paths) after all
filtering for mouse LF cell. Differences in the rank-
ing of particular pathways provide indications of
how these pathways are integrated in the transition
from LECs to LF cells (e.g., EPHA2 in Figs 3, 4 and
5). Overall, these results show that the SPAGI R
package can accurately identify and rank known,
critically-important signaling pathways from the gene
expression profiles of different cell and tissue types.
As shown in Figs. 2 to 5, the SPAGI approach iden-
tifies each specific R, K and TF within each path

and pathway, thereby enabling critical pathway-spe-
cific nodes to be identified, as well as critical nodes
that interconnect between different pathways. Add-
itionally, new candidate critical tissue regulators can
be identified via the activity score ranking. For ex-
ample, KREMEN1and KREMEN2 are known to regu-
late Wnt signaling pathways [35, 36], so these can
be the potential active pathways for lens. Also
PVRL3 is known to be associated for congenital ocu-
lar disease [37], so this can also be a potential active
pathway for lens.

Comparison of SPAGI analysis on species-specific vs
combined PPI data
To determine the breadth of PPI data coverage
within the mouse and human STRING datasets, we
also performed the SPAGI analysis separately for the
human and mouse query data – i.e., mouse samples
compared only against the mouse STRING data and
the human sample compared only against the human
STRING data (see Additional File 1: Figures S1–4).
From these results we see that a number of known
pathways were identified for each sample. However,
pathways known from previous studies to be

Fig. 4 The result of human PSC-derived ROR1+ cell (lens epithelial cell-like). The red color indicates the known pathways. The details of ROR1
pathway is shown in the figure

Kabir et al. BMC Systems Biology 2018, 12(Suppl 9):120 Page 83 of 134



important for particular cell types were not identi-
fied using this species-specific STRING analysis ap-
proach. For example, the ROR1 pathway was not
identified in the human ROR1+ cell sample, despite
ROR1 being critical for capturing this population of
human LECs. Similarly, the EPHA2 pathway was not
identified within the mouse LF cell samples, despite
this being a key pathway that leads to disease (i.e.,
cataract) if disrupted [38]. Thus, combining the
mouse and human PPI datasets prior to SPAGI ana-
lysis led to more biologically-relevant results for the
query samples than obtained when using the human
and mouse PPI data separately.

Analysis of the SPAGI false positive rate via random
expression level assignment
We investigated the false positive rate of the SPAGI
method by randomly assigning gene expression data
using both the mouse dental epithelial cell and mouse

LEC gene expression data sets. First, we have ran-
domly assigned the gene names amongst the gene ex-
pression values for each sample and then re-
performed the SPAGI analyses as done for the ori-
ginal data. We then counted the number of highly
ranked active pathways for each sample, and looked
for identification of known pathways within the high
ranked active pathways to investigate the SPAGI false
discovery rate for known pathways from the randomly
assigned expression data. Next we calculated the false
positive rate for each sample utilizing the number of
high ranked pathways of randomly assigned expres-
sion sample by dividing the number of high ranked
pathways of original sample. We repeated this analysis
10 times for each sample and calculated the average
false positive rate for each sample. The average false
positive rate for mouse dental epithelial cell is 0.128
and for mouse LEC gene expression data is 0.022 (see
Additional File 1: Tables S1 and S2).

Fig. 5 The result of mouse lens fiber cell. The red color indicates the known pathways. The details of EPHA2 pathway is shown in the figure
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Analysis of the SPAGI false positive rate versus GO
analysis
We also compared the performance of the SPAGI
method with GO analysis method. The GO analysis
was performed based on the unique set of molecules
(i.e., Rs, Ks and TFs) from the original mouse dental
epithelial cell and mouse LEC data. For comparison,
we also performed GO analysis based on the same
random assignment used to determine the SPAGI
false discovery rate described above. Each GO ana-
lysis was performed separately using the online ver-
sion of Enrichr [36], and captured all the results
associated with biological process. These results were
filtered to retain only the significant terms based on
raw p-value and for signaling GO terms. Finally we
searched for known pathways for each sample. Add-
itional File 1: Table S3 shows the comparison results
of the original cell samples, and Additional File 1:
Tables S4 and S5 show the comparison results ob-
tained using the randomly assigned cell samples. The
results show that both the SPAGI and GO methods
can identify almost all the known pathways for the
original sample data, although the GO method did
not identify the Cadherins pathways in the mouse
LECs data. However, the results of the randomly
assigned gene expression data showed that the false
identification rate of known pathways by SPAGI was
much smaller (0–0.2) than for the GO analysis
method (0.4–1) (Additional File 1: Table S6).

Discussion
In this manuscript we described a new bioinformatics
method, SPAGI, that can simultaneously and compre-
hensively discover the set of active signaling path-
ways and their putative defined path structures. Our
evaluation demonstrates that the SPAGI method can
accurately identify known and biologically-relevant
signaling pathways from multiple gene expression
data sets across different tissue types, while providing
specific detail of the molecular cascades involved in
these pathways. The SPAGI method therefore pro-
vides capabilities not available with other current
open-source software. While some pathway analysis
software is commercially available (e.g, IPA), SPAGI
provides a free and open-source approach that can
routinely provide updated data through updates to
the STRING database.
In addition to validation of the SPAGI method by

comparison against known biology, the SPAGI
approach was also validated by assessment of its
false positive rate - both on its own and in compari-
son to the false positive rate obtained via GO ana-
lysis. The SPAGI approach identified few pathways
when using randomly assigned gene expression data

for the mouse dental epithelial cells (0.128) and
mouse LECs (0.022). Moreover, the results of the
randomly assign gene expression data showed the
false positive rate was smaller for the SPAGI method
(0–0.2) than the false positive rate obtained via the
GO analysis method (0.4–1). These data provide
strong support for SPAGI being both more sensitive
and more specific than pathway identification via
GO analysis alone.
To assess whether the SPAGI method is best ap-

plied to species-specific PPI data or combined/multi--
species PPI data, were performed SPAGI analysis on
both single species and combined species PPI data.
While large numbers of pathways were identified via
the single species analyses, some biologically-relevant
pathways were not identified. This included the ROR1
receptor-mediated pathway not being identified via
the human PPI data, and the EPHA2 pathway not be-
ing identified in the mouse LF cell data. As both
these pathways appear to be important in their re-
spective cell types [32, 38], SPAGI is currently best
performed (i.e., identifies the largest number of
biologically-relevant pathways) using the combined
species PPI data.
It should be noted that as currently applied, the

SPAGI method detects receptor-mediated signaling
pathways. Modification of the SPAGI approach could
be used to identify other cellular control mechanisms
involving PPIs independent of TFs. Also, at this stage
it is not clear whether the other pathways highly
ranked by the activity score are truly active, as pro-
tein expression and protein activation state (e.g., via
phosphorylation) within a tissue cannot be deter-
mined from gene expression data. Nonetheless, the
breadth of data provided by SPAGI can provide spe-
cific testable hypotheses for cell biologists to guide
functional genomic studies to identify critical regula-
tors involved in health and disease. As such, more
studies are required to investigate these pathways.

Conclusions
The SPAGI method represents a new, interesting and
open-source method to comprehensively identify im-
portant receptor-mediated signaling pathways from a
gene expression data set. We have applied our
method to four different gene expression data sets
from three different cell types and shown that the
SPAGI method correctly identified all the known sig-
naling pathways for the cells, with low false discover
rate and lower false discovery than using GO analysis
alone. Our results suggest that SPAGI can be a useful
approach to identify the potential active signaling
pathways given a gene expression profile.
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Additional file

Additional File 1: Figure S1. The result of mouse embryonic dental
epithelium cell at E13.5 with only the mouse PPI background pathway
data. Figure S2. The result of newborn mouse lens epithelium cell with
only the mouse PPI background pathway data. Figure S3. The result of
human PSC-derived ROR1+ cell (lens epithelium cell-like) with only the
human PPI background pathway data. Figure S4. The result of newborn
mouse lens fiber cell with only the mouse PPI background pathway data.
Table S1. False positive rate calculation for SPAGI method of randomly
assigns gene expression values of new born mouse lens epithelial cell
and mouse tooth epithelial cell at embryonic day E13.5. Table S2. SPAGI
test result for randomly assign gene expression values of new born mouse
lens epithelial cell and mouse tooth epithelial cell at embryonic day E13.5.
Table S3. Identification of known pathways by SPAGI and GO analysis
methods. Table S4. Summary of known pathways identification by SPAGI
and GO methods for randomly assigns genes of mouse lens epithelial cell.
Table S5. Summary of known pathways identification by SPAGI and GO
methods of randomly assigns genes for mouse tooth epithelial cell. Table
S6. False positive rate of SPAGI and GO analysis method for known
pathways. (PDF 658 kb)
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analysis for putative gene regulatory network identification; TF: Transcription factor
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