
Saeed et al. BMC Systems Biology          (2018) 12:146 
https://doi.org/10.1186/s12918-018-0670-y

SOFTWARE Open Access

Parameter estimation of qualitative
biological regulatory networks on high
performance computing hardware
Muhammad Tariq Saeed1, Jamil Ahmad1,6*, Jan Baumbach2, Josch Pauling3, Aamir Shafi4,
Rehan Zafar Paracha1, Asad Hayat1 and Amjad Ali5

Abstract

Background: Biological Regulatory Networks (BRNs) are responsible for developmental and maintenance related
functions in organisms. These functions are implemented by the dynamics of BRNs and are sensitive to regulations
enforced by specific activators and inhibitors. The logical modeling formalism by René Thomas incorporates this
sensitivity with a set of logical parameters modulated by available regulators, varying with time. With the increase in
complexity of BRNs in terms of number of entities and their interactions, the task of parameters estimation becomes
computationally expensive with existing sequential SMBioNET tool. We extend the existing sequential
implementation of SMBioNET by using a data decomposition approach using a Java messaging library called MPJ
Express. The approach divides the parameters space into different regions and each region is then explored in parallel
on High Performance Computing (HPC) hardware.

Results: The performance of the parallel approach is evaluated on BRNs of different sizes, and experimental results
on multicore and cluster computers showed almost linear speed-up. This parallel code can be executed on a wide
range of concurrent hardware including laptops equipped with multicore processors, and specialized distributed
memory computer systems. To demonstrate the application of parallel implementation, we selected a case study of
Hexosamine Biosynthetic Pathway (HBP) in cancer progression to identify potential therapeutic targets against cancer.
A set of logical parameters were computed for HBP model that directs the biological system to a state of recovery.
Furthermore, the parameters also suggest a potential therapeutic intervention that restores homeostasis. Additionally,
the performance of parallel application was also evaluated on a network (comprising of 23 entities) of Fibroblast
Growth Factor Signalling in Drosophila melanogaster.

Conclusions: Qualitative modeling framework is widely used for investigating dynamics of biological regulatory
networks. However, computation of model parameters in qualitative modeling is computationally intensive. In this
work, we presented results of our Java based parallel implementation that provides almost linear speed-up on both
multicore and cluster platforms. The parallel implementation is available at https://psmbionet.github.io.
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Introduction
A long-standing goal of biomedical research is to identify
potential therapeutic targets of complex human diseases
(e.g. Cancer, HIV etc.) by employing system level model-
ing and analysis approaches. The study of bio-molecular
interactions to understand genotype-phenotype relation-
ships constitutes the core of Systems Biology [1]. The
dynamics of biological regulations can be represented
using variety of modeling frameworks [2]. Thesemodeling
approaches can be broadly categorized into continuous
[3], discrete [4] and hybrid methods [5]. Continuous mod-
eling approaches that use ordinary differential equations
require precise parameter information, which in many
cases cannot be extracted from noisy data obtained
through experimental methods, such as microarrays,
spectroscopy and biochemical kinetics. Qualitative mod-
eling, on the other hand, inspired mainly from the work
of Kauffman [6], and René Thomas [7, 8] uses a qual-
itative abstraction that allows to focus on logical con-
nections between variables of a network rather than
precise expression levels. Due to finite levels of expres-
sion, the degree of difficulty for parameter computation
is less in qualitative modeling. The qualitative model-
ing framework [7, 8] can be used to capture important
properties in biological networks such as stable steady
states [9], bifurcation points, and cycles (homeostasis)
[10]. These properties provide key insights into identi-
fication of the therapeutic targets [11] and further vali-
dation in wet labs. In order to model a BRN using this
framework, values of logical parameters have to be pro-
vided. These model parameters are usually unknown and
can be inferred using formal method technique such as
Model Checking [12].

Parameters estimation throughmodel checking
Model Checking [13] is an automated technique for
verification of complex hardware and software systems.
Initially developed for concurrent program verification,
model checking is now an industry standard methodology
for proving correctness of digital circuits, security proto-
cols and embedded systems. In many aspects, biological
systems are similar to massively parallel software sys-
tems, characterized by non-deterministic behavior [14].
This analogy allows to use model checking for analy-
sis of large number of possible outcomes of a biological
model, similar to predicting behavior of a concurrent
program.
Model checking approaches are differentiated on

the basis of how they interpret the notion of time;
Linear [15] or branching [12]. Due to branching nature of
Computation Tree Logic (CTL), it is suitable to express
properties of non deterministic dynamical systems such
as BRNs, where a current state can have more than one
successor states.

Model Checking deciphers model parameters by using
known observations about the expressions of the entities
involved in a BRN [16, 17]. The sequential proceedure
for estimation of logical parameters has been elucidated
in Fig. 1. A Model checking tool takes a model M of
BRN and its observations, formally expressed as prop-
erty φ and then exhaustively explores M to verify φ.
SMBioNet (Selection of Models of Biological Networks)
[18] is an application which is based on qualitative frame-
work, and uses NuSMV [19] as a model checker to find
logical parameters of those models that satisfy known bio-
logical observations. However, due to large number of
model parameters and its sequential implementation, this
tool can be used for BRNs with number of genes less
than 7 [20]. Modern High Performance Computing (HPC)
platforms equipped with multicore processors and dis-
tributedmemory clusters offer huge computational power
to cope with the complexity of parameter inference for
large BRNs.
Among the sequential algorithms that solve the prob-

lem of parameter inference by employing model checking,
Bernot et al. [16] introduced this approach by finding
model parameters for mucus production network in
Pseudomonas aeruginosa. They implemented this
approach in SMBioNet, which has been used for analysis
of several BRNs, including biosurfactants production in
P. aeruginosa [20], tail resorption network controlling
metamorphosis in tadpole [18] and immunity control in
bacteriophage lamda [21].

Parallel parameter estimation methods
The use of parallel computing techniques to reduce com-
plexity of biological systems has recently gained wide
interest [22]. Barnat et al. [23] introduced an algorithm for
partitioning of parameter estimation through Linear Tem-
poral Logic (LTL) based parallel model checking. They
defined the notion of Parametrized kripke Structure (PKS)
to represent entire state space of model and parameters
as single object, which is explored by multiple threads
concurrently. On multicore platform with 8-cores, their
parallel implementation achieved up to 6x speedup on
regulatory networks of G1/S Cell Cycle Transition [24]
and Ammonium Transport in E. Coli [25] using parallel
LTL model checker [26].
Klarner et al. [27] introduced a technique for param-

eter identification by using LTL based colored model
checking from behavioral properties and time series data
[28]. The distribution of parameter space lead to roughly
linear speed-up on 8-core platform on models of bacte-
riophage λ [29] and mammalian cell cycle [30]. A paral-
lel approach to accelerate sequential algorithm was pre-
sented in [31] with preliminary results obtained through
a wrapper implementation in C on top of existing Java
implementation of SMBioNet [18].
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Fig. 1 Flow of Parameter Estimation Approach using Model Checking. The sequential approach for parameter estimation exhaustively enumerates
through all the possible combinations of logical parameters. For each parameter, it constructs a model which is evaluated against experimental
observations by employing model checking. If the result of model checking is true, the model is appended in the list of selected models

The previous work has made significant contributions
for development of LTL based efficient parameter esti-
mation techniques [32–34]. On the other hand, it is
established that for biological systems, which are non-
deterministic, CTL is more suitable due to its branching
nature [16, 35] and structured patterns for querying bio-
logical pathways [36]. Due to inherently sequential nature
of CTL algorithm [37], it can not scale on modern multi-
core and Cluster platforms. In this study, we present
results of our parallel implementation that exploits appli-
cation level parallelism in order to accelerate parameter
estimation in qualitative modeling of biological networks.
We employ a data parallel decomposition scheme that
provides almost linear speed-up on multicore and clus-
ter platforms . We extend the existing implementation of
SMBioNet using the MPJ Express software, which is capa-
ble of executing on shared and distributed memory HPC
hardware [1]. The details of the parallel implementation
are accessible online at https://psmbionet.github.io.

Methods
Qualitative modeling framework
In this section, we briefly revisit the formal framework
introduced by René Thomas as originally found in litera-
ture [38, 39].

Definition 1 (Biological Regulatory Network) “A Bio-
logical Regulatory Network (BRN) is a labeled directed
graph G = (V ,E), where V is a finite set of vertices, also
called biological entities and E ⊆ V × V is the set of
interactions.

The successors and predecessors of a biological entity
are represented as G+

νi and G−
νi , respectively. Each vertex

is provided with a limit �νi = ∣
∣G+

νi

∣
∣ when

∣
∣G+

νi

∣
∣ ≥ 1, and

�νi = 1 when
∣
∣G+

νi

∣
∣ = 0. The edges are labeled by a pair

(τ , σ), where τ ≤ �νx is the threshold of influence, and
σ = {+,−} is called sign of interaction (+ for activation

and - for inhibition). Each entity νi ∈ V has its abstract
expression level in the set Eνi =

{

0, 1, ...., rνi
}

where rνi ≤ lνi .
The state of a BRN is a configuration of expression levels
of all biological entities at a particular time instant.

Definition 2 (State) A State of BRN is n-tuple
S = {

sν1 , .., sνn
}

, ∀sνi ∈ Eνi , where sνi is the abstract
expression level of νi.

The state space of a BRN is a cartesian product obtained
on the range of expression levels of all entities and can be
computed using Formula 1.

n
∏

i=1
Eνi (1)

In a given state, each biological entity νi is regulated by
its predecessors G−

ν , formally denoted as set of resources,
Wνi , defined as follows;

Definition 3 (Resources) Let G = (V ,E) be a BRN.
The set of resources Wνy of a variable νy ∈ V, at level
sνy , is defined as; Wνy =

{

νx ∈ G−
νy

∣
∣
(

sνx ≥ τνx,νy and

ανx,νy = +)

or
(

sνx < τνx,νy and ανx,νy = −) }

In order to determine resources of an entity νi, the pres-
ence of activators and absence of inhibitors is considered
as resource. Consequently, Wνi contains inhibitors and
activators of νi. The targets towards which the levels of
variables νi evolve, depend on the set of positive inte-
gers Kνi

(

Wνi

)

, also called logical parameters, indexed by
Wνi . The evolution operator (�) in the following formula
shows next state towards which νi evolves.

sνi � Kνi

(

Wνi

) =
⎧

⎨

⎩

sνi + 1 if sνi < Kνi

(

Wνi

)

sνi − 1 if sνi > Kνi

(

Wνi

)

sνi if sνi = Kνi

(

Wνi

)
(2)

https://psmbionet.github.io
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When variable νi has a certain expression level sνi , its evo-
lution has three possibilities: (1) When sνi < Kνi

(

Wνi

)

,
the value of sνi is incremented by one unit. Conversely,
if sνi > Kνi

(

Wνi

)

, sνi is decremented by one unit.
However, sνi does not evolve and remains constant, if
sνi = Kνi

(

Wνi

)

.
The number of possible parameter combinations

(parametrization), even for a small network, can be huge.
Let G = (V ,E) be a BRN with n variables, and

∣
∣G−(vi)

∣
∣

be the cardinality of the regulators of νi ∈ G, then num-
ber of possible parametrization can be computed using
formula 3.

n
∏

i=1

(

�vi + 1
)2|G−(vi)|

(3)

Definition 4 (State Graph) Let G be a BRN and sνa
denotes the expression level of biological entity a in a state
s ∈ S. Then the state graph R = (S,T) of G = (V ,E)

is a directed graph , where S represents set of states, and
T ⊆ S × S is a relation between states, also called the
transition relation, such that s → s′ ∈ T iff:

• ∃ a unique x ε V such that sνx �= s′νx and
s′νx = sνx � Kx

(

Wνx

)

, and
• ∀ y ε V \ {x} s′νy = sνy .” [38, 39].

Different updating schemes have been proposed for
qualitative modeling of biological regulatory networks.

These updating methods follow synchronous or asyn-
chronous schemes [40]. In a synchronous qualitative
model, all variables in the network evolve simultaneously
with time. The synchronous mechanism is considered as
computationally less expensive [40]. However, it is also
less accurate because biological systems are considered
asynchronous where changes in expression level of genes
or proteins are not concurrent and take place at different
time points [16, 21]. In this work, we use asynchronous
updating scheme for construction of state graph. The
asynchronous scheme is computationally expensive and
therefore, we use parallel computing to reduce processing
time [40].
To explain working of asynchronous qualitative model-

ing framework, we apply qualitative framework on BRN of
pseudomonas aeruginosa. It is an opportunistic pathogen,
commonly found in environment and responsible for
mucus production in human lungs effected with cystic
fibrosis. The BRN of pseudomonas aeruginosa is shown in
Fig. 2a. It comprises of two entities i.e. ALGU (represented
by node/vertex ’x’) and its inhibitor protein Anti-ALGU
(represented by node/vertex ’y’). The activation and inhi-
bition relationships are represented by using weighted
directed edges by using Definition 1.
In order to measure parameters, experimental observa-

tions are encoded into temporal logic formulas. In case of
pseudomonas aeruginosa, Fig. 2b shows two CTL formu-
las ψ1 and ψ2 that represent normal homeostasis and a
pathogenic response receptively. In normal response, the
expression level of gene x, starting from (x = 0), does

a b

c
d

Fig. 2 Qualitative Modeling Framework applied on a simple BRN. a BRN of Pseudomonas aeruginosa [16] shown as weighted directed graph by
using Definition 1. The nodes/vertices represent genes whereas edges represent activation(s) and inhibition(s). The network comprises of two
entities: x represents ALGU and y represents its inhibitor. b Experimental observations encoded as CTL (Computation Tree Logic) formula by using
Definition 5. The formula describes a behavior in which the system exhibits normal and pathogenic responses (over-expression of gene X) in a
single model that encodes two wet-lab observations is used for finding model parameters. c-a combination of logical parameters that satisfy CTL
observations. d The dynamic model of the BRN is shown as a State Graph (see Definition 4). The state graph shows two important behaviors i.e.
oscillation (homeostasis) as a cycle and a stable state (2,1) that represents a pathogenic behavior
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not reach (x = 2). Whereas, when a pathogenic condition
arises, the biological system reaches to a state where gene
x is over-expressed finally leading to mucus production.
Figure 2c shows model construction for one parame-

ter combination that satisfies experimental observations.
For each state in biological system, its successor states
are generated using Definitions 3 and 4. The model con-
struction results in a dynamic model that provides use-
ful insights such as stable steady states and deadlocks.
Figure 2d shows the dynamic model as a State Graph(See
Definition 4).

Model checking
Model Checking is used to evaluate the dynamic modelM
against experimental observations expressed as formula
CTL φ. The verification process determines correctness
of φ inM, by employing a graph-theoretic procedure that
exhaustively explores the entire state space of the sys-
tem. Finally, model checker confirms correctness of φ,
if formula is satisfied, or it produces a counter example
to provide a trace of the execution path that violates φ.
The counter example generation is a useful feature for
diagnostic purposes.
In a CTL formula, We denote boolean true as � and

boolean false as⊥. The formula (sνi = n) is true iff expres-
sion level of variable νi, in current state, is equal to n. The
CTL formula combines a set of connectives: ¬(negation),
∧ (logical AND), ∨ (logical OR) and ⇒ (implication) with
temporal operators. The temporal operators are pairs of
symbols; the first element of which is A (all paths) or E (at
least one path), followed by X (next state), F (any future
state) or G (all future states).

Definition 5 (CTL Formula) Let G = (V ,E) be a BRN.
A CTL formula � on G is defined as follows:

• atomic formulas are �, ⊥ or any atomic proposition
of the form (νi = n), where νi is a variable in state
graph and n ∈ [

0, �νi

]

.
• If φ and ψ are atomic formulas, then so are (¬φ),

(φ ∧ ψ), (φ ∨ ψ), (φ ⇒ ψ), Xφ, EXφ, AGφ, EGφ,
EFφ, AFφ, (Aφ

⋃
ψ) and (Eφ

⋃
ψ)

Parallel implementation in MPJ express
In general, parallel computations are divided into two cat-
egories based on communication requirements during the
computation phase. The applications that do not need
any communication during different computation phases
are known as embarrassingly parallel computations. On
the other hand, the applications that require frequent
communication in between different computation phases
are generally known as synchronous computations. One
programming approach to implement the embarrassingly
parallel computations is to use the “master/slave” model.

Since the parameter estimation problem that we are tack-
ling in this study is embarrassingly parallel in nature, we
employ the master/slave model to produce the parallel
code [1].
Embarrassingly parallel applications are parallelized

using master/slave model typically involving three stages.
In the first stage, the master process reads the input data,
performs domain decomposition, and communicates the
relevant chunk to each slave process. The second stage
is the computation stage, where all worker processes per-
form parameter estimation on their own data. During the
third and the final stage, all slave processes communicate
results back to the master process that generates output
for the end user. Out of all three stages, the second stage
i.e. the computation phase typically requires themost pro-
cessing time. In embarrassingly parallel applications, there
is no communication required during computation phase,
leading to almost linear speedup [1].

Problem decomposition
Here, we use two approaches for parameter decomposition [1].

• The first approach exploits the data parallel nature of
parameter estimation problem [31]. The parameter
state space is partitioned among available processors.
We refer to this as coarse-grained parallelism that
employs high level data parallelism.

• The second approach harnesses fine-grained
parallelism available in parallel model checkers
[26, 41–43] where the underlying algorithms
partitions a state graph for verification of biological
behaviors encoded in temporal logic.

Coarse grained parallelism
The first partitioning scheme we use in our study
divides parameter space into mutually exclusive regions—
explored by different worker processes. Since a newmodel
needs to be constructed for each parameter combination,
these regions can be explored in parallel by a collection
of processes referred to as processing elements (PE). Each
PE inspects only a subset of parameter space; and for each
combination in that space, a state graph/model is gen-
erated. The verification is performed by invoking model
checker as an external process to determine whether
CTL observations are true. Finally, a reduction operation
involves a communication step for receiving accepted sets
of parameters. Treating each valuation of parameter sep-
arately allows to formulate task of parameter estimation
as high level data parallel problem and the decompo-
sition is embarrassingly parallel without any significant
communication.
In this study, we use master/worker model of com-

putation to implement high level data parallelism. An
important step in parallelizing the code is to per-
form domain decomposition or partitioning of the
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input data at the master process. We employ primitive
block domain decomposition to produce equally-sized
independent chunks of input data for each worker
process.
We implement our partitioning strategy using the cur-

rent implementation of SMBioNet. Figure 3 shows pseu-
docode that uses coarse grained decomposition. The for
loop (line 11) in Fig. 3 shows that each worker process
performs a block decomposition in order to identify a sub-
set of the total parameter space it needs to explore. For
each combination in that space, a new model is gener-
ated and provided to symbolic model checker NuSMV
[19, 44] to determine correctness of CTL properties. If
model checker satisfies the formula, the parameter esti-
mation algorithm appends the model in the list of selected
models.
Once the computation phase is over, the reduction step

is required to write selected model parameters in a single
output file. At this point, each worker process sends its list
of selected parameters to the master process that receives
selected parameters and produces a single output file. The
complexity of the communication involved in reduction
step is linear in terms of number of models satisfying the
CTL property.

Fine grained parallel decomposition
Although a high-level decomposition scheme provides a
good partitioning strategy for distributed memory archi-
tectures (HPC Clusters) due to low communication cost,
a lower level decomposition of parameter estimation

is motivated by increasing computational capabilities of
sharedmemorymulticore computers. Moreover, themax-
imum speedup achieved by high-level data parallelism is
bounded by serial factor to evaluate one set of param-
eters. In theory, the integration of a multi-threaded
model checker implementation such as Java Temporal
Logic Framework (JTLV) [45] at multicore level can fur-
ther reduce processing time. But the potential speedup
depends on the granularity of tasks. In practice, the
parameter estimation problem comprises of large number
of small ’work units’ such that the complexity of each task
is O(|S| .ψ). The symbolic model checking algorithm uses
Binary Decision Diagrams (BDDs) as internal data struc-
ture for state representation. The multi-threaded pack-
ages such as JTLV do not parallelize the core operations
involved in BDD computation. In turn, a task-parallel
simulation using JTLV can provide relatively better per-
formance when several CTL formulas are to be verified
independently. One such case is the use of temporal logic
patterns to check all the potential qualitative states for
a specific property [36]. The related work on paralleliza-
tion of core BDD operations for multicore processors is
notably absent [46]. van Dijk and van de Pol [47] introduce
a BDD package Sylvan that demonstrates a non-linear
speedup up to 12X on large models.

Results and discussion
In order to validate results of our parallel implementa-
tion, we undertake case study of Hexosamine Biosynthetic
Pathway (HBP) and its involvement in Cancer [1, 48].

Fig. 3 Pseudo-code of parallel implementation employing coarse-grained parallelism
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Additionally, for performance evaluation we use three
models of biological pathways selected from the lit-
erature. These include tail resorption network dur-
ing tadpole metamorphosis [18], immunity control in
lambda phage [29, 35], MAL-associated pathway con-
trolling Cerebral Malaria [39] and qualitative model of
Fibroblast Growth Factor (FGF) Signalling in Drosophila
melanogaster [49].

Case study 1: role of O-linked N-acetylglucosamine
transferase (OGT) in cancer
Cancer caused by complex genetic alterations is a diverse
group of diseases. The amplification of oncogenes such
as MYC, PI3K and EGFR and down regulation of tumor
suppressor proteins is well established. There is a grow-
ing evidence about glycolytic fueling of cancer cells that
results in oncogenic activation, evasion of apoptosis and
proliferation of cancer cells. Fardini et al. [50] proposed

O-GlcNAcylation as a new hallmark and approach for
treatment of cancer. Increased expression of OGT has
been reported in various types of cancer, including cancer
of breasts, lungs, liver, bladder, endometrium, prostate,
pancreas, and colon [51–57].
A qualitative model of the Hexosamine Biosynthetic

pathway (HBP) explaining the association between hyper
O-GlcNAcylation and cancer progression was developed
by [48]. The qualitative BRN (see Fig. 4a comprised of 9
entities and three CTL observations for parameters com-
putation. (See Fig. 4). The first CTL observation searches
for a stable state with high expression of oncogenes.When
a dynamic model, in the form of a state-graph is gener-
ated (Fig. 5b, it shows a deadlock state (1,0,1,1,1,1,1,0,1)
along with normal homeostasis of P53-MDM2 oscilla-
tions (Fig. 5c. From a qualitative state (1,0,1,1,0,0,1,0,0),
the biological system can follow different trajectories,
leading to the deadlock state (1,0,1,1,1,1,1,0,1) or normal

a

b

Fig. 4 a Qualitative Biological Regulatory Network (BRN) of Hexosamine Biosynthetic Pathway (HBP) intersection with PI3K-mTOR-Myc signaling and
P53-MDM2 signalling axis. b CTL observations used in [48] to generate dynamic model in the form of stategraph (as shown in Fig. 5b. a HBP
intersection is shown with PI3K-mTOR-Myc siganling nd P53-MDM2 signalling axis. The increased flux of HBP is responsible for hyper
O-GlcNAcylation which is implicated in several types of cancers. HBP generates UDP-GlcNAC (Urdine diphosphate N-acetylglucosamine) which is
consumed by OGT. Hyper O-GlcNAcylation of CMyc triggers PI3K-mTOR-MYC signalling axis which is involved in cross talk with Forkhead box M1
(FoxM1). FoxM1 is further regulated by OGT. The qualitative BRN shows interconnections of important entities. The nodes/circles represent biological
entities whereas interactions between two entities are represented with arrows. There are two types of interactions: activations (labelled with
pointed green arrows) and inhibitions (labelled with blunt red arrows). The weight of the arrows indicate threshold of interaction. (see Definition 1).
b Three CTL observations used in [48] are listed. These CTL observations are used by parallel SMBioNet implementation for estimation of parameters
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a

b

c
Fig. 5 Role of OGT in Cancer Progression: Parameter Estimation, qualitative model generation and discovery of important properties(A-C). In (a)
Heatmap of four sets of logical parameters is shown. These parameters are computed from CTL observations used in [48] by using our Parallel
Implementation. The parameter sets are numbered from M1 to M4. b The stategraph is generated from parameter set M4 used in [48].The
stategraph comprises of 512 nodes and 2304 edges. The order of states in stategraph is (NFkB,P21,FoXM1,PI3K,P53,MDM2,OGT,OGA,Cmyc). (c) The
trajectories in the qualitative model show different possibilities reaching to the deadlock state (1,0,1,1,1,1,1,0,1) with high oncogenic expression
levels along with elevated OGT levels or homeostasis/cycle comprising of four states

homeostatic behavior (cycle). The exact course of a
biological system’s progression towards a target depends
on the order of successive alterations in gene expressions.
For example, sustained activation of OGT along with pos-
itive feedback fromCMyc results in a deadlock state. Once
the biological system reaches a deadlock state, it cannot
recover to normal homeostatic response or to another
qualitative state.
In order to suggest a potential therapeutic target that

forces the biological system to move from the deadlock
state to homeostasis, it is important to compute logi-
cal parameters for which the dynamic models do not
have qualitative state (1,0,1,1,1,1,1,0,1) as the deadlock
state. The computation of these parameters form the basis

of any therapeutic intervention to restore homeostasis.
Therefore, we modified CTL observations used in [48] by
eliminating the first CTL property (Fig. 4b. The source
code of input models used in this study is available as
Additional file 1. The new parameter configurations were
computed using our parallel implementation. As a result,
28 parameter sets computed using modified CTL are
rendered as heatmap in Fig. 6a. The heat-map suggests
four critical resources of OGT: {} denoting the absence
of CMyc (activator) and presence of OGA(inhibitor),
{

CMyc
}

denoting presence of CMyc and OGA, {OGA}
denoting absence of OGA and CMyc and

{

CMyc,OGA
}

showing presence of CMyc and absence of OGA (see
Definition 3).
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Fig. 6 a Parameter estimation after therapeutic intervention. b Trajectory showing recovery from high oncogenic levels to normal homeostasis. We
eliminate of CTL observation (OGT=1,OGA=0)→ EF(AG(OGT=1,OGA=0,PI3K=1,FoXM1=1,P21=0,CMyc=1)) that encodes the occurrence of the
deadlock state with high oncogenic expression levels. The parameter computation results show 28 different sets of logical parameters. These
models do not have the deadlock state (1,0,1,1,1,1,1,0,1) reported in [48]. The parameter estimation was performed using our parallel
implementation. The parameters are numbered from M1 to M2 and rendered as a heatmap. Each column represents a unique set of parameters.
The expression of parameters is represented with green rectangles whereas the down-regulated values are shown as orange rectangles. The result
shows that in order to avoid the deadlock state, the parameters of OGT must be at low expression. b The trajectory in the qualitative model
obtained from one of the 28 parameter sets show that from state (1,0,1,1,1,1,1,0,1), the system is able to reach to normal homeostasis (cycle). The
order of states is (NFkB,P21,FoXM1,PI3K,P53,MDM2,OGT,OGA,Cmyc)

The main difference between the two sets of parame-
ters: the ones having the deadlock state (1,0,1,1,1,1,1,0,1)
and those shown in Fig. 6 is that in the later sets, OGT-
CMyc loop is down-regulated. Since CMyc is the activator
of OGT, it should also be kept at a low expression level

along with OGT. Thus, the results suggest an integra-
tive therapeutic strategy for the treatment of cancer. The
qualitative trajectories in the modified model show that
the sustained down-regulation of these two genes results
in restoration of P53-MDM2 oscillations and recovery
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to normal homeostasis. One such trajectory is shown in
Fig. 6b. As the biological system progresses from one qual-
itative state to another, the changes in gene expression at
each step is highlighted in Fig. 6b. The simulation results
show that under the influence of computed logical param-
eters, the biological system moves from the qualitative
state (1,0,1,1,1,1,1,0,1) to a cycle comprising of four states:
(0,0,0,0,0,1,0,0,0), (0,0,0,0,0,0,0,0,0), (0,0,0,0,1,0,0,0,0) and
(0,0,0,0,1,1,0,0,0). This cycle serves as an important attrac-
tor for the normal homeostatic response to take over.

Case study 2: parameters scanning of the qualitative
model of fibroblast growth factor (FGF) signalling in
drosophilamelanogaster
Additionally, a large model of Fibroblast Growth Factor
(FGF) Signalling in Drosophila melanogaster, comprising
of 23 genes is considered as a benchmark to demonstrate
the use of HPC. We calculated parameters for an impor-
tant CTL property that leads to a stable state in FGFmodel
(Additional file 2).DrosophilaMelanogaster, a specie of fly
belongs to the family of Drosophilidae and is known gen-
erally as fruit fly or vinegar fly. It has been used as a model
to study cellular signaling involving growth factors that
may have played a role in transition from single cells to
more sophisticated multi-cellular organisms [58, 59]. The
role of growth factors regulation in cellular differentiation
towards the evolution of multicellular organisms is a well
studied topic in systems biology. The recent research work
carried out indicates that Fibroblast Growth Factor (FGF)
signaling plays an important role in inducing changes in
cellular behavior. The involvement of FGF in controlling
cellular behavior in mammals was first identified with the

discovery of FGF receptor in Drosophila melanogaster.
The low genetic redundancy of Drosophila makes it an
attractive model system to study FGF signaling. Thieffry
et al. constructed various logical models of different path-
ways implicated in Drosophila signaling [49]. We used
logical model constructed by Thieffry et al. [49] (available
in GINsim database [60]) to evaluate the performance of
our parallel approach. The logical model of FGF signaling
inDrosophila comprises of 23 entities it is shown in Fig. 7.
The state space of the model comprises of 8.3 × 106 quali-
tative states. The SMBioNet code of the model is provided
in Additional file 2.

Performance evaluation
We carried out performance benchmarking on afore-
mentioned networks. The running time (in seconds) and
observed speedup in multicore and cluster mode are
shown in Fig. 8. When executing our parallel code in
the multicore mode, we employed a Dual Quad Core
Intel Xeon PC (2.24GHz), equipped with 24GB of mem-
ory. We also enabled Hyper-Threading that allowed us
to launch 16 threads using MPJ Express on this plat-
form. The execution time for tail resorption network,
2, 4, 8 and 16 threads is plotted in Fig. 8a. In the mul-
ticore mode, the parallel Java application executes on a
single system comprising of shared memory or multicore
processors. Internally theMPJ Express now executes a sin-
gle OS process with multiple threads [61] to harness the
computational power offered by multicore systems.
The running time (in seconds) and speedup achieved on

four input models is shown Fig. 8. The observed speedup
shows that scalability improves with increase in the size of
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Fig. 7 Qualitative model of Fibroblast Growth Factor (FGF) signalling in Drosophila melanogaster, adapted from [49] and rendered by using
Cytoscape software [62]
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Fig. 8 Speed-up observed on four different models in multicore (a) and cluster mode (b): The experimental results show almost linear speedup for
parameter estimation of Hexosamine Biosynthetic Pathway. The observed speed-up decreases with decrease in the size of model due to reduced
granularity

input models. For smaller models, the maximum speedup
is not linear when number of threads are increased to
maximum. This is due to two reasons: (1) small granular-
ity of operations carried out by threads and (2) overhead
of invoking a model checker as an external process. The
performance in the multicore mode is better on tadpole’s
tail resorption network. The observed speedup is almost
linear. Generally, the coarse-grained decomposition can
scale linearly due to low communication overhead in
shared memory model.
In the cluster mode, we evaluated performance of our

parallel approach on 32 node HPC Cluster, hosted at
RCMS National University of Sciences and Technology,
Pakistan. Each compute node was equipped with dual
quadcore Intel Xeon E5520 processors with 24GB of
RAM. The nodes are inter-connected via Gigabit Ethernet
and QDR InfiniBand (40 Gbps). The software environ-
ment consisted of MPJ Express 0.40, Oracle JDK 1.7.0 25
version and GNU GCC 4.8.1. In the cluster mode, parallel

applications execute in a typical cluster environment
where processing elements are connected to one another
using a fast interconnect like Infiniband andMyrinet. The
MPJ Express software provides various communication
devices for various interconnects.
One limitation of this approach is that individual pro-

cesses are likely to suffer from state space explosion—
a major limitation of the underlying exhaustive model
checking algorithm. The state space of a BRN is a carte-
sian product obtained on the range of expression levels of
all entities and given as a comma-separated string of ones
and zeros . When the state graph is too large for single
system’s memory, a high level data parallel approach will
suffer from state space explosion. Each qualitative state
in a BRN has a maximum of n outgoing transitions. The
total number of state graphs for a boolean network with
n genes is 2

(

n2n
)

. By comparing the worst case complex-
ities the two aforementioned approaches, we argue that
parameter synthesis has more computational complexity
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thanmemory requirements, which paves the way for using
high level data parallelism (HL-DP) on a distributedmem-
ory architecture. The distributed memory systems are
exemplified by commodity compute clusters—group of
computers connected using a fast and private network—
where multiple processing elements communicate to one
another using some form of messaging to solve a single
problem. High level data parallelism for distributed mem-
ory systems is achieved by the Message Passing Interface
MPI standard, which is considered as the de facto API
for programming parallel applications. The most popular
implementations of MPI include MPICH and Open MPI
for C, and MPJ-Express for Java language. The main idea

of our parallel implementation is based on partitioning of
parameter space. Instead of using a parameterized Kripke
structure, treating each valuation of parameter separately
allows to formulate task of parameter estimation as data
parallel problem and therefore achieves a more linear
speed-up. The running time for tail resorption network,
for 2,4,8,16,32,64,128 processes, is plotted in Fig. 8.
The architecture of our parallel implementation is

shown in Fig. 9b. It comprises of four layers. The existing
implementation of SMBioNet is shown as an interme-
diate layer that is developed in Java. The only non-Java
component is the NuSMV model checker, which is devel-
oped in C/C++ language but it is supported on Linux and

a

b

Fig. 9Web-based user interface (a) and architecture (b) of Parallel Implementation: The user can upload or select from a list of existing models by
using the web based interface. The number of threads are specified before clicking the simulate button. The software calls the underlying mpj
express engine to execute the simulation on specified number of threads. The model is specified as an input file which is divided into four section;
VAR: for defining biological entities (genes, proteins etc.) and their thresholds, REG: for specifying interactions, PARA: for specifying range of logical
parameters is an optional section, and CTL: for defining CTL formulas. The software comprises of four layers (as shown in b). The user interface layer
is implemented by using web programming APIs (HTML, PHP and Bootstrap), MPJ Express is used for parallelization of the underlying sequential
implementation which finally invokes NuSMV model checking for formal verification of model against CTL properties
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Windows platform. In this way, our parallel implementa-
tion can can be installed on Windows and wide variety of
Linux platforms. We made two important extensions that
makeup the P-SMBioNet package; firstly, we add support
for parallelization that enables our implementation to take
advantage of raw computational power offered by mod-
ern multi-core and cluster computers. Secondly, we added
a web based Graphical User Interface (GUI) for conve-
nient model construction and state graph analysis from a
remote system.

Conclusion
Parameter inference is a key challenge in qualitative mod-
eling of biological regulatory networks. Model checking
techniques are used to decipher values of parameters
from known biological observations expressed as tem-
poral logic formulas. However, with increase in the size
of network, complexity of parameter estimation algo-
rithm increases exponentially. Therefore, efficient compu-
tational techniques are required to reduce the processing
time of parameters computation. In this study, we inves-
tigated the use of parallel computing to accelerate param-
eter inference procedure by using a Java based library
MPJ Express. We extended the sequential implementa-
tion by partitioning the parameter space and evaluated
our parallel implementation onmulticore and cluster plat-
forms. We undertook a case study of the Hexosamine
Biosynthetic Pathway (HBP) and its involvement in cancer
progression. Through parameter computation with our
parallel implementation, we were able to suggest a ther-
apeutic intervention that can lead the system from a
deadlock state to normal homeostasis. The experimen-
tal results obtained on a 23 genes network of Fibroblast
Growth Factor in Drosophila melanogaster indicate that
our approach is scalable and reduces execution time.
Furthermore, our parallel implementation can be used
through a web-based interface that can be accessed online.
The reduction in execution time shows that this approach
can be used in parameter inference applications on mul-
ticore desktop computers and laptops, and on special
distributed architectures such as clusters. In future, we
aim to provide a graphical editor for creating of qualitative
models and construction of CTL properties.Moreover, we
also aim to provide support for synchronous computation
of the state graphs.

Availability and requirements
Project name: Parallel SMBioNet
Project home page: https://psmbionet.github.io
Operating system(s): Linux, Tested with CentOS 6.5
Programming language: Java
Otherrequirements:SMBioNet, MPJExpress 0.41, NuSMV
2.4.3
License: GPL

Additional files

Additional file 1: SMBIONET FILE 1. The input file used for computing
model parameters for the Hexosamine Biosynthetic Pathway (HBP). The
sections entitled VAR, REG, PARA and CTL corresponds to the allowed
expression levels of entities, interactions in the Biological Regulatory
Network(BRN), permissible parameter range of each entity and CTL
formulas, respectively. (ZIP 1 kb)

Additional file 2: SMBIONET FILE 2. The SMBioNet file contains source
code of qualitative model of Fibroblast Growth Factor (FGF) Signalling in
Drosophila melanogaster. (ZIP 1 kb)
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