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Abstract

Background: Adaptation and homeostasis are basic features of information processing in cells and seen in a broad
range of contexts. Much of the current understanding of adaptation in network modules/motifs is based on their
response to simple stimuli. Recently, there have also been studies of adaptation in dynamic stimuli. However a
broader synthesis of how different circuits of adaptation function, and which circuits enable a broader adaptive
behaviour in classes of more complex and spatial stimuli is largely missing.

Results: We study the response of a variety of adaptive circuits to time-varying stimuli such as ramps, periodic stimuli
and static and dynamic spatial stimuli. We find that a variety of responses can be seen in ramp stimuli, making this a
basis for discriminating between even similar circuits. We also find that a number of circuits adapt exactly to ramp
stimuli, and dissect these circuits to pinpoint what characteristics (architecture, feedback, biochemical aspects,
information processing ingredients) allow for this. These circuits include incoherent feedforward motifs,
inflow-outflow motifs and transcritical circuits. We find that changes in location in such circuits where a signal acts can
result in non-adaptive behaviour in ramps, even though the location was associated with exact adaptation in step
stimuli. We also demonstrate that certain augmentations of basic inflow-outflow motifs can alter the behaviour of the
circuit from exact adaptation to non-adaptive behaviour. When subject to periodic stimuli, some circuits
(inflow-outflow motifs and transcritical circuits) are able to maintain an average output independent of the
characteristics of the input. We build on this to examine the response of adaptive circuits to static and dynamic spatial
stimuli. We demonstrate how certain circuits can exhibit a graded response in spatial static stimuli with an exact
maintenance of the spatial mean-value. Distinct features which emerge from the consideration of dynamic spatial
stimuli are also discussed. Finally, we also build on these results to show how different circuits which show any
combination of presence or absence of exact adaptation in ramps, exact mainenance of time average output in
periodic stimuli and exact maintenance of spatial average of output in static spatial stimuli may be realized.

Conclusions: By studying a range of network circuits/motifs on one hand and a range of stimuli on the other, we
isolate characteristics of these circuits (structural) which enable different degrees of exact adaptive and homeostatic
behaviour in such stimuli, how they may be combined, and also identify cases associated with non-homeostatic
behaviour. We also reveal constraints associated with locations where signals may act to enable homeostatic behaviour
and constraints associated with augmentations of circuits. This consideration of multiple experimentally/naturally
relevant stimuli along with circuits of adaptation of relevance in natural and engineered biology, provides a platform
for deepening our understanding of adaptive and homeostatic behaviour in natural systems, bridging the gap
between models of adaptation and experiments and in engineering homeostatic synthetic circuits.
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Background

Cellular systems employ a number of distinct and charac-
teristic nonlinear information processing modules, such
as monostable switches, bistable switches and oscillators.
Each of these modules plays critical roles in cells, and
consequently such modules has been a focal point in a
number of cellular contexts [1-5]. A particular informa-
tion processing characteristic repeatedly encountered in
cellular networks is adapation. Adaptation is the charac-
teristic of a module wherein the output of the module is
essentially independent of the input at steady state, even
though the input is “connected"” to the output. A conflu-
ence of different characteristics of the module allows for
this special form of information processing.

Adaptation in cellular networks is seen in multiple
contexts and with different consequences. One common
context in which adaptation is seen is in sensory trans-
duction. In the context of chemotaxis (directed cellular
migration in response to gradients of chemical concen-
trations) adaptation is observed in a range of cell types
including bacteria (E.coli, rhodobacter spheroides) and
eukaryotes (Dictyostelium) [6—10]. The fact that adapta-
tion is present right at the sensory level allows bacteria to
exhibit sensitivity to temporal gradients over a very broad
range of ambient mean concentrations. In the case of Dic-
tyostelium, adaptation to spatially uniform stimuli is seen
alongside non-adaptive behaviour in spatial gradients. In
both these cases, it appears that adaptation has been
incorporated, through evolution, into signal transduction
to realize specific capabilities for cells. Another context
in which adaptation is seen playing a similar role, is in
visual signal transduction [11-13]. Adaptation is also seen
in other signal transduction settings such as osmoreg-
ulation, studied for instance in yeast, and in the heat
shock response [14—17]. Finally, homeostasis in cellular
systems in response to different changes in the environ-
ment, is associated with adaptive behaviour of this kind,
an example being iron homeostasis in bacteria [18—24].

A fairly broad range of studies have focussed on dif-
ferent aspects of adaptation in biochemical and genetic
networks. On one hand there are a number of experimen-
tal studies of adaptation in specific contexts, including
those listed above. These studies show how adaptation
occurs in the relevant circuits/pathways and what the cel-
lular implications are. On the theoretical side, in addition
to modelling the adaptive modules in various contexts,
studies have focussed on a number of related informa-
tion processing aspects. Exact adaptation and in particular
robust exact adaptation has been widely studied, discrimi-
nating it from non-robust adaptation and focussing on the
integral control underpinnings (eg. [23, 25-29]). Motifs
which have resulted in adaptation have been studied
widely. For instance [30] studied a range of motifs involv-
ing inflow and outflow resulting in exact adaptation. This
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was further expanded to study inflow and outflow con-
trollers in adaptation [31]. An exhaustive computational
study of 3-node motifs revealed incoherent feedforward
and negative feedback as the two adaptive motifs which
emerge [32]. Studies of information processing in adaptive
motifs have been performed in [30, 33—-40] focussing on
spatial and temporal behaviour of incoherent adaptive cir-
cuits, response of motifs to oscillatory stimuli, spatial and
stochastic aspects of adaptive signal transduction. Fold-
adaptation which incorporates adaptation with a fixed
fold change behaviour has also been the focus of numer-
ous studies [9, 41-43]. Finally adaptive behaviour has also
been engineered in genetic circuits in synthetic biology
(eg. see [44]).

While there have been a large number of studies
on adaptation, there are relatively few which study the
response of adaptive modules/circuits to dynamic and
complex stimuli [34, 35, 37-39]. Understanding the
response of adaptive circuits and obtaining a synthesis
of adaptive responses in dynamic and complex stimuli is
important for multiple reasons. Firstly, this deepens our
understanding of adaptive modules/circuits and shines a
light on how they (and cells using these circuits) pro-
cess dynamic information. Secondly a number of adaptive
modules behave in a more or less similiar way to sim-
ple stimuli such as step inputs, and it is not clear at the
outset whether and under which conditions such similar
behaviour extends to complex dynamic stimuli. Thirdly
certain dynamic and spatial stimuli have already been
used in experiments, in certain contexts [45-49]. How-
ever, there a number of contexts where this aspect has not
been studied, but whose deployment could provide valu-
able insights. Such a study has relevance in both cases.
Fourthly, cellular systems are faced with dynamic and
complex stimuli and dynamic environments as a norm
and it is important to assess how adaptation impacts
behaviour and decision-making in these environments.
Since dynamic environments are the norm rather than
the exception, this can provide important clues into
what types of adaptive modules have emerged in evo-
lution. Finally a broader view of adaptive circuits and
their response to dynamic and spatial stimuli, suggests
engineering design principles associated with circuits
responding adaptively to one or more classes of complex
stimuli. This serves as a basis for engineering biomolecu-
lar circuits in cells with specific adaptive and homeostatic
capabilities.

In this paper, we examine the response of adaptive cir-
cuits to different transient signals such as ramp stimuli
(of different types) and periodic stimuli, and subsequently
spatial signals. In order to do this, we draw on a range of
adaptive circuits/motifs in the literature. We investigate
the response of these various modules and relate this to
characteristics (structural, biochemical, auxilliary) of the
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circuit. Of particular interest here is the subset of adap-
tive circuits which exhibit degrees of exact adaptation to
one or more classes of complex stimuli, and our aim is to
distill the underlying characteristics responsible for this.
This allows us to achieve a clear synthesis of how different
circuit characteristics impact the dynamic response and
enable broader adaptive behaviour.

In the next section we discuss the circuits and motifs
which are employed in our study. In the subsequent
section, computational results are presented. This is fol-
lowed by a concise analytical discussion in the next section
(with further details in the Appendix). This analytical
section can be skipped, without any loss of continuity, by
readers not interested in the details. The conclusions syn-
thesize the various insights. The Additional file 1 contains
further information.

Methods

Models

At the outset we emphasize that our goal is to obtain
a synthesis of the functioning of adaptive circuits to
dynamic/spatial stimuli in a systematic manner, with a
particular view to determining when broader exact adap-
tive behaviour is seen and tracing this to circuit charac-
teristics. Adaptation can be realized through both gene
regulatory and biochemical circuits, and there are a range
of models which have been used to model adaptation.
We use a suite of models drawn from the literature as
a basis for probing the response of adaptive circuits to
dynamic environments. These models are presented in
the Additional file 1. The models encompass different
biological types (genetic, biochemical), different model
network structures and particular characteristics. Engi-
neering homeostatic circuits can also be realized through
DNA strand displacement reactions, modelled as reaction
networks, but for the most part we do not study these
circuits separately.

For purposes of organization, the models are placed in a
table according to two characteristics of the reaction net-
work/motif (see Table 1). On one axis, the classification
is based on how the signal appears in the model (zeroth
order reaction/source), first order irreversible reaction or
first order reversible reaction. Transcriptional models are

Table 1 List of primary models analyzed
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classified along with the zeroth order reaction. On the
second axis, the dominant characteristic responsible for
adaptation in static signals is the basis for classification.
The categories employed here are incoherent feedfor-
ward,negative feedback, open systems and other special
characteristics. Most adaptive circuits studied fall into
one of these categories. For instance incoherent feedfor-
ward and negative feedback motifs have been the focus of
numerous studies in both signalling and gene regulation.
Various studies including [30, 31] directly employ the fact
that the network is an open system as the primary basis
for adaptation. In this context, we point out that closed
biochemical networks (i.e. without inflow/outlow) could
result in models analogous to inflow/outflow motifs: this
occurs if the only source of flux to a subnetwork from
the rest of the network occurs via a zero-order reaction,
while flux from the subnetwork to the rest of the net-
work can occur through first order reactions. In such
cases the subnetwork has a model essentially analogous
to an inflow-outflow motif of the kind we study, with
the only difference that there is coupling to the ambi-
ent network through conservation of species (this still
allows for adaptive behaviour). This is especially perti-
nent because some negative feedback circuits (in E.coli
chemotaxis) achieve exact adaptation precisely because of
the presence of zeroth order reactions and the resulting
model could belong to both the negative feedback and the
inflow-outflow category. In this case, we briefly study it
as a particular example of negative feedback (as it is the
core part of a negative feedback adaptive mechanism), but
draw parallels to inflow-outflow motifs. An example of a
distinct behaviour responsible for adaptation is an auto-
catalytic circuit exhibiting a transcritical bifurcation [50,
51]. Here the system is a closed system and the feedback
is a positive feedback from substrate to enzyme. This cir-
cuit has entities which reach a steady state independent of
the signal. From the vantage point of the adapting variable,
the governing mechanism is that of an autocatalytic neg-
ative feedback. This is treated separately as it involves a
distinct ingredient responsible for adaptation, and in fact
the core biochemical circuit is an example of one which
has been studied in the context of absolute concentration
robustness [51].

Signal — model (reaction network) First order reversible reaction

characteristic

First order irreversible reaction Zeroth order reaction

Feedback MAO9.FB, DRO8.M4
MAO9.FF, KR11

DR0O8.M1, DR08.M31, DRO8.M32,
DR08.M33, DR08.M34 (DR08.M4)

Incoherent Feedforward

Open System

Special Cases TC

DR0O8.M1**, (DR08.M6) DR12.M1-8
(DRO8.M7) KR09, CO09.M1, CO09.M2, KI14
DRO8.M1*, DR0O8.M1**, DRO8.M2, DR12.M1-8

DR08.M32, Dr08.M34, DR0O8.M6,
DRO8.M7
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We have analyzed the entire suite of models in detail.
For purposes of clarity, we will present results on a smaller
selection of models, which encompasses the different
underpinning characteristics and the range of behaviour
observed. We also examine other variants of models
possessing the same characteristics responsible for adap-
tation, in the supplementary information. The models
employed are all ODE based models (except in cases
where a spatial analogue of an ODE model is consid-
ered). Further discussion of all models, along with model
equations, parameters and inputs, is presented in the
Additional file 1.

Model parameters are chosen according to the original
model description in the literature. A number of models
exhibit exact adaptation in response to a step input (i.e.
exact recovery of output to prestimulus value) while a few
exhibit inexact adaptation (partial recovery of output to
prestimulus value). We keep parameters fixed in our study.
We note here that a separation in time scale between input
variation and the circuit time scale, can result in adap-
tive behaviour being essentially maintained (discussed
later): we do not assume such a special case, and gener-
ally the time scale of input variation and adaptation are
comparable.

Inputs

In our simulations we start with a steady basal level of
input, wait for the system to reach a steady state. Fol-
lowing this, we subject the models to different kinds of
experimentally relevant inputs (a) A linear ramp (and by
way of constrast also examine other increasing stimuli,
such as quadratic ramps and exponential stimuli).Since
a stimulus is always bounded (due to finite number of
receptors or other factors), we also briefly examine ramps
which saturate. (b) Periodic sinusoidal oscillations. (c)
Spatially varying stimuli, including static spatial gradi-
ents, and dynamic spatiotemporal stimuli such as trav-
elling waves and standing waves. For the purposes of
presentation of responses to spatial stimuli, we focus
on a smaller subset of circuits, where clear correspon-
dences with temporal behaviour can be made (discussed
later).

At the outset we note that the circuits chosen can
exhibit different types of responses, depending on the
nature of the stimulus. This can include (i) Exact adapta-
tion (ii) Exact adaptation of certain features of the output
(eg. mean values in response to periodic stimuli) (iii) Inex-
act adaptation of response or mean-values as appropriate
(iv) Non-adaptive responses

Most circuits exhibit some degree of (inexact) adap-
tive behaviour to the stimuli considered. Our particular
focus is on key qualitative features of the landscape of
circuit responses, especially on circuits exhibiting dif-
ferent degrees of exactly adaptive behaviour in complex
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stimuli, where the behaviour can be traced to structural
features of the model, independent of model parameters.
This reveals core design features responsible for the adap-
tive behaviour. We also discuss non-adaptive responses,
as they represent a fundamentally opposite qualitative
response. We study the effect of numerically varying
characteristics of inputs (or model parameters) if this is
especially relevant. Our analysis and presentation of the
results involves a combination of numerical simulations
and mathematical analysis: numerical simulations reveals
a range of different and noteworthy behaviour, while
mathematical analysis reveals how certain motifs/circuits
display different kinds of exact adaptive behaviour in
complex stimuli. Simulations are performed in MATLAB
using odel5s.

Results

We have analyzed the set of models in Table 1. This
reveals both similarities between different models in a
given group, as well as differences, which can arise from
subtle differences in details; this is also useful for deter-
mining what combinations of characteristics can exhibit
exact adaptive behaviour in complex stimuli. We now
comment on how we present the results. We present the
results for a selection of circuits (Fig. 1), which essentially
cover both the different model types, as well as distinct
qualitative behaviour which we wish to demonstrate. The
circuits include incoherent feedforward, feedback motifs,
open systems as well as a circuit of autocatalytic feed-
back giving rise to a transcritical bifurcation. We employ
a typical feedback motif (a 3-node motif with a buffer
node) contrasting it with other feedback circuits (dis-
cussed later) and consider multiple variants of incoherent
feedforward motifs. For instance models KR09 and KR11
are models of an incoherent feedforward adaptive motif
developed to explain adaptation in Dictyostelium, and an
expansion of that model to incorporate saturation (here
and below, we refer to models through labels which are
used to denote them in Additional file 1). Model CO09.M2
depicts an incoherent feedforward structure with thresh-
olds and saturation. The model KI14, is another incoher-
ent feedforward model exhibiting (parameter dependent
approximate) fold adaptation. Similarly multiple variants
of open circuits are possible. Figure 1 shows both lin-
ear and cyclic motifs DR08.M1 and DR08.M33 (which
both exhibit perfect adaptation in a step stimulus), while
other models involving open systems involve regulation
of either inflow or outflow: a representative candidate
is the model Dr12.M4 shown in Fig. 1. We present a
selection of computational results to reveal the range of
behaviour. This is followed by analytical results which
focusses on explaining when adaptation in dynamic stim-
uli may be observed and what the associated design
principles are.
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Fig. 1 Schematic of circuits. A schematic representation of the primary motifs/circuits in the literature, employed in this paper: (@) Linear network
structure, with inflow and outflow: model DR08.M1 (b, €) Two variants of circuits comprising two linear inflow/outflow motifs interacting with one
another (DRO8.M1** DR12.M4). (d) A cyclic motif with inflow and outflow (DRO8.M33). (e) A negative feedback motif (MA09.FB). (f, g, h) Three
variants of incoherent feedforward motifs (KR09,CO09.M2,KI14) (i) A transcritical motif (TC). Additional variants of linear and cyclic motifs with inflow

Ramp stimuli

A range of contrasting responses to ramp stimuli are
elicited from adaptive circuits. We start by examining
the response of these circuits to a linear ramp input. The
model is subject to a low steady basal level of input, to
which it adapts. Using the steady state as the initial con-
dition, a ramp input of fixed slope is applied at a specific
time ¢t = 50. The range of responses is seen in Fig. 2. Some
circuits (such as DR12.M1) do not reach a steady state, as
seen in the output of the circuit steadily increasing. Other
circuits such as DR08.M31, reach a steady state but the
response is non-adaptive (i.e monotonic and saturating).
In fact the new steady state depends on the gradient of
the ramp. In contrast other models such as KR11 exhibit
partial adaptation: as seen in Fig. 2, and depending on
the parameters of the model, could exhibit underadap-
tation or overadaptation. Finally other circuits, such as
DR08.M1 exhibit perfect adaptation in a ramp, and this
feature does not depend on the gradient of the ramp.
This demonstrates that while all circuits exhibit perfect
adaptation or partial adaptation (often close to perfect
adaptation) in step stimuli, their response to temporal
gradients can be strikingly different, spanning a range of
outcomes.

Figure 2e,f contrasts the behaviour of apparently sim-
ilar motifs DRO8.M** and DR12.M4, both involving an
open systems structure: the former adapts perfectly while
the latter is very close to perfect in a step stimulus
(Additional file 1: Figure S2). Their response to ramp
stimuli demonstrates a clear qualitative difference: one

adapts perfectly while the other does not even reach a
steady state. This clearly demonstrates that ramp stim-
uli can elicit qualitatively different responses, and con-
sequently be used as a basis for disciminating between
adaptive circuits, even ones which appear structurally
similar.

Exact adaptation to ramp stimuli. Figure 3 shows the
response of six different circuits, indicating that they all
exhibit exact adaptation in a ramp stimulus. This indicates
that exact adaptation can occur in response to dynamic
stimuli and this is not an isolated occurrence with mul-
tiple circuits exhibiting this behaviour. Furthermore, this
behaviour is independent of parameters (unless otherwise
noted).

Open Systems. The first two circuits (Fig. 3) are
those of open systems: the first having a linear topol-
ogy and the second a cyclic topology. In these mod-
els the requirement that inflow matches outflow (which
has to hold at steady state) results in the output adapt-
ing to a step input independent of the value of the
signal. In the linear motif, when subject to a ramp,
the increasing value of this signal effectively short cir-
cuits the associated step in the circuit: thus the circuit
behaves as if the extra step is not present (i.e. inflow
applied directly to the outflow variable) and consequently
exhibits exact adaptation. Analytical results consolidate
this intuitive result. A similar situation is observed in the
cyclic motif. It is then worth asking, under which condi-
tions adaptation occurs in a ramp in such inflow-outflow
circuits.
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Fig. 2 Responses of circuits to a linear ramp. A linear ramp elicits a range of qualitatively different responses in adaptive circuits such as (@) An
unsteady state, increasing response (circuit DR12.M1: an inflow controlling open system) (b) A non-adaptive steady state (circuit DR0O8.M31) (c)
Partial adaptation (KR11) (d) Exact adaptation (DR08.M1). (e, f) Two apparently similar looking circuits such as DR12.M4 and DRO8.M1** (shown in
Fig. 1) give contrasting responses. The circuits are depicted as insets in these (and subsequent) plots

Design principles associated with ramp adaptation
in open systems. Our consideration of a range of linear
and cyclic motifs, with inflow and outflow reveals the fol-
lowing insights. (i) For linear motifs, exact adaptation in a
ramp occurs, as long as the ramp signal is not associated

with the conversion/degradation of the output species. If
in the two species linear motif, the ramp signal was asso-
ciated with the conversion of the output species, a steady
state is still observed, which is not adaptive. (ii) For three
species cyclic motifs, with only one outflow (the adapting
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Fig. 3 Adaptive responses of circuits. A range of circuits exhibit exact adaptation in a ramp, such as (@) A linear motif with inflow and outflow
DR08.M1 (b) A cyclic motif with inflow and outflow DR08.M33 (c) An incoherent feedforrward motif (KR09) (d) An incoherent feedforward motif
which can exhibit fold-change detection KI14 (e) An incoherent feedforward motif CO09.M2, which has (opposite) thresholds associated with each
leg. (F) A transcritical circuit TC. The respective network motifs are depicted in the inset
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variable), exact adaptation in a ramp occurs, as long as the
ramp signal is not associated with the conversion of the
output species to another species (also see Fig. 4, which
shows how location of a signal in a network can deter-
mine the behaviour). This consolidates the insight from
the previous point, incidentally. (iii) When more than one
outflow variable is present, additional restrictions occur.
Firstly if all species are associated with reversible reac-
tions, adaptation does not occur in a ramp (or for that
matter in a step). Adaptation is possible if some of the
reactions between species are irreversible. If the addi-
tional (non-output) outflow variable is associated with
irreversible reactions, then adaptation in a ramp occurs
only if the signal is not associated with the interconversion
from or between outflow variables. In general, greater the
number of outflow variables, greater are the constraints
on where the signal can act to elicit exact adaptation
in a ramp. These insights emerge from analytical results
discussed in the next section.

Incoherent feedforward motifs. Three of the motifs in
Fig. 3 are incoherent feedforward motifs. The first motif is
a motif used to explain adaptation in chemotaxis in Dic-
tyostelium. Here we find that the output of the model
adapts to a ramp even though some entities in the circuit
do not even reach a steady state. The reason for adaptation
in this circuit is the cancellation effect of two pathways,
neither of which adapts, or even reaches a steady state.
Since the two pathways constitute the opposing enzymes
in a covalent modification cycle, the output does reach a
steady state. This can be seen explicitly analytically (also
see [52]) and is discussed in the next section. This feature
is shared by the second feedforward motif, KI14. Another
incoherent motif CO09.M2 also reveals exact adaptation
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in a ramp. Here the reason for adaptation is subtly dif-
ferent: the adaptive circuit involves (competing) pathways
each associated with a threshold: their product regulates
the output. Here, under basal conditions, one of the two
pathways is at a zero steady state, while an increasing sig-
nal such as a ramp ends up making the other pathway
fall below its threshold, again resulting in a zero steady
state. This ensures that the product of the two pathways is
still zero, leading to exact adaptation. This suggests how
incorporating threshold effects in different “directions” in
interacting/cooperating pathways will lead to adaptation
in a ramp. Taken together, there are a subset of incoher-
ent feedforward motifs which maintain a “cancellation”
effect of the two pathways (realized in different ways), in
increasing stimuli.

Figure 3f demonstrates that a circuit of adaptation rely-
ing on a transcritical bifurcation (TC), also results in
exact adaptation. The reason why this circuit exhibits
exact adaptation is different from the ones above. Here
the application of a ramp results in the moving of all
the species from one part of the pathway to the covalent
modification cycle involving the autocatalytic feedback
(which is the core of the adaptive circuit). This subsys-
tem reaches a steady state which does not depend on
the total amount of species, as is seen analytically below,
explaining the adaptive behaviour ( a similar result would
apply to other circuits exhibiting absolute concentration
robustness). Note that this depends on the location of the
signal relative to core autocatalytic circuit. If the signal
was appearing “downstream” of the autocatalytic species,
it would not result in exact adaptation in a ramp, since
this would result in the movement of species away from
the autocatalytic circuit. The underlying insight can be
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Fig. 4 Inexact adaptation in ramp stimuli. A range of circuits may exhibit inexact adaptation in a ramp such as (a) A feedback motif (MAQ9.FB), where
an increase of feedback strength brings steady state output closer to pre-stimulus value. (b) A feedforward motif (MAQ9.FB) with saturation (c)
Another feedforward motif (CO09.M1). Here due to thresholds in one feedforward leg, the steady state reaches 0. (d) The location at which a signal
appears in a motif can be of great importance: shown are two different locations of signal appearing in model DR0O8.M33, one resulting in exact
adaptation and the other, a nonadaptive response. In contrast to the previous cases, the non-adaptive behaviour here is not due to saturation, and
the steady state carries information about the gradient of the ramp (see text)
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extended to other circuits which exhibit absolute concen-
tration robustness (discussed later): circuits whose output
do not depend on the total concentration of substrate
species, when “connected” to an ambient network regu-
lated by a signal, can give rise to adaptation in a ramp
though this places restrictions on the locations of the
connection (and action of the signal).

Figure 4a shows the response of a feedback motif to a
ramp. Here, a low feedback may result in a non-adaptive
response, but a higher feedback will result in a partially
adaptive response. Other examples of inexact adaptive
behaviour are also shown in Fig. 4. It is worth briefly
contrasting this with the behaviour of a 3 node motif
DR08.M4, which is a core part of a negative feedback
mechanism used to describe aspects of chemotactic adap-
tation in E.coli (see Additional file 1). Here the motif
contains a pair of reversible reactions (with which are
associated chemoattractant and chemorepellent signals).
Here we find that for a ramp signal associated with one
of the reactions, exact adaptation ensues, but this is not
the case for the other reaction (see Additional file 1). This
motif while a core aspect of a negative feedback mech-
anism for adaptation, actually shares many features with
the inflow-outflow system models studied above (though
it is a closed system), including the underpinning reason
for adaptation (it could thus be included in either cate-
gory). Finally looking back to Fig. 2e, we also find that
nonadaptive unsteady state responses in a ramp may be
seen when the signal is associated with an inflow, even
with feedback: in this case, an adaptive (though not exact)
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response is seen in in step stimuli. Taken together, this
shows how even in feedback circuits, the presence of
other characteristics (zeroth order reaction, or signal asso-
ciated with inflow), can significantly impact qualitative
behaviour

The effect of capping a ramp. A ramp is an unbounded
stimulus while in cellular systems there are multiple fac-
tors which result in signals being bounded. Figure 5a
shows the effect of “capping” of a ramp for a circuit
which exhibits exact adaptation in a ramp revealing that,
the capping has no effect since the output of the circuit
has already adapted. In fact, for all the circuits showing
exact adaptation in a ramp (in Fig. 3), (i) exact adaptation
continues to hold good (this behaviour arises from the
intrinsic characteristrics of the circuit, without requiring
capping) (ii) depending on the balance of level of cap-
ping and the ramp slope (high enough capping/not too
steep ramp), the capping can have negligible effects on the
temporal profiles as well. In other cases, capping a ramp
can convert an inexactly adaptive or even a non-adaptive
response to an exactly adaptive one.

Other increasing stimuli. We also examined other
ramps (quadratic, exponential). We expect the same
insights arising from the analysis above, to carry through
to a quadratic ramp, or even an exponential stimulus. The
one type of motif where it is not clear a priori what the
response would be is the incoherent feedforward motif
which relies on adaptation through cancellation of contri-
butions of two pathways. Here, the output of such a model
(KR09) adapts even to a quadratic ramp (Fig. 5). The fact
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that the “cancellation of pathways" works even for this
stimulus can be seen analytically as discussed below. How-
ever for an exponential stimulus, we now find deviations
from exact adaptation in this model (Fig. 5d) (both these
features are shared by the feedforward motif KI14, see
Additional file 1). Increasing the exponent of the stimulus
leads to more pronounced deviations from exact adap-
tation, eventually resulting in non-adaptive responses.
Another example of the subtle roles of the stimuli comes
up in examining inflow-outflow circuits: we have already
discussed how a stimulus applied to certain reactions can
result in non-adaptive steady state responses. Interest-
ingly, in such cases if the stimulus is a quadratic stimulus,
this results in a zero steady state. This is discussed subse-
quently.

Summary. Our study of ramp stimuli demonstrates the
range of responses which may be observed. In particular
it reveals design features of circuits which enable exact
adaptation in a ramp, and scenarios where non-adaptive
behaviour may be observed. The implications of this,
and the effect of network location and augmentation of
circuits therein, are discussed in the “Discussion” section.

Temporal periodic stimuli
We now turn to periodic stimuli. At the outset we note
a basic characteristic of the response of adaptive circuits.
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If the period of oscillations is large (relative to the time
scales of the adaptive circuit), the output remains practi-
cally unchanged: this is because this scenario corresponds
to a quasistatic modulation of the input, and the output
adapts to the slowly varying stimulus and is consequently
practically unchanged. On the other hand if the stimuli is
of high frequency, the output is again close to steady: this
follows from the fact that the circuit effectively samples
the average of the stimulus. We focus on scenarios which
do not correspond to either extreme case. We consider a
stimulus of the form S = a + bsin(wt) : a is the basal level
and b is the amplitude.

Effect of stimulus mean value. We first consider
the effect of varying the basal level for fixed amplitude
(Fig. 6a-d). This reveals the following trends. For some
of the circuits, especially those associated with no sat-
uration, an increase in the basal level results in smaller
amplitude oscillations, even though the average of the
oscillations doesnt vary much. If we consider a model
such as KR11, we can clearly see the effect of saturation:
in this case increasing the stimulus mean value results
in lower amplitude oscillations, but about a mean which
either increases or decreases. The former behaviour is
seen in circuits which exhibit underadaptation and the
latter in circuits which exhibit overadaptation. A feed-
back motif MAQ9.FB shows the behaviour similar to an
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under-adaptive feedforward circuit. A distinct pattern in
seen in the feedforward model CO09.M2. Here changing
the mean value of the input stimulus causes a transi-
tion from non-periodic behaviour to periodic behaviour,
whose amplitude increases, then starts to decrease, fol-
lowing which oscillations are lost. This illustrates how
core characteristics of the circuit are brought to the fore
in dynamic stimuli and result in distinct responses.

Effect of variation of stimulus amplitude. When the
amplitude is increased, keeping input mean value fixed
(a constraint on the amplitude is implicit here, since the
input has to remain positive), higher amplitude oscilla-
tions are seen in multiple inflow-outflow circuits, irre-
spective of topology, (Fig. 6) and other circuits (Additional
file 1). In some cases this can also result in a pronounced
asymmetry of oscillations (even though the input is sym-
metric), especially when one or the other pathway satu-
rates, as seen in the model KR11. Even in a feedforward
motif without saturation, changing the amplitude also
alters the mean value of the output. Finally in the case of
the circuit CO09.M2, there is a transition from no oscil-
lation to oscillations of increasing amplitude (and mean),
before this decreases, again showing how intrinsic circuit
features are brought to the fore.

Variation of both mean value and amplitude. We
also studied the effect of variation of both basal level
and amplitude keeping their ratio fixed (Additional file 1:
Figure S7). A new notable feature is that the circuit KI14
shows no change in the response, and this factor can be
traced to the fact that this circuit exhibits fold-adaptation.
This can also be understood analytically.

The variation of the output mean value. Exact adap-
tation to constant stimuli means that the output steady
state is independent of the stimulus level. When we con-
sider time-varying stimuli such as periodic stimuli, we
note that the the output is also a time-varying periodic
stimulus. It is then worth asking, to what extent one can
expect an effect like adaptation here. There are two kinds
of adaptation one can think of: (i) the mean of the output
is maintained irrespective of the input (mean as well as
oscillation characteristics) (ii) the mean value of the input
does not affect the output. In either case, we require an
insulation of a mean or its effects, either from the input or
the output end. If we require that the output characteris-
tics are independent of the input mean value, we find that
none of the circuits strictly meet this criterion, though
some circuits exhibit a relatively modest change in output
amplitude for a substantial change in input mean value.

Design features underlying maintainence of output
mean value. We find that two classes of models show an
independence of output mean value on characteristics of
the input. One is the class of inflow-outflow models stud-
ied in [30]. The other circuit exhibiting this behaviour
is the transcritical circuit. Robust exact adaptation in
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constant stimulus is associated with the presence of an
integral control action. In the case of these circuits, there
is the presence of an integral controller with fixed coeffi-
cients (even when the stimulus is time varying). A basic
analysis reveals that in such a case the mean value of
the output is maintained at a constant value indepen-
dent of the input characteristics. This is discussed further
in the next section. In the case of the inflow-outflow
motifs, further insights can be obtained. If there is only
one outflow variable, then this is seen (as long as peri-
odic solutions are seen in the system). If there is more
than one outflow variable, then there are restrictions on
where the stimulus may act, for this behaviour to occur.
Interestingly these restrictions only partially overlap with
the restrictions on signal location for exact adaptation
in a ramp.

Summary. Time-periodic stimuli typically elicit oscil-
latory responses from adaptive circuits, whose features
depend on input characteristics, with the effect of adap-
tation reflected (though not exactly) in the mean of the
output, in many cases. The exact maintenance of the mean
in some circuits (with the associated design features) and
the abrogation of a periodic response in specific circuits
are notable points

Spatially varying stimuli.

Thus far, we have focussed on responses to adaptive cir-
cuits to dynamic stimuli, studied in purely temporal terms.
It is well known that spatial factors can have signifi-
cant effects on cellular information processing. In some
cases spatial aspects are of direct importance because cells
have to respond to spatially graded cues (as in eukary-
otic chemotaxis), while in others spatial organization of
information processing can affect the temporal response,
in a way which cannot be understood through purely tem-
poral models. The effect of homeostatic mechanisms at
the tissue level, in response to spatially graded signals
is also relevant here. We perform an extension of some
essential insights developed above to the case of spatially
varying stimuli. Here, we will focus on three types of cir-
cuits above: a sample incoherent feedforward motif KR09,
a three node motif with inflow and outflow DR08.M34
and the transcritical circuit. All these circuits exhibit exact
adaptation in temporal ramp stimuli, and the last two cir-
cuits maintain a mean value of the output in periodic
stimuli. We ask the question: what implications does this
characteristic behaviour have for stimuli with spatial and
temporal variation?

To consider spatial stimuli we study the spatially
extended adaptive circuits in one-spatial dimension with
periodic boundary conditions. This is sufficient for the
insights which we draw, which are relevant in other set-
tings (and other boundary conditions) as well. The anal-
ysis we perform is relevant both at the cellular level
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(adaptive response to spatially graded stimuli) and the tis-
sue level (homeostatic mechanisms response to spatially
varying stimuli, with cells stationary in the tissue).

We focus on experimentally relevant spatial analogues
of the stimuli considered earlier. We examine four types of
stimuli: (a) A static spatial signal. (b)A spatially homoge-
neous basal signal upon which is imposed a ramp stimulus
whose gradient is spatially varying (c) A travelling wave (d)
A standing wave. These stimuli combine dynamic charac-
teristics of stimuli studied so far, with non-trivial spatial
aspects, and can be used to probe new aspects of the
adaptive/homeostatic behaviour.

Case 1: No species diffusible. In this case information
processing is purely local and all the behaviour studied
earlier continues to hold good. We focus briefly on one
case (Fig. 7a), a three node motif with inflow and out-
flow:DR08.M34). We found in earlier analysis that if a
ramp stimulus was applied to the conversion of B to A, the
system would exhibit a non-adaptive response reaching a
steady state. Now if a ramp stimulus is imposed on the sys-
tem with a spatially varying gradient, the adaptive circuit
will give rise to a spatially graded steady state which is not
adaptive (Fig. 7a). The significance of this is the following.
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It is usually assumed that adaptive circuits cannot be con-
sistent with non-adaptive behaviour (gradient sensing) to
spatial gradients, unless some species in the system is dif-
fusible. We find here that a circuit can indeed adapt to a
static temporal stimulus (eg a step), and be capable of pre-
ceiving spatial gradients when they are not steady, even
with no diffusible species. Note that in this circuit if the
signal was a quadratic ramp, this behaviour would be lost,
as the steady state would be zero (discussed above).

Case 2: Diffusible species in circuit. In the incoherent
feedforward motif KR09, it has been shown that having
a diffusible species can give rise to adaptation with spa-
tial sensing, and that differences in diffusivity can be used
to achieve different combinations of temporal and spa-
tial responses (see [8] where the model was formulated
and also [34-36, 53]). In the context of the three node
motif with inflow and outflow, it can easily be seen that
having species A diffuse can give rise to non-adaptive
behaviour in static spatial gradients: the essential insight
being that the diffusion term contributes an extra “sink”
which along with outflow has to match inflow to the
system. Since the diffusion term contains spatial informa-
tion (see Appendix), this means that matching inflow and
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outflow to the full system, will result in the adaptive vari-
able B containing gradient information. In the case of the
transcritical circuit, with a diffusible species A, the steady
state of the system is one where the autocatalytic species
C = 0. This allows for a non-adaptive response of the
adapting variable B (a non-zero steady state for the auto-
catalytic species is the basis for adaptation in this circuit:
see analysis in Additional file 1 which shows that this is
prevented in this case). Overall, having a diffusible species
in the circuit can allow the species to exhibit clear gradi-
ent response (non-adaptive behaviour) in a static spatial
gradient. We point out that only certain choices of dif-
fusing variables will allow for this in general. We further
note that in the case of the inflow-outflow circuits such
as DR08.M34 (if A is diffusible), the spatial average of the
output can be maintained at steady state, irrespective of
the input characteristics, even while a graded response is
achieved. This is true if there is only one outflow variable,
and in some restricted cases when there are two outflow
variables (Additional file 1). This is not the case in the
other circuits.

Temporally varying signals. We now focus on tempo-
rally varying signals. When subject to a ramp stimulus
whose gradient varies with space, all the circuits exhibit
non-adaptive behaviour (Fig. 7b,c). This is not surpris-
ing noting that the same thing happens even in a steady
gradient. This shows how in such cases all the circuits
can give non-adaptive behaviour in such spatiotemporal
ramps, even though they adapt in purely temporal ramps.

When we consider periodic stimuli, we ask if the (tem-
poral) mean of the adapting variable is maintained, as was
seen in the inflow-outflow circuits and the transcritical
circuit in the purely temporal case. If no species diffuses,
information processing is purely local and the temporal
mean is maintained at the same value everywhere. Note
that this happens even in a standing wave, where different
locations are associated with different signals.

When some species are diffusible, matters are more sub-
tle. For the transcritical circuit with species A diffusing
(which gives rise to graded response in a static gradi-
ent), the mean of the adapting variable is still maintained
both in response to standing waves and travelling waves
(Fig. 7). The essential insight is that the diffusion of A
does not affect the analysis which led to the establish-
ment of fixed mean of the output (in the temporal case) .
However, if the autocatalytic variable C is non-diffusible,
the response of the circuit (even though time-periodic at
every location) cannot always be guaranteed to be qual-
itatively similar to the stimulus (standing wave/travelling
wave). If the autocatalytic variable weakly diffuses, a close
to exact maintenance of the mean value (over a temporal
cycle) can be achieved (see Fig. 7 where this is practi-
cally exact even for moderate diffusion of the autocatalytic
variable). Here the output of the circuit mirrors the input.
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For the inflow-outflow circuit (with species A diffusing),
we find, interestingly, that the output maintains its mean
value (in time) in response to a travelling wave but not
a standing wave.Travelling and standing wave inputs lead
respectively to travelling wave and standing wave outputs.
Simulations in Fig. 7 show clearly that different locations
have different mean values in response to a standing wave.
The fact that this motif exhibits a fixed mean in response
to a travelling wave is established analytically in the next
section.

Summary. Our consideration of spatial systems reveals
how some circuits demonstrate graded responses to static
spatial stimuli with exact maintenance of the (spatial)
mean value, and how some circuits exhibit exact mainte-
nance of the (local) temporal mean value in response to
spatiotemporal periodic stimuli, though this can depend
on both the circuit and the specific nature of the stimulus.

Combining different types of adaptive responses
Design principles and features underpinning different
kinds of adaptive responses. Our analysis shows how
different degrees of exact adaptation (parameter indepen-
dent) can occur in complex stimuli: exact adaptation in
a ramp, maintenance of mean value in a periodic stimu-
lus, maintenance of mean value in a spatial gradient. We
now synthesize these various results by focussing on the
enabling features which make each of these behaviours
possible, and how different motifs can combine one or
more of these features. Adaptation in a ramp can occur
in incoherent feedforward motifs, the transcritical circuit
and in inflow-outflow circuits (with some restrictions).
The ramp in a transcritical model acts on a step which
results in the flux of species to the autocatalytic sub-
network which is responsible for this. With regard to
inflow-outflow circuits we summarize the results by not-
ing that if the adaptive variable is the only outflow vari-
able, then a ramp will result in exact adaptation as long
as it does not act on the conversion/degradation of this
variable. In the 3 node network with another outflow vari-
able more restrictions emerge. Maintenance of mean value
of output in periodic stimuli, occurs in the transcritical
circuit, and in inflow-outflow circuits with only one out-
flow. Additional outflows place restrictions on where the
signal may act. The maintenance of mean value in a spa-
tial gradient occured only in the inflow-outflow circuits,
with certain species being highly diffusible. A look at all
these constraints (Fig. 8) reveals, interestingly, the diverse
and non-overlapping constraints placed on the circuits to
achieve such special behaviour. This prompts the ques-
tion as to what extent the presence or absence of these
characteristic responses may be combined.

The essential results are summarized in Table 2 . Here
we discuss how all combinations of the presence or
absence of these three classes of behaviour may be seen
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Variety of signals
Ramps, periodic stimuli, static
spatial gradients, spatiotemporal
stimuli

Variety of adaptive circuits
Incoherent feedforward, feedback,
inflow-outflow, transcritical
circuits
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some species being (highly) diffusible. See text for details

Table 2 Combinations of exact adaptive behaviour in a range of dynamic and spatial stimuli (see text for details)

Ramp Periodic stimulus (mean Static spatial gradient Circuits realizing this
adaptation) (mean adaptation)
Yes Yes Yes Inflow outflow circuits with one outflow, restrictions

on signal location (cannot act on output species)

No No No Feedback circuits, Inflow-outflow circuits with
multiple outflows and signal mediating reactions
between outflow variables

No Yes Yes Inflow Outflow circuits with one output, signal acting
on output variable

Yes No No Incoherent feedfoward circuits

Yes Yes No Transcritical circuit (A diffusible)

No Yes No Transcritical circuit (A diffusible), signal mediating

conversion from Bto A

Yes No Yes Linear Inflow-outflow circuit with signal regulating
inflow and outflow reactions, the latter through a
diffusible intermediate

No No Yes Same as previous case, but either with additional
(nonlinear regulation of B to A reaction) or Bto A
conversion autocatalytic
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in different circuits as delineated in Table 2. To start
with we note that inflow-outflow circuits (of linear topol-
ogy for instance) where the signal does not degrade the
output variable can allow for all such behaviour to be
realized. The diffusion of the species associated with the
first node enables the desired gradient sensing behaviour.
On the other hand in multiple circuits (for example com-
pletely reversible 3 node motifs with two outflows, or
even feedback models studied earlier), none of the three
behaviour is observed. An inflow-outflow circuit (for eg.
in a linear topology) with signal acting on the output
variable would show adaptive behaviour only in periodic
stimuli and in spatial gradients. We have already seen
how the incoherent feedforward motifs considered result
only in adaptation in a ramp, while a transcritical cir-
cuit would show adaptive behaviour in both ramps and
periodic stimuli. A signal acting in the opposite reaction
as depicted in a transcritical circuit would prevent adap-
tation in both ramps and spatial gradients. This already
accounts for six of the eight possible cases, all of which
directly emerge from our study of design principles. The
remaining non-trivial possibilities are those which show
adaptive behaviour in a spatial gradient but not in oscilla-
tions. This appears more tricky since in the models seen,
adaptive behaviour in a spatial gradient occurs in a subset
of models (only inflow-outflow circuits) associated with
adaptive behaviour in periodic stimuli (inflow-outflow
and transcritical circuits).

In order to obtain the adaptive behaviour in a spatial
gradient but not in a periodic stimuli, we need to consider
motifs which realize certain restrictions on one behaviour
but not the other. This can be done by combining charac-
teristics of motifs. For example in a linear inflow-outflow
motif, with the signal regulating both inflow and outflow
(through one intermediate species, in each case, one of
which is diffusible), it is possible to get adaptation in a
ramp, and a spatial gradient but not in periodic stimuli
(see next section). The key insight is that having a sig-
nal regulate both the inflow and outflow (one through a
diffusible pathway) leads to adaptation (of mean value) in
a gradient, while having a non-trivial gradient response.
The adaptation of mean value in periodic stimuli does not
occur, though adaptation in a ramp does occur (similar to
cancellation of feedforward pathways). In order to obtain
to obtain a non-adaptive behaviour in a ramp, this struc-
ture can be modified in two ways: one is to have the signal
regulate the adaptive variable through conversion to the
upstream species in a nonlinear way, in addition to the
above regulation. Another way is to incorporate an auto-
catalytic effect in the conversion of the adapting species to
its upstream species. In both cases, this does not affect the
combination of response to spatial gradient and periodic
stimulus, but results in non-adaptive response in a ramp
(see next section). This accounts for the remaining two
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cases. This shows how our analysis of enabling design fea-
tures in earlier cases can be used to construct new circuits
with desired behaviour.

Analysis of models

We now present a selection of analytical results. Our goal
in this section is not to perform exhaustive analysis of
all models (further studies and details are presented in
the Appendix). Instead we focus on succinct analysis of a
range of specific cases to clearly illuminate points made
previously. This section can be skipped without any loss
of continuity.

Response to ramp stimuli

We first dissect 3 classes of basic models which exhibit
adaptation in ramp stimuli: (i) Open systems with inflow
and outflow (ii)The transcritical circuit and (iii) Inco-
herent feedforward motifs. We focus our analysis on the
circuits which exhibit exact adaptation.

Inflow-Outflow circuits: We examined a range of
inflow-outflow circuits, studied by Ruoff and co-workers.
This includes a range of 2 and 3 node motifs. The analy-
sis of response to ramps was performed in two ways: (i)
studying the response (especially of two node motifs and
simpler extensions to 3-node motifs) directly (ii) study-
ing the full range of 2 and 3 node motifs using a model
reduction based on a quasi-steady state analysis. Both
approaches give the same results. We summarize the main
insights which emerge below, with further details in the
Appendix.

Two-node motifs. The first circuit is a two node motif
with inflow and outflow. This corresponds to the model
DR08.M1 (for simplicity the inflow to B is set to 0, as this
does not affect any of the conclusions below). The model
equations are

dA/dt = ko — k1SA + k11 B
dB/dt = kiSA — k11B — kB (1)

This model covers both the irreversible two node motif
(k11 = 0) and the reversible motif.
At the outset, we note by adding the two equations that

d(A + B)/dt = ko — kB )

Thus if the system (i.e. both A and B) reach a steady state,
then B adapts to the value ko/k>. The main insights which
arise from the analysis may be summarized as follows:

Case 1 (k11 = 0): Here by applying a ramp stimulus S =
So + Sit, we find that A decays to 0 as time increases, but
does so in a manner that the flux from A to B approaches
a constant level kg. As far as B is concerned, the circuit
behaviour essentially reduces to a one node motif with
(constant) inflow and outflow, and B reaches a steady state
which is of course adaptive. Further analysis is presented
in the Appendix to demonstrate this.
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Case 2 (k;; > 0): In this reversible circuit again the
essential behaviour is similar to the previous case. The
concentration of A approaches 0, while the net flux along
the pathway from A to B approaches a constant value.
Since A and B reach steady states, B of necessity will adapt
to its prestimulus level. Both these examples show that the
primary effect of the ramp eventually is an effective “short-
circuiting” of the node A in the motif (though this insight
must be carefully applied when consider reverse reactions
from B to A).

Another aspect is worth mentioning when k17 > 0. We
have associated the input stimulus as mediating the con-
version from A to B. A stimulus could also have been
associated with the conversion from B to A. For step stim-
uli applied here, the system would readily adapt based
on the argument above. Interestingly however, when a
ramp stimulus is applied, an important qualitative change
occurs: the output reaches a steady state which is non-
adaptive. The analysis of this case is presented in the
Appendix. The essential insight can however be easily
explained. While B reaches a nonzero steady state, the
concentration of A keeps increasing. Thus A + B does not
reach a steady state, and consequently B will not adapt
exactly (if it did, it would imply that A + B reached a
steady state). In fact the response is not adaptive. We make
an associated point here. If the stimulus was a quadratic
ramp, rather than a linear ramp: if applied in the forward
direction, it would result in an adaptive response. If it was
applied in the reaction converting B to A, it would result
in a (non-adaptive) zero steady state response (explained
in multiple ways in the Appendix).

Three node motifs. We now examine two three-node
motifs which include the two node (reversible) motif
above, and an extra node C. B is converted to C and
C is converted to A. In one case there is outflow to C
(DR08.M32) and in the other B is the sole outflow variable
(DR08.M34). We note that when we present equations
for models in the main text below, for the purposes of
analysis, these include constants associated with every
transition, to facillitate model analysis: when a signal is
involved in a transition, it appears multiplicatively. The
models presented in the Additional file 1 in some cases
associate certain transitions with signals explicitly and
correspond exactly to how the model is simulated. The
model for the first scenario (two outflow variables) is

dA/dt = ko — k1SA + k11B + k3:.C
dB/dt = k1SA — k11B — koB — k3B
dC/dt = k39B — k33C — k31C (3)

A ramp associated with the A to B conversion leads to
exact adaptation, but this is not the case when it is applied
to the B to A reaction (for exactly the same reasons in the
two node motif above). A ramp applied at other locations
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does not lead to exact adaptation of B (this is no surprise,
since a step input at these locations does not lead to exact
adaptation either).These results are seen through detailed
analysis in the Appendix.

Now we examine a case of a 3 node motif, where B is the
sole outflow variable (DR08.M34), where there is inflow
to C (but no outflow: the only difference with the model
above):

dC/dt = k3B + k3 — k31C (4)

Here, a ramp input applied to the reactions not involving
the degradation of B (i.e. A to B or C to A conversions)
does lead to exact adaptation, while a ramp input applied
at reactions involving degradation of B leads to a non-
zero but not adaptive steady state. The reasons for this are
identical to that of a 2-node motif as discussed above (see
Appendix).

The Appendix presents a detailed analysis of 3 node
motifs with both one and two outflow variables, and dif-
ferent degrees of reversibility in reactions involving the
node C (note that in both the cases above C is involved
only in irreversible reactions). This analysis reveals exactly
what constraints emerge to satisfy exact adaptation in a
ramp when reversible reactions involving C as well as
multiple outflow variables are present.

The Transcritical circuit. The core model of the trans-
critical circuit (TC) involves 3 species A,B,C. The conver-
sion from B to C is mediated by an autocatalytic feedback
involving C. The model for this circuit is given by

dA/dt = —k1SA + koB
dBJdt = kiSA — kyB — ksBC + kaC
dAC/dt = k3BC — kuC 5)

The conservation condition leads to an equation A +
B + C = X; a constant. Analysis of this net-
work shows two distinct steady states C = 0,B =
(kiSXp) / (kS + k), A = (kaXy) / (kiS+kz) and B =
ka/ks, A = koks/(ksk1S),C = Xy — A — B. It is clear
that the second steady state is physically feasible only
when X; > (ka/k3) (1 + ka/k1S). In this regime (which we
assume, which places a lower bound on the signal) how-
ever B exhibits exact adaptation independent of S, when
S is a constant. Thus exact adaptation to step increases of
stimuli, naturally follows.

A ramp stimulus (mediating conversion of A to B) has
the effect of converting all the A to B, so that at steady
state A = 0, whereas B = ky/ks and C = X; — ky/ks.
Thus, we see that B exhibits exact adaptation to a ramp.
Both quadratic ramps and exponential signals also results
in exact adaptation for the same reason.
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Incoherent feedforward motifs. We turn to incoherent
feedforward motifs, which, as seen earlier exhibit adapta-
tion in a ramp stimulus. For specificity we focus on one
incoherent feedforward motif (KR09) described by

dA/dt = kS — kA
dl/dt = k;S — k_;I
AR* /dt = keA (Ry — R*) — K IR* ©)

In this model, when the signal is constant, both activator A
and inhibitor I reach a steady state proportional to S. The
output R* reaches a steady state Rp(A/I)/ (kr/kf + A/I).
Since A/I is independent of S, the system adapts exactly
to a step. When subject to a ramp both A and I increase
without bound (if saturation is introduced as in model
KR11, that will no longer be the case). Asymptotically A
and I exhibit linearly increasing dependence on time with
a proportionality factor which depends on the slope of
the ramp: A ~ k,;S1t/k_4,1 ~ k;S1t/k_; (S1 is the ramp
slope) The output reaches a quasi-steady state, which as
seen above depends on A/I and is exactly as the basal
adaptive steady state. A similar adaptive behaviour is seen
in a quadratic ramp for the same reason. On the other
hand when the model is subject to a stimulus exp(at),
then both A and I show exponential variation and A/l
reaches a steady value which is not the prestimulus value.
Thus the system does not exhibit perfect adaptation, and
the higher the exponent is, the further the deviation from
the prestimulus value. This is discussed in the Appendix.
The incoherent feedforward mdoule KI14, exhibits very
similar trends as this model (see Additional file 1).

Response to periodic and spatial stimuli

While discussing the response of adaptive circuits to peri-
odic stimuli, we highlighted two types of circuits whose
response showed a mean value which was independent of
the periodic stimulus. We present relevant analysis here to
support those observations.

One class of circuits which demonstrate this property
are inflow-outflow circuits. We first consider the two node
motif with reversible interconversion studied above (this
covers the case of irreversible conversion). Since d/dt(A+
B) = ko — k2B, and the input stimulus is periodic with
period T, integrating both sides over a time period

t+T

t+T
/ (d/dt(A+ B)) = koT — /(2/ Bdt  (7)
t t

Noting that the integral of the left hand side is zero, since
all variables oscillate periodically,

t+T
(l/T)/ Bdt = ko/ko (8)
t

Thus the average of B is maintained in a periodic stim-
ulus, irrerspective of the basal value and amplitude of the
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input. Incidentally, even if the periodic stimulus is associ-
ated with the conversion of B to A, the same result holds
good for the same reason.

Now we turn to the two 3-node motifs discussed above,
which differ only in whether C is involved in outflow or
inflow. If the inflow in the circuit is A and C and the
outflow in B (DR08.M34), then we have

d/dt(A+ B+ C) = ko + k3 — k2B

t+T
wn/ B = (ko+ks) [k ©)
t

Just as before the mean value of B is maintained at the
steady state adaptive level. Finally if there is outflow of C
(model DR08.M32), then we have

d/dt(A+ B+ C) = ko — koB — ksC

t+T
(Um/ (kB + ksC) = ko (10)
t

Integrating the equation for C indicates that ffrT k3o Bdt =

ftH'T (k31 + k3) Cdt. Since the averages of B and C are pro-
portional and noting the equation above, we find that the
average of B and C are fixed independent of the stimulus.
This assumes that the stimulus is associated with the con-
version of A to B or the reverse conversion. This property
will not in general be satisfied if the signal were associated
with the conversion of B to C or C to A.

Finally, we consider the transcritical circuit above.
Rewriting the equation for C (valid as long as C is non-
zero) and then integrating across a period of oscillations
allows us to transparently see why the mean of B is
maintainated in a periodic stimulus

d(InC)/dt = k3B — ku

t+T
(l/T)/ Bdt = ku/ks (11)
t

This clearly shows why the mean of B is maintained, as
long as the stimulus is not associated with the reactions
involving B and C.

Static Spatial Stimuli. We had asserted that in a 3-node
motif, with inflow at A, the output maintains its mean
value under certain conditions. We assume that A is dif-
fusible. We consider two cases, one where there is only
one outflow (DR08.M34) and one where B and C have
outflow (DR08.M32).

In the former case, at steady state, adding all the
equations results in

d0A+B+C) 924
—~ =kot+ ks —kB+k;—
” 0+ K3 — K2 +d892
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Now the LHS is zero (steady state) and integrating across
the spatial domain, we find that the diffusion term inte-
grates to zero. Thus we are left with

L
(l/L)/ Bdo = (ko + k3)/ks (12)
0

Thus, the spatial average of the adapting variable is main-
tained, even though a graded response is obtained.

If we consider the case of outflow at B and C, and repeat
this we find that at steady state

ky <B>+k3 <C> = ky (13)

where <> denotes spatial average. If the signal is not asso-
ciated with the transitions involving C, then at steady state
C is proportional to B everywhere (independent of signal).
In this case the spatial average of B is maintained. Oth-
erwise in general this will not be the case. These results
mirror the analysis of response of periodic stimuli in these
circuits, with the only difference being the averaging is
done in space rather than in time.

Spatiotemporal stimuli. We previously asserted that
the transcritical circuit with A diffusing would result in
a fixed mean output in spatiotemporal stimuli such as
standing waves and travelling waves. This follows imme-
diately from the analysis above

d(InC)/dt = k3B — ky

t+T
(1/T)/ Bdt = ka/ks (14)
t

which is unaffected by A diffusing. The conclusion is
therefore the same, with the mean of B being maintained
in both travelling wave and standing wave stimuli (also see
Appendix which examines the effect of the autocatalytic
species diffusing)

Now we turn to the three note motif with inflow
and outflow (focussing on the variant with one outflow
DR08.M34). We have

d3A+B+C) 924
- = —ky+ k3 —koB+kyj—
ot 0+ K3 — K2 +d802

Inetgrating across the spatial domain (and dividing by L),
and integrating across a temporal period (and dividing by T)
yields
t+T
(l/T)/ < B> = (ko +k3) /ky (15)
t

Here < B > is the spatial average of B across the domain.
In the above equation, we can interchange the temporal
averaging and the spatial averaging to give

t+T
<D / B> = (ko+k) /ks (1)
t

Now when the input is a travelling wave, the response is
also a travelling wave (as seen by simulations) so that the
temporal average at every location is the same as every
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other location. Denoting (1/T) ftHT B by By, we find that
since By is independent of space, the preceding equation
simply implies that By = (ko + k3) /ka. Thus the temporal
average of the adapting variable is maintained at the same
value at every location irrespective of the characteristics
of the travelling wave stimulus. This is also seen in simu-
lations. This analysis doesnt hold good for standing waves
(since By can vary with position) and in fact simulations
clearly show that the mean is not maintained in a stand-
ing wave. We note that when the input is a travelling wave,
not only is the temporal average maintained at every loca-
tion, but the spatial average asymptotically approaches a
constant.

Combinations of adaptive behaviour

In the previous section we discussed circuits which could
give exact adaptive behaviour in a spatial gradient but not
a periodic stimulus. This can be seen, in the circuit

dX/dt = koA — koIX

dA/dt = k;S — k_,A

4 %1

1/dt = k;S — k—i1+kdw

Here at steady state X = koA/k2l, and furthermore I is
spatially homogeneous. Consequently I = k; < S > /k_;.
It is easy to see that < X >= (ko/ka) (Kzk—;/k_zk;) which
corresponds to maintenance of the mean value. As we
have seen, in a ramp A and I asymptotically approach
k.S/k—, and k;S/k_; and it is easy to see from a sim-
ple analysis that X adapts, since the dominant contri-
bution to the long term dynamics is given by dX/dt =
ko(ky/k—z)S — ko(ki/k—;S)X where S ~ «t. Just as in
the other incoherent feedforward motif, we see adap-
tive behaviour in a ramp. In order to get non adaptive
behaviour in a ramp, this motif can be modified, to an
inflow-outflow system, similar to the two node inflow-
outflow system considered above:

Xm/dt = koA — ki X1 + k1152X2
dXp/dt = kiXi — (kuS* + k) Xo

The essential insight is that this regulation of the adap-
tive variable (but in a nonlinear way, different from the
regulation of inflow and outflow and “stronger") will pre-
vent adaptation in a ramp.This can be established in detail
analytically. An alternative way is to introduce an extra
autocatalytic nonlinearity by having the reaction from X;
to X1 mediated by X;. The equations are

dXy/dt = koA — ki X1 + k11 X1Xo
dXz/dt = kX1 — (kqu + kZ)XZ

Analysis of this model also demonstrates inexact
adaptation in a ramp.
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Discussion
Adaptation is a basic and widespread characteristic of
information processing in cells. The primary interest in
adaptation stems from the capabilities it provides a cell
in its response to the environment (for eg. in chemotaxis
and phototransduction), how it allows for homeostasis,
and how it allows for a distinct mode of transmission of
information. It is clear that dynamic stimuli/environments
may be routinely encountered in cellular contexts (and
may be regarded as more representative than static stim-
uli), and thus any in-depth understanding of the role of
adaptation and homeostasis in cellular information pro-
cessing has to properly account for this. Multiple models
of adaptation include generic models and context-specific
aspects have been proposed and studied. In trying to
obtain a systematic synthesis of the response of adaptive
circuits to dynamic and complex environments, it is nec-
essary to consider different characteristics of the dynamic
environment as well as different characteristics under-
pinning adaptation to isolate the interplay between the
two. Similar broad circuit characteristics may be com-
bined with subtle variations in model structure, which can
prove important. Consequently our analysis focussed on
a suite of models drawn from the literature. We summa-
rize the essential insights which emerge and discuss its
implications for natural and engineered biology.
Responses to ramp stimuli. We found that ramp stim-
uli could discriminate between even apparently similar
circuits, which exhibit essentially exact adaptation to step
inputs. A whole spectrum of responses from non-steady
state to steady state non-adaptive, to partially adaptive
to exactly adaptive responses were seen. Interestingly a
range of circuits exhibited exact adaptation to linear (and
even quadratic) ramp stimuli, indicative of a broader adap-
tive response. In cellular systems, other factors which
limit the extent of stimulus, do exist. In the case of the
above circuits, exact adaptation to ramps occurs purely
as a consequence of the intrinsic information processing
characteristics: the capping of stimulus may contribute
at most a dynamic distortion of response. For other cir-
cuits which would not intrinsically adapt in a ramp, the
capping of a stimulus could be a vital ingredient to con-
vert the response to an exactly adaptive response. Our
analysis delineates design features which allow for adap-
tation in a linear ramp: cancellation effects maintained
in certain incoherent feedforward motifs,a confluenece
of incoherent feedforward and threshold effects in oth-
ers, short-circuiting of steps in inflow-outflow circuits.
Another distinct design feature involves the ramp trans-
ferring species in closed circuits to the core adaptive sub-
circuits (eg transcritical circuits), which are reminiscent of
circuits exhibiting absolute concentration robustness [54]
to the total amount of species in the circuit. In inflow-
outflow circuits, we found that the location of a stimulus

Page 18 of 26

in the circuit/motif could be critically important, with
some locations associated with adaptive behaviour and
other not, even though all these locations were associated
with exact adaptation in step stimuli.

Responses to time-periodic and spatial stimuli. Basic
as well as subtle aspects of the underlying circuit are
reflected in the dynamic response to periodic stimuli. A
small selection of circuits maintain the mean value of out-
put irrespective of change in mean value or amplitude
of the input. Analysis in these cases reveals the pres-
cence of an integral controller (integrator) with constant
(time invariant) coefficients, which is responsible for this.
These circuits include inflow-outflow circuits and trans-
critical circuits. In the former, increasing the number of
outflow variables (from one), imposes increasing restric-
tions on the degree of reversibility in the network, and the
locations where the signals act to elicit such behaviour.
Finally we performed some focussed analysis to extend
these insights to the spatially distributed case (both input
and circuit being spatially distributed: representative of
either single cell or tissue levels). Interestingly we find
that some circuits are capable of detecting spatial gra-
dients in a persistent manner, when there is a temporal
gradient as well, even in the absence of any diffusible
inhibitor, primarily because the response in a temporal
ramp is non-adaptive. Thus the requirement of having a
diffusible species is not needed for dynamic spatial gra-
dients. Having diffusible species can allow for a circuit
to give a gradient (non-adaptive) response to static gradi-
ents, though this depends on which species is diffusible.
Some circuits, notably inflow-outflow circuits, exhibit this
non-adaptive gradient behaviour, while maintaining their
spatial mean, indicating again an adaptation “in the mean".
For spatiotemporal stimuli such as travelling waves and
standing waves, some circuits essentially maintain the
(temporal) mean-value of the response at every location to
both stimuli, while others do so for only travelling waves.
This clearly shows how echoes of the precise temporal
structure of adaptation are seen even in spatially extended
systems, but with the nature of the spatial signal and the
nature of the circuit and their interplay playing important
roles.

Exact adaptation in combinations of complex stimuli.
Our simultaneous consideration of ramps, periodic stim-
uli and static spatial gradients, brings to the fore the
different constraints and requirements for exact adapta-
tion in ramps, adaptation of the mean in periodic stimuli
and in static gradients (Table 3). In all cases considered,
the factors which give rise to exact adaptation are struc-
tural and parameter independent. We demonstrated that
it is possible to construct circuits which can exhibit any
combination of the prescence or absence of exact adaptive
behaviour to each of these stimuli. In particular, certain
inflow-outflow circuits are capable of exhibiting exact
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Table 3 Exact adaptive behaviour of classes of circuits considered in the text to different stimuli

Page 19 of 26

Feedback Incoherent Feedforward

Inflow-outflow

Other

Yes (no saturation of
feedforward legs), also

No (unless zeroth order
reaction present*)

Ramp

Yes, provided signal doesnt act on
output. Further restrictions if there

Yes

threshold/saturation
model

Periodic stimulus
(mean value)

No (unless zeroth order No
reaction present®)

Static gradient No (unless zeroth order

(mean value) reaction is present, not Table 2)
studied)
Spatio temporal No (not discused) No

periodic stimuli

No (but see hybrid case in

are multiple outflow variables

Yes if only one outflow. Restrictions Yes
on signal location for multiple
outflow variables

Yes for one outflow variable, for No
some species diffusible; further

restrictions on signal location for

two outflow variables

Travelling wave but not standing
wave

Both Travelling and
standing wave (almost
exact: see text for details)

Note that for the purposes of this table, circuits with zeroth order reaction (apart from incoherent feedforward circuits whose legs may be regulated by zeroth order reaction),

including closed systems (eg. DR08.M4), are classified with inflow-outflow circuits

adaptive behaviour to all three stimuli, demonstrating a
broad and versatile adaptive behaviour. Also worth con-
trasting is adaptation of the mean value in periodic and
static spatial stimuli, which reveals an important but sub-
tle difference between time and space. The circuits which
exhibit adaptation of mean in both periodic and static
spatial stimuli (while exhibiting non-constant behaviour)
show the presence of a constant coefficient integral con-
troller. The transcritical circuit allows for mean adaptation
in periodic stimuli, but not spatial stimuli: this distinction
can ultimately be traced to the fact that time appears as
a first derivative while space as a second derivative in the
model. On the other hand, the combination of feedfor-
ward structures, with an inflow-outflow circuit can give
rise to adaptation in the mean in static spatial gradients,
but not periodic stimuli.

It is clear that there are many variations of each class of
circuit (and even an individual circuit) we have studied,
along with augmentations. Our isolation of the under-
lying design features allows us to evaluate other such
circuits (including new ones which have not yet been
constructed/studied) and the consequences of augmenta-
tions/variations , though this will have to be done on a
case-by-case basis.

Our analysis has been based on models of adaptation
which are primarily ODE based with a focus on exact
adaptation which can be understood in structural terms,
independent of model parameters and their tuning (in the
transcritical model alone, we have noted a broad param-
eter range for exact adaptation). This is valid as long as
the original model description is valid, which we assume.
When a ramp signal is associated with an inflow reaction,
we assume this description remains valid. We recognize
that inexact (but close to exact) adaptation could be just
as relevant, and that biology may employ additional lay-
ers (eg thresholds) to transform inexact adaptation into

exact adaptation. In such cases, the nature of the adaptive
response to complex stimuli needs to be studied on a case-
by-case basis, and can build on the foundation here, with
additional parametric analysis.

We now discuss the relevance of our results to systems
biology. Dynamic stimuli such as ramps have been used
experimentally in specific contexts, such as osmoregu-
lation, and chemotaxis:the response of E. coli to expo-
nential ramps has been studied experimentally, as has
the response of the gradient sensing network in Dic-
tyostelium, where adaptation to linear ramps has been
demonstrated [14, 46, 47]. On the other hand there are
many other contexts, notably in homeostasis, where the
response to dynamic stimuli has not been examined
in detail. This is especially true in the case of "com-
plex" homeostatic mechanisms involving multiple layers
of homeostasis, for eg see [55]. Our study provides a plat-
form for probing such systems, by examining the response
of a variety of circuits to different classes of stimuli, and
also by isolating key structural characteristics for differ-
ent kinds of behaviour. Our study of ramps and periodic
stimuli together, presents interesting parallels and con-
trasts. The response to ramps spans a broad range of
behaviour ranging from exact adaptation to non-adaptive
behaviour. Viewed from the perspective of homeostasis,
exact adaptation and non-adaptive behaviour represent
opposite ends of the spectrum, and our analysis allows
us to transparently isolate the reasons for both these
behaviours. Non-adaptive behaviour in a ramp, espe-
cially when exact adaptation is observed in a step input,
represents a breakdown in homeostasis induced by the
temporal nature of the input stimulus. In response to
periodic stimulus, while exact adaptation in the mean
was observed in some cases, a complete failure in main-
taining the mean of the output, for instance, was rarely
observed.
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Our study also revealed that the location of the network
where the input acted could be critical in determining
whether exact adaptation was observed or not: notably
in multiple inflow-outflow circuits, a change of location
could completely alter the response and even make the
circuit non-adaptive. The fact that this is seen even in
basic 2-node inflow-outflow circuits indicates that there is
a fundamental constraint of such circuits to exhibit exact
adaptation to a ramp, when the signal acts at multiple
network locations. This has implications for biological sig-
nalling where multiple inputs may act at different points in
a network, and this suggests that there are preferred loca-
tions for a signal to act to enable homeostatic responses
to such dynamic stimuli. It is also suggestive of the fact
that there are nodes, which exhibit homeostatic behaviour
in simple stimuli, exhibit potential "fragility” (i.e. marked
departure from homeostasis) in certain classes of dynamic
stimuli. This could have significant consequences for
when a cell may not be able to withstand certain stress-
ful signals (depending on the nature of the stimulus and
location). It remains to be seen if such locations have
been avoided in evolution, or if other factors (which have
the effect of capping such stimuli) have been incorpo-
rated to limit this effect. Furthermore there are biologi-
cal processes where opposite steps of the same network
may be targeted to achieve opposite responses—for eg in
chemoattraction and chemorepulsion. Our study suggests
that there are fundamental basic constraints which create
clear contrasts in the nature of adaptive response to ramp-
like stimuli, showing how adaptive behaviour in ramps of
both types of stimuli (attractant and repellent) may not
be accommodated in such cases. Our study of multiple
inflow-outflow circuits also reveals the potential conse-
quences of augmenting a circuit with other steps: this can
cause a complete alteration in the nature of the response.
Since evolution in biology is believed to act by " tinkering"
from existing circuits, this may create important new con-
straints for circuits thus constructed. On the other hand
by creating an augmentation, in some cases it is possible
for a different signal to act at other locations to also enable
exact adaptation in a ramp: as an example, an augmenta-
tion of the two-node inflow-outflow circuits with a third
node with irreversible steps (Fig. 8), allows for an input
(for instance with an opposite effect, such as chemorepul-
sion) to act on a new node which removed the constraints
of the two node circuit and enable exact adaptation in a
ramp.

Spatially varying signals present a distinct aspect. Here
in general adaptation/homeostatic behaviour is inherited
from the network. There are many ways in which adap-
tation could act: (i) act at every location, where the
input is present (ii) A spatial averaging is performed and
the adaptation occurs downstream (iii) the adaptation
and averaging operations are integrated, allowing for a
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non-adaptive response in spatially graded stimuli. In the
last case we show how it is possible to exactly maintain
the spatially averaged mean value of the response. This
could be of relevance at the cellular level (spatial averag-
ing of the output from the membrane being a trigger of
downstream activity) or even at the tissue level (the spa-
tial average of outputs from an array of cells being an input
to some downstream communication, or involved in some
additional developmental step). It is interesting to note
that the gradient sensing network in Dictyostelium which
occurs via a Local Excitation Global Inhibition module,
does not in general allow for the exact maintenance of
the mean value of the response (the lipid PI(3,4,5)P3),
while a network mimicking a basic E.coli adaptive circuit,
but with a diffusible entity, can do so, provided certain
specific enzymatic reactions act in the unsaturated limit
(this follows by analyzing such circuits which are simi-
lar to the inflow-outflow circuit we have analyzed). The
new considerations which emerge when considering the
interweaving of temporal and spatial stimuli is reinforced
by our observation that circuits which exhibit both these
features, do not maintain the mean value (in time) in
spatio-temporal periodic stimuli.

Adaptation and homeostasis is an important ingredient
for synthetic biology as well [56, 57]. Our insights into
design features for adaptation in dynamic and spatial stim-
uli, lays bare key ingredients for engineering sophisticated
biosensor circuits with a variety of adaptive responses in
dynamic environments Given the importance of biosen-
sors in synthetic biology, biomedicine and biotechnology,
and the experimental work in this direction, adaptive
and homeostatic regulators (especially in complex and
dynamic environments) offers a vital capability to com-
bine with bio-sensing [58]. Going even beyond the biolog-
ical area, the advent of “soft robots" [59] which could con-
ceivably be endowed with chemical sensing capabilities,
and incorporating adaptation at the sensory level could
be relevant here as well. Our insights are also relevant
to the engineering of information processing and home-
ostatic controllers through non-enzymatic mechanisms
such as DNA strand displacement reactions [60—64]. We
have shown how it is possible to construct compact adap-
tive circuits which combine features of exact adaptation in
static stimuli, ramps, temporal periodic stimuli and static
spatial stimuli (or any subset of these capabilities). Our
consideration of structural features which robustly enable
this, as well as the effect of modular augmentation of
such circuits, as well as choice of nodes at which stim-
uli act is relevant to both bottom-up construction as well
as re-wiring of existing circuits. Finally, while design in
synthetic biology focusses typically or a circuit, an alter-
native approach is to focus on the design of a stimulus
or environment to elicit certain outcomes. Our analy-
sis here provides insights into when this may be possible
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(when adaptation is present), for instance by eliciting non-
homeostatic outcomes through the application of tem-
poral and spatial stimuli. Whether engineering through
synthetic biology (either conventionally or through strand
displacement reactions) or even other chemical means
[65], adaptation and homeostasis serves as a crucial focal
point, and it can be expected that many interesting appli-
cations arising from this can be realized in the fairly near
future.

Conclusions

Our simultaneous consideration of a variety of dynamic
and spatial stimuli, on one hand and a variety of adap-
tive circuits on the other, provides insights into the
types of adaptive responses which are possible in such
stimuli, what features of circuits robustly enable such
responses, and when adaptation/homeostasis may be
compromised. This provides a platform for understand-
ing adaptation/homeostasis in multiple cellular contexts,
which may employ such circuits, or variations or com-
binations thereof. It allows for the evaluation of the
adaptive responses of concrete cellular systems, includ-
ing the robustness of the adaptive/homeostatic mecha-
nisms employed. Ultimately it can also provide insights
into whether the nature of the dynamic environment may
have impacted the adaptive circuits which have emerged
in evolution. On the other hand it provides a basis for
engineering adaptive/homeostatic circuits for use in com-
plex environments either by rewiring existing circuits or
building circuits ab initio.

Appendix
Analytical results on open systems.
In this section, we will analyze in a little more detail, 2
node and 3 node motifs with inflow and outflow, to ramp
inputs, to further consolidate the points in the text. This is
done in two different ways: firstly we analyze a selection of
the models directly to illustrate the main insights. We then
analyze this using quasi-steady state model reduction: this
is done on a broader range of inflow-outflow motifs

To start with we consider the two node motif (neglecting
any inflow to B):

dA/dt = ko — k1SA + k11B

dB/dt = k1SA — k1B — kB (17)

We first start with the purely irreversible two node motif,
i.e k11 = 0, for the model DR08.M1 (again inflow to B is
neglected). We subject this model to an increasing signal
S(t) such as a ramp. To study the eventual behaviour of
this system, it is useful to change variables to w = SA —
ko/k1,Bo = B — ko/k>
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Then we have

dw/dt = (w/S)dS/dt — kiSw + (ko/k1S)dS/dt

dBy/dt = kyw — kaBy (18)

Looking at the terms on the RHS of the first equation, for
linear and quadratic ramps the first involving (1/S)dS/dt
becomes small as time increases relative to the sec-
ond, and the last term, which is independent of w also
approaches zero. Therefore as time progresses, the system
evolves to w = 0, and it is dominated by the second term.
This can demonstrated formally. Even when the signal is
an exponential, while the last term approaches a constant,
the second term dominates (both this and the first term)
and so w approaches zero. In other words SA approaches
ko/k1. This shows that overall A decreases in concentra-
tion so that the flux out of A (and into B) approaches k.
From this it easily follows that By approaches a steady state
of zero implying that B approaches a steady state of ko /k.
This is consistent with the intuition that the intermediate
step is effectively short circuited by the increasing signal,
and explains why B adapts.

We now consider the reversible case, where ky; is
nozero. The approach is similar. We employ a change of
variables tow = SA—ko//q —kuko/(kz/q),Bo = B—k()/kz.
Here the equations in the new variables read

dw/dt = —kiSw+ ki1 SBo+[ (w + ko/k1 (1 + k11/k2))] /SdS/dt
dB()/dt = kyw — kyBo — k11Bo (19)

As before, the asymptotic behaviour is governed by the
terms linear in w, By (the first two dominate the last term
in the first equation ). An inspection of this matrix readily
reveals that for any fixed S it has eigenvalues which are
negative or with negative real part, and with increasing S,
w and By approach zero, just as before. This demonstrates
the assertion that B adapts in this situation as well.

Now we briefly analyze the situation where the signal
regulates the conversion of B to A. This is described by
modifying the above model to reflect this

dA/dt = ko — k1A + k11SB

dB/dt = ki1SA — k11SB — koB (20)

We now demonstrate two points (i) In a linear ramp, B
will not exhibit exact adaptation (ii) In a quadratic ramp,
B will reach a zero steady state. Both these observations
have been seen in simulations.

To demonstrate the first point: suppose B reaches a
steady state (a necessary pre-requisite for adaptation). Let
us call this steady state Byg. Examining the asymptotic evo-
lution of A, we see that it is asymptotically governed by
the equation:

dA/dt = ko + ki11(a + bt)By — k1A (21)
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where the ramp S = a + bt is incorporated. As a conse-
quence of this increasing production term, A also evolves
to a behaviour, which is dominated by this term. This can
be seen by ignoring the ko and a4 terms above, and seeing
the evolution of A. This results in a dominant behaviour of
A tobe A ~ bByt/k (the full solution can be derived, and
it is clear from that this is the dominant behaviour). Now
when we consider the fact that d/dt(A+B) = ko— ko B, we
see that with a linear increase of A in time, the left hand
side contributes a constant, and hence B never reaches
its prestimulus behaviour. Thus exact adaptation is not
observed.

Finally we also demonstrate that in a quadratic ramp, a
non-zero steady state cannot be obtained. We follow the
same line of reasoning. Suppose B reaches a steady state
By. For a quadratic ramp, the asymptotic dynamics of A
are described by

dA/dt = ko + ki1 (a + bt*) By — k1A (22)

Now the domainant behaviour of the A dynamics arises
from the quadratic term: in fact A ~ bBot?/ky as long as
By > 0. Now if we examine the overall equation d/dt(A+B)=
ko — koB we see that such a behaviour of A is inconsis-
tent with a non-zero steady state for B: the left hand side
has a dominant contribution which arises from a quadrat-
ically increasing function of time encoded in A. Therefore,
to leading order the left hand side is a linearly increasing
function of time, which is inconsistent with the right hand
side which approaches a constant. The assumption that B
reaches a non-zero steady state leads to a direct contra-
diction and the role of the quadratic ramp is transparently
seen here.

Three node motifs. We concisely discuss the behaviour
of two 3 node motifs presented in the text: DR08.M32
(node C associated with outflow) and DR08.M34 (node
C associated with inflow). These are also presented with
alternative analysis in the section to follow. In the two
outflow case, the only location associated with exact adap-
tation in a ramp is the A to B reaction. That exact adap-
tation occurs in this case, follows from a simple extension
of the 2-node motif case, for the same reason. Exact adap-
tation does not occur for the other three locations: for
a signal applied to the B to A reaction, exact adaptation
of B, implies a steady state and exact adaptation of C =
k3aB/ (k31 + k33), but linearly increasing A. This contra-
dicts the mass balance, d/dt(A+B+C) = ko—koB—k33C,
since the RHS =0 for exact adaptation, while the LHS is
non-zero. In this motif exact adaptation does not occur in
a step in the B to C and C to A reactions, and this is also
the case in a ramp.

In the one outflow motif (DR08.M34), a ramp results in
exact adaptation, as long as it is not applied to the B to
A and B to C reactions. We focus on the B to C and C
to A reactions (reactions introduced by the third node).
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In the former case, exact adaptation of B implies linearly
increasing C and A with time, asymptotically, which con-
tradicts d/dt(A + B + C) = ko — koB: the LHS > 0 while
the RHS= 0. For a ramp applied to the C to A reaction C
approaches a zero steady state, while the influx to C (from
both B and the inflow) matches the flux from C to A. This
scenario is analogous to having an additional source of
inflow to A and an additional (constant rate) reaction from
B to A (in a 2-node motif)

Alternative analysis of inflow-outflow circuits. We
now present alternative analysis of inflow-outflow cir-
cuits for ramp inputs. This is based on quasi-steady state
approximations for some species. In particular we demon-
strate through this approach that (i) For a two-node
reversible motif, exact adaptation ensues if the ramp is
applied to the conversion of A (the inflow variable) to B
(the outflow variable, adapting). (ii) Exact adaptation does
not occur if the ramp is applied to the interconversion
of B to A (iii) For a three node motif (involving an extra
node C) where C is produced by B and converts to A,
we consider two cases: outflow only through B, and out-
flow through both B and C. In the former case, adaptation
occurs as long as the ramp is not applied to intercon-
version reactions arising from the degradation/conversion
form B. (iv) If there are two outflow variables, we pri-
marily focus on the case of the B to C and C to A
reactions being irreversible. In such a scenario, we show
that only a ramp applied to the A to B reaction, leads to
exact adaption. We also briefly consider reversible 3 node
motifs.

Two node motif. Consider the two node motif, which
is assumed to be reversible, without loss of generality.
Suppose the ramp is applied from A to B. A ramp is asso-
ciated with an increasing, large signal. This allows us to
make a quasi-steady state approximation for A as A =
(ko +k11B)/k1S. Using this in the evolution equation for B
yields

dB/dt = k1S(ko + /(113)//(15 — koB — k11B

Thus as time becomes large, the dynamics of B approaches
an evolution equation of the form dB/dt ~ ko — ksB which
indicates that B approaches a steady state which corre-
sponds to exact adaptation. This is consistent with what
was derived earlier indicating that A approaches 0 as 1/S.
Now we consider the signal associated with the B to
A conversion. Here the quasi-steady approximation for
B yields B = kjA/(k11S + k2). This now results in an
asymptotic evolution equation for A of the form

dA/dt = ko + k11S[k1A/(ky + k11S)] —k1A
dA/dt = ko — k1Aky/(ky + k11S)
dA/dt ~ ko — (kika/k11)(A/S)
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In making the transition between step 1 and step two, we
note that the difference between the the last two terms is
calculated without making any assumption in the denom-
inator of the second term. Note that these two terms are of
comparable order, and neglecting the k; in the denomina-
tor of the second term, will lead to an incorrect deviation.
In fact once the second and third terms are combined, the
assumption of large S is made. After substituting for a lin-
ear ramp stimulus, the last equation is the form dA/dt =
a — bA/t, where a and b are constants. This can be solved
by a change of variables A = ut. In terms of u the equation
is tdu/dt = a — (b + 1)u, which can be solved by separa-
tion of variables. This results in the solution [a — (b + 1)
u(0)] /[ (@— (b+1)u(t) = tP*1]. From this, it follows that u
approaches a steady state a/(b + 1) (which contains infor-
mation about the ramp slope) and consequently A linearly
increases with time. This linear rate of increase with time
numerically matches well results seen through computer
simulations. From the expression for B we see that in a
linear ramp, B asymptotes to a steady state not corre-
sponding to exact adaptation, as seen earlier. Now suppose
a quadratic ramp is applied: from the asymptotic evolution
equation for A, we see that A will still approach a linear
profile. This is because the variable u = A/t satisfies an
equation of the form tdu/dt = a — u — bu/t, the last term
can be neglected relative to the penultimate one as time
becomes large. Thus u approaches a constant value and
consequently A is linear. From this, looking at the quasi-
steady approximation for B, we find that B approaches
zero, exactly as seen in simulations.

3-node motifs with single outflow We focus on the
model where the reactions involving the third node
C are irreversible (for simplicity here and below we
ignore inflow to C as that does not affect the qualitative
conclusions):

dA/dt = ko — k1SA + k11B + k31 C
dB/dt = k1SA — k11B — koB — k3B

dC/dt = ksyB — k33C — k3,C (23)

If k33 = O there is no outflow through C. This is the
case we consider here. Now if we look at ramp stimuli
applied to the conversion from A to B and that from B
to A, we find that the former one adapts, but the latter
one does not. This emerges from an identical approach
to quasi-steady state approximation to the one considered
about, just including the augmentation of the C variable.
The C “leg" of the pathway is just an additional pathway
from B to A. In fact the insights here follows essentially
from the consideration of the interaction of nodes A and
B. For instance, if the signal was associated with the tran-
sition from B to A, we find, by an identical quasi-steady
state approximation, a steady state for B and a linearly
increasing profile for A, whose slope does not depend on
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reactions involving C. The slope obtained from the quasi-
steady state approximation matched with computational
simulations.

We now consider the ramp applied to the other two
transitions. First consider the ramp applied from C to A.
A quasi-steady state assumption for C results in C =
k32B/k31S. This reduces the model to

dA/dt = ko+[k32B/(k315)] k31S — k1A + k11B
dAJdt = ko+[ kssB] —k1A + k11 B
dB/dt = k1A — (ki1 + ko + k32)B

This is just like a two node motif with an extra pathway
from B to A. These equations when analyzed are simply
indicative of a steady state for A and B with B adapting
exactly.

The remaining case is when the signal acts from the B
to C conversion. Here by applying the quasi-steady state
approximation for B, we haveB = k1 A/ (k11 + ko + k32S).
Implementing this reduction into the equations for A and
C result in equations of the form

d(A + C)/dt = ko — k1 Aks/ (k3S)
dC/dt = kiA — k3:1C

Analysis of this equation shows that C asymptotically is
proportional to A with A approaching a linearly increas-
ing function of time. Just as in the two node motif, B
approaches a non-adaptive steady state. This justifies the
statements made earlier.

We now turn to the case of a fully reversible 3 node sys-
tem (depicted below for signal mediating conversion of A
to B) which is described by the following equations:

dA/dt = ko — k1SA + k11B + k3:C — ki3A
dB/dt = k1SA — k11B — kaB — k3B + ko3 C
dC/dt = k3B — k33C — k31C + k13A — kosC  (24)

Again we focus on the case of no outflow of C, i.e.
k33 = 0. From simulations we find that when a ramp is
applied to any of the transitions, excluding those involv-
ing degradation/conversion of B, exact adaptation ensues.
While we will not repeat all the calculations in these cases,
we focus on signal acting at two transitions (i) A to C and
(ii) C to B, neither of which was present in the previous
case. We examine the first case. Here, from a quasi-steady
state for A we have A = (ko + k11B + k31C) / (k1 + k13S).
Substituting, we have

dB/dt = ky(ko + ki1B + k31C)/ (ki + k13S) — (k11 + ka + k23)B+k32C
dc/dt

ko3B — k32 C + k3S(ko + k11B + k31C)/ (k1 + k13S) — k31C
This simplifies to

dB/dt = k3pC — (ki1 + ko + ka3)B
dC/dt = ko + k11B + ko3B — k3pC
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It is easy to see (for instance by adding the two equations)
that this system reaches a steady state, which corresponds
to exact adaptation of B. In fact this system has the struc-
ture of a 2-node motif, with inflow through C and outflow
through B, with an extraneous pathway converting B to C.
Note incidentally that if there was an outflow through C
(k33 # 0), then exact adaptation would not ensue.

Now we examine the case where the C to B transition is
mediated by the signal. Here from a quasi-steady state for
C, we have C = (kj3A + ko3B)/(k31 + k32S).Substituting,
we have a reduced model

dAJdt = ko — k1A + ki1 B + ks (kisA + ka3B)/ (ka1 -+ k32S) — ki3 A
dB/dt = kiA— ki1B — koB — ko3B + k32S(k13A + k23B) / (k31 + k325)
which simplifies to

dA/dt = ko — kiA + k11B — ki3A

dB/dt = k1A — k11B — koB + ki3A

From this we see easily that an adaptive steady state is
attained. In fact, this is similar in structure to a basic two
node motif, but with an extra pathway between A and B.
The steady state of B is the adaptive steady state balancing
inflow and outflow.

Taken together, we find that when we have only one
outflow, for transitions independent of the degrada-
tion/conversion from B, exact adaptation ensues.

Two outflows. We briefly examine the case of two
outflows from this perspective. If the system is fully
reversible, then exact adaptation does not ensue in a step,
at any location. Thus, there is no reason to expect it to
act in a ramp, and indeed this is not observed. Now if we
consider the case where the reactions involving C are irre-
versible, we find that exact adaptation occurs only when
the ramp is applied in the A to B conversion. The fact that
the other locations do not result in exact adaptation can
be seen as an extension of the above analysis. We also note
that a step signal acting at these locations does not lead to
exact adaptation either. In essence, the steady state of the
full system implies that a linear combination of B and C is
constant. Exact adaptation for B ensues only when the B
to C ratio is fixed at steady state independent of the sig-
nal. This can happen only when the signal does not involve
any reactions involving C. Combining this with the earlier
analysis that the signal cannot be associated with conver-
sion of B, we find that there is only one transition which is
associated with exact adaptation in a ramp.

Incoherent feedforward motifs. We study the
behaviour of an incoherent feedforward motif KR09
whose equations are presented earlier (similar insights
follow for model KI14): We consider its behaviour in
response to linear ramps, quadratic ramps and exponen-
tials. Now suppose S = a + bt. The asymptotic leading
order behaviour for both A and I are determined by the
increasing term bt.A full solution is easily obtained,
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A(t) = AO)exp(—k_at) + kabt/k_q — [kab/(k_a)*] (1 — exp(—k_qt)
1) = I(Oexp(—k_it) + kibt/k_; — [kib/(k-1)*] A — exp(—k_;t)

but the key point is that the dominant behaviour of A
is given by A ~ k,bt/k_, while that of I is given by
I ~ kibt/k_;. Now examining the R* equation shows a
linearly increasing forward and backward pathway which
results in a quasi-steady state for the response R* ~
(A/D)/(k;/ks + A/I). The key point here is that even
though A and I are increasingly asymptotically linearly in
time their ratio A/I approaches a constant k k_;/kik_,
which is exactly the level in a constant stimulus (and
it is independent of the stimulus). This implies that the
response reaches a steady state corresponding to exact
adaptation. This was noted in [52].

A very similar insight follows in the case of a quadratic
ramp. There, by a very similar approach A ~ k,bt?/k_,
and I ~ Fkbt?/k_;. For exactly the same reasons
the response reaches a steady state. Asymptotically A/
reaches a steady level even though A and I are increas-
ing, and the level it attains is exactly the value pre-
stimulus: k;k_;/kik_,. Thus exact adaptation is obtained
in a quadratic ramp.

Now we consider an exponential stimulus § =
Soexp(At). The variation of A and I are given by

At) = AO)exp(—k_at) + (kaSo/(k—q + W) exp(it) — exp(—k_qt)]
I(t) = I(0)exp(—k—it) + (kiSo/(k—i + 1) [ exp(rt) — exp(—k_;t)]

Both A and I are dominated by the increasing exponential
terms A ~ (k;So/(k_s + Mexp(At) and I ~ (k;So/(k—; +
Mexp(Lt). For the exact same reason as before, A/l
reaches a steady value and the response reaches a steady
state. Here however A/I asymptotes to a value k,(k_; +
M) /ki(k_s + X) which is not the prestimulus level. In fact
the higher the A the greater the deviation from the exact
adaptation.

Adaptation in the mean to temporally periodic and
static spatial stimuli. In the text, we studied circuits
which maintained their mean value in a periodic stimu-
lus and also those which maintained the mean value in a
static gradient. Inflow-outflow circuits (for instance two
node motifs) could exhibit both, and a common structure
allowed for this

3%A
d/dt(A+ B) = ko — koB + kdﬁ
In a purely temporally periodic signal, the spatial term
(diffusion) is zero, and the temporal term is zero when
averaged. Exactly the reverse happens in a static spatial
gradient, with the net effect that the averages are main-
tained, and this is true for other such circuits with similar
structure.At any rate the presence of a control structure
with constant coefficients is responsible.
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The transcritical model does result in maintenance of
mean value in a temporally periodic stimulus because the
control structure is present as dC/dt = C(koB — k_»):
since this equation is separable, and so corresponds to a
system with an integral control structure with constant
coefficients. We have already seen that if A is diffusible,
the spatial average of B will not be maintained: the main
point is that in the absence of C diffusion, either kyB =
k_o (implying no gradient response) or C = 0 (implying
no maintenance of mean value of B: the latter happens
when A is diffusible. The only remaining aspect to con-
sider is what if C is diffusible? Rewriting the equation
(assuming C is nonzero) and integrating over the domain
using integration by parts

32C
kdw[ I/C] +k2B - k_z =0

L L
(1/L) /0 (koB — k_2)df = (kq/L) fo [—(dC/de)*]

This shows that the spatial average of B cannot be main-
tained, unless C is constant. One the other hand if C
is constant, B cannot exhibit a gradient behaviour. This
shows how fundamental constraints exist in this model,
which also brings to the fore the difference between time
and space, and the fact that space is associated with a
second derivative which is ultimately what results in the
deviation term on the RHS.
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