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Abstract

Background: A positive energy balance is considered to be the primary cause of the development of obesity-
related diseases. Treatment often consists of a combination of reducing energy intake and increasing energy
expenditure. Here we use an existing computational modelling framework describing the long-term development
of Metabolic Syndrome (MetS) in APOE3L.CETP mice fed a high-fat diet containing cholesterol with a human-like
metabolic system. This model was used to analyze energy expenditure and energy balance in a large set of
individual model realizations.

Results: We developed and applied a strategy to select specific individual models for a detailed analysis of
heterogeneity in energy metabolism. Models were stratified based on energy expenditure. A substantial surplus of
energy was found to be present during MetS development, which explains the weight gain during MetS
development. In the majority of the models, energy was mainly expended in the peripheral tissues, but also
distinctly different subgroups were identified.
In silico perturbation of the system to induce increased peripheral energy expenditure implied changes in lipid
metabolism, but not in carbohydrate metabolism. In silico analysis provided predictions for which individual models
increase of peripheral energy expenditure would be an effective treatment.

Conclusion: The computational analysis confirmed that the energy imbalance plays an important role in the
development of obesity. Furthermore, the model is capable to predict whether an increase in peripheral energy
expenditure – for instance by cold exposure to activate brown adipose tissue (BAT) – could resolve MetS symptoms.

Keywords: Metabolic syndrome, Energy expenditure, Obesity, Patient-specific, Computational modelling,
Heterogeneity, Lipid metabolism, Cold exposure, Brown adipose tissue

Background
A positive energy balance is a major contributor to the
development of obesity and its related disorders such as
the Metabolic Syndrome (MetS) [1–4]. The Metabolic
Syndrome is characterized by the joint manifestation of
obesity with hyperglycemia, insulin resistance, dyslipid-
emia and/or hypertension [5–8]. MetS imposes severe
health risks and complications and increases the risk to

develop other diseases, i.e. co-morbidities including dia-
betes and cardiovascular diseases [9–11].
Given the obesity-driven pathophysiology of MetS, the

main driver for weight gain is considered to be the surplus of
energy caused by excessive caloric intake (overnutrition)
and/or combined with insufficient energy utilization, charac-
terized by a sedentary lifestyle with little physical activity
[1, 12]. Treatment of MetS is therefore often aimed at
diminishing the surplus of energy in the system. This can
be accomplished by making adjustments at both sides of
the equation, but we are in particular interested in how in-
creasing energy expenditure (EE) could contribute to the
treatment of MetS.
Energy expenditure comprises multiple entities that con-

sume energy, of which the most important ones include
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basal metabolic activity to maintain e.g. body temperature,
and skeletal muscle activity. The latter can easily be stimu-
lated by increasing physical activity. However, brown adi-
pose tissue (BAT) also plays an important role in
thermogenesis and energy management [13–17]. Recent
studies have shown that activation of BAT has beneficial ef-
fects on weight loss, implying that this may be a promising
therapeutic target against MetS [18–20]. Activated BAT
combusts substantial amounts of triglycerides and glucose
in the circulation [20–24]. A clinically feasible way to acti-
vate BAT is by cold exposure [25, 26]. Most of these stud-
ies do show an increased energy expenditure, but allow
for direct compensation by increased food intake. To aid
our understanding, we demonstrate a method to study the
effects of increased energy expenditure isolated from other
possible compensatory mechanisms. Since the effective-
ness of such treatments may also strongly depend on the
differential response of patients, our method will also take
this into consideration.
Previously, we have developed a computational modelling

framework describing the progressive and heterogeneous
development of MetS [27]. This study yielded an extensive
library of N = 1000 different model realizations. This en-
semble of models was established by Monte Carlo sampling
of experimental data assessed from a pre-clinical mouse
model that describe onset and development of diet-induced
MetS over a timespan of 3months. This Monte Carlo sam-
pling entails the generation of random samples of the data
to account for experimental uncertainties. Subsequent
model fitting yielded alternative parameterizations that de-
scribe the same phenotypic readout (in terms of plasma
and liver biomarkers characteristic for MetS), but are estab-
lished by different combinations of underlying model pa-
rameters and metabolic fluxes to match the sampled data
to which this model realization was calibrated.
This collection of n = 1000 model realizations entails

uniquely different parameter sets and different model
outcomes. However, since the data to which each model
instance has been calibrated was sampled from the same
experimental data set, these different model realizations
do describe the same overall observable phenotype. Each
model realization yields a different model outcome,
which is a result of quantification of uncertainty that
was introduced by variability in data. So far, this collec-
tion of models was analyzed on the population level.
Here, we evaluate this virtual patient cohort using an in-
dividualized perspective using so-called virtual patients
[28–32]. Virtual patients can be regarded as different
sets of model simulations that are representative of the
differences in real-life. These virtual patients can subse-
quently be used in virtual trials to delineate how differ-
ent individuals may respond differently to perturbations
to the system and hence how effective potential treat-
ment interventions may be [33].

Whereas food intake was explicitly incorporated in the
model, the energy balance had not been analyzed. To
identify differences between virtual patients in terms of
energy handling, we first quantify the variation in energy
expenditure and resulting energy balance and use this
information for further stratification. Since the virtual
patient cohort consists of N = 1000 different model reali-
zations, we expect to find various combinations of meta-
bolic fluxes underlying MetS.
Secondly, we analyze how robust the system is to changes

in energy handling. Sensitivity and control of this type of
metabolic systems are often assessed by applying perturb-
ation experiments and is similar to methodologies often
used in metabolic control analysis and flux balance analysis
[34, 35]. Here we apply perturbations that induce increased
peripheral energy expenditure, representing an increase in
BAT activity. Energy is expended in the model by both the
liver and the periphery. Peripheral tissues include metabolic-
ally active tissues such as skeletal muscle and adipose tissue.
Hence, peripheral energy expenditure describes, amongst
others, thermogenesis by BAT [13, 16, 36]. We therefore
hypothesize that by simulating an increase in peripheral en-
ergy expenditure, activation of BAT can be studied in an in
silico setting. We expect this additional drainage of energy
from the peripheral compartment to diminish the energy
surplus in the system. We hypothesize this perturbation
leads to a decrease in peripheral triglyceride pool and also
result in improvement in plasma biomarkers.

Results
Computational model of energy management in
metabolic syndrome
The previously published computational model describing
the metabolic system in both healthy and Metabolic Syn-
drome conditions (Model Integrating Glucose and Lipid
Dynamics; MINGLeD) [27] is schematically displayed in
Fig. 1. MINGLeD consists of four compartments (liver, in-
testine, plasma and periphery) in which carbohydrate,
lipid, and cholesterol species are described. The peripheral
compartment comprises the major metabolic tissues (ex-
cept for the liver, intestine, and plasma) including adipose
tissue and (skeletal) muscle.
MINGLeD describes energy handling with two compo-

nents: energy intake (known from food intake data;
depicted by the grey fluxes from the intestinal lumen)
and energy expenditure (EE; predicted by the model).
Energy expenditure is represented by respiration of
acetyl-Co enzyme A (ACoA) in the liver (indicated by
the blue arrow; EEhep) and in the peripheral compart-
ment (indicated by the red arrow; EEper).
The model was previously calibrated to data derived

from APOE3L.CETP mice which respond in a
human-like manner [37, 38] to a high-fat diet supple-
mented with cholesterol, thereby inducing MetS. This
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data set [27] comprises monthly samples of plasma me-
tabolite pool sizes and body weight and composition
over the course of 3 months and was used for calibra-
tion of the model using maximum likelihood estima-
tion. Here we will specifically utilize the N = 1000
model realizations subset representing the onset and
progression dyslipidemic MetS [27]. This phenotype
presents itself with the development of obesity and glu-
cose intolerance in combination with dyslipidemia
(high levels of plasma total cholesterol and high levels
of plasma triglycerides). The collection of model reali-
zations comprises of trajectories (model simulations
over a timespan of 3 months) describing the metabolic
pool sizes and fluxes in the plasma, liver, intestine,
and periphery.

Stratification of energy expenditure
Prior to applying any constraints on energy handling,
any individuals that did not comply with the calibration
data – i.e. did not accurately describe the data on which
the trajectories were constraint – or those with unrealis-
tic (high) flux magnitudes were excluded. This yielded a
collection of N = 887, i.e. virtual individuals with physio-
logically correct MetS biomarkers.
However, the models should not only adequately de-

scribe biomarkers, but energy handling is also an im-
portant criterion for model selection. While energy
intake is known from food intake, energy expenditure is
not yet studied. Therefore, we first stratify the popula-
tion to ensure physiologically plausible values of energy
expenditure in the system. Figure 2a shows the

Fig. 1 Schematic overview of energy expenditure in the computational model MINGLeD. Energy expenditure takes place in both hepatic
(indicated by the blue arrow) and peripheral (indicated by the red arrow) compartments. This model scheme was adapted with permission from
[27]. This multi-compartment framework encompasses pathways in dietary absorption, hepatic, peripheral, and intestinal lipid metabolism,
hepatic, and plasma lipoprotein metabolism and plasma, hepatic, and peripheral carbohydrate metabolism. The metabolite pools in the different
tissue compartments are displayed in the black frames; the corresponding metabolic fluxes are represented using the arrows. The grey fluxes
represent the dietary inflow in terms of the different macronutrients derived from the experimental data. AA, amino acid; ACAT, Acyl-coenzyme
A:cholesterol acyltransferase; ACoA, Acetyl CoA; BA, bile acid; C, cholesterol; CE, cholesteryl ester; CEH, cholesterol ester hydrolase; CETP,
cholesteryl ester transfer protein; CM, chylomicron; DNL, de novo lipogenesis; (F)C, (free) cholesterol; (F)FA, (free) fatty acid; G, glucose; G6P,
glucose-6-phosphate; GNG, gluconeogenesis; HDL, high density lipoprotein; TG, triglyceride; TICE, transintestinal cholesterol absorption; (V)LDL,
(very) low density lipoprotein

Rozendaal et al. BMC Systems Biology           (2019) 13:24 Page 3 of 14



distribution of trajectories of total energy expenditure
(summation of hepatic and peripheral EE) over time.
The timespan on the horizontal axis describes develop-
ment from a healthy phenotype to MetS over a period of
3 months. The collection of trajectories contains models
ranging from low to high energy expenditure, but in
general, the EE remains relatively stable over time.
Therefore, the mean, as shown in the histogram of
Fig. 2b, is sufficient to summarize these results.
We applied physiological constraints obtained via in-

direct calorimetry (see Table 1 in the Methods section).
Metabolic cages were used to measure VO2 and VCO2

such that metabolic rate and energy expenditure can be
quantified [39, 40]. The physiological constraints ob-
tained from these experiments aredepicted as the 99.7%
confidence interval (green error bars in Fig. 2a and green
shaded area in Fig. 2b). This demonstrates that the ma-
jority of the virtual population (76%; N = 678) presented
itself with a physiologically plausible energy expenditure.
Models with extremely low EE and high EE are pre-
sumed to be artefacts of solving the inverse problem of
fitting a model with many degrees of freedom to a lim-
ited amount of data.

For the following analyses we limit ourselves to the
subgroup of N = 678 virtual individuals. With an average
energy expenditure of 12 kcal/day (calculated by the
model) and an average energy intake of 19 kcal/day
(known from dietary composition and daily food intake),
the resulting energy balance is a constant surplus of en-
ergy of around 7 kcal/day. This explains the weight gain
and development of obesity over time.

Energy is mainly expended in the peripheral
compartment
The next step in the stratification process comprises the
breakdown of the contribution of different tissues to the
total energy expenditure. The total energy expenditure
consists of energy utilization in both liver (Fig. 3a) and
periphery (Fig. 3b). We expected to find a significant
contribution from the periphery, compared to the liver.
The periphery is the largest compartment (both in volume
and in the number of cells). Since it also comprises muscle
and BAT, we expect that the periphery utilizes much more
energy than the liver, although the liver is also a metabol-
ically active organ. However, we found a distribution with
a strong bimodal profile. This bimodality indicates that

A B

Fig. 2 Energy expenditure predicted by MINGLeD as trajectories over time (a) and mean over time (b). a distribution of trajectories describing
total energy expenditure. The trajectories that adhere to the physiological constraints (represented by the green error bars; see Table 1) are
depicted in black; the unacceptable ones in grey. b histogram of the mean energy expenditure. The physiologically acceptable range is depicted
in green and derived from the following inclusion criteria: -EE at t = 3w within three-weeks confidence interval, i.e. [8.4–13.7 kcal/day]; −EE at t = 10w
within three-weeks confidence interval, i.e. [9.5–15.7 kcal/day]; −overall minimum EE above the lower bound of the 3w confidence
interval, i.e. 8.4 kcal/day; −overall maximum EE below 20 kcal/day

Table 1 Total energy expenditure assessed using indirect calorimetry

EE [kcal/day] fat oxidation [%] carbohydrate oxidation [%] protein oxidation [%]

MetS-3w 11.1 ± 0.87
[8.4–13.7]

57.6 ± 2.8
[49.3–65.9]

22.4 ± 2.8
[14.1–30.7]

20.0 ± 2.6e-4
[20.0–20.0]

MetS-10w 12.6 ± 1.04
[9.5–15.7]

63.2 ± 2.0
[57.4–69.1]

16.8 ± 2.0
[10.9–22.6]

20.0 ± 1.3e-4
[20.0–20.0]

Data is depicted as mean ± standard deviation, and as 99.7% confidence interval (between brackets)
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energy can predominantly be utilized by just either of
these tissues, but that energy can also be utilized by both
compartments to the same extent.
Consequently, we divided the population into three dif-

ferent subgroups, each with its own characteristic contri-
bution of hepatic and peripheral energy expenditure.
Figure 3 c shows the relative contribution of hepatic (blue)
and peripheral (red) EE for each virtual individual at the
three-month’s time point of MetS development. It reveals
the existence of a continuous “spectrum” in the contribu-
tion of hepatic and peripheral energy expenditure. As sug-
gested by Fig. 3c, in a part of the population, the majority
of energy is utilized in the periphery (on the left-hand
side); another subgroup exists in which the majority of en-
ergy is utilized in the liver (on the right-hand side); and an
intermediate group in which both peripheral and hepatic
energy expenditure are significantly contributing to the
total energy consumption. Therefore the virtual individ-
uals were separated into three different subgroups:

– [P]: predominantly peripheral energy expenditure (> 80%
originates from the peripheral compartment);

– [H]: predominantly hepatic energy expenditure (> 80%
originates from the hepatic compartment);

– [P +H]: intermediate subgroup in which both periphery
and liver contribute significantly (> 20% originates from
the peripheral compartment and > 20% originates from
the liver).

Additional file 1: Table S1 lists the characteristics for
each of these subgroups, and shows that these subgroups
are clearly separated in their average peripheral and hep-
atic energy consumption. Additional file 2: Figure S1
shows that although the predominant compartment of
energy expenditure varies among these individuals, the
same MetS phenotype in terms of biomarker profiles
has been established, whereas the underlying metabolic
fluxes may be different (see Additional file 2: Figure S2).

Further stratification based on substrate oxidation
The subsequent step of the stratification process involves
further specification of the source of energy. Energy ex-
penditure in MINGLeD is described by the respiration of
ACoA. The ACoA pool originates from three different
substrates: carbohydrate, lipid, and protein. ACoA is ob-
tained from carbohydrate substrates via glycolysis of
glucose-6-phosphate. ACoA from lipid substrate origi-
nates from the β-oxidation of triglycerides. ACoA can also
be derived from ketogenic protein uptake from the diet.
In Fig. 4 the relative peripheral (A) and hepatic (B) en-

ergy utilization are shown, split up into the relative con-
tribution of carbohydrate, lipid, and protein oxidation.
MINGLeD predicts a range of substrate ratios (carbohy-
drate:lipid:protein) to be possible and predicts that the
majority of the virtual individuals utilize mainly carbohy-
drate substrates as an energy source while lipids are
stored in the form of triglycerides (TG).

A B

C

Fig. 3 Peripheral (red) and hepatic (blue) contribution of energy expenditure. a and b include histograms of the mean energy expenditure. c
shows the relative contribution (numbers above graph) where each vertical line represents a single virtual individual. The division in subgroups
[P], [P + H], and [H] is indicated by the white dashed lines
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Literature has revealed that on a high-fat diet, mam-
mals mainly utilize TG as energy source [41–44]. In our
diet-induced MetS animal model, physiological data (see
Table 1 in the Methods section) has placed this cut-off
on at least 57% of energy to result from lipid substrates.
Therefore we imposed this as criterion for the minimal
contribution of fat oxidation, indicated by the dashed
line in Fig. 4.
Additional file 3: Table S2 lists the overall statistics of

the substrate oxidation for peripheral and hepatic energy
expenditure for each subgroup separately. In the pre-
dominantly peripheral subgroup [P], overall, 75% of per-
ipheral energy originates from carbohydrate sources,
15% from fat oxidation and 10% from protein substrates.
Although most of these numbers are not close to our
57% fat-threshold, a subset of this group does adhere to
this criterion (highlighted in grey in Additional file 3:
Table S2).
Note that in the predominantly hepatic subgroup [H],

only acceptable solutions regarding the relative contribu-
tion of fat oxidation were found for the peripheral energy
consumption, but that the contribution of the periphery
to the total energy expenditure is very low (< 10%).
To conclude, our stratification process resulted in a re-

duced population of N = 32 virtual individuals. This is a
representative subgroup as the selected individuals 1)

have an accurate description of plasma and liver bio-
markers (the characteristic MetS phenotype), 2) have a
physiologically correct EE, 3) predominantly utilize en-
ergy in the periphery, and 4) of which energy originates
for at least 57% from lipid substrates.
This stratification and selection process reduced the vir-

tual population of interest from several hundred to a few
dozen virtual individuals. Since each virtual individual in
the selected subgroup is described by a different param-
eter set, we decided to analyze each model in more detail
to understand how differences in model parameters affect
the behavior of the metabolic system. For this analysis, the
subgroup of N = 32 virtual individuals was sufficiently
large to represent the variability within the population and
to interpret results on an individual basis.

In silico perturbation experiment to study the robustness
of energy homeostasis
Subsequently, we employed MINGLeD to simulate an
increase in peripheral energy expenditure. To induce an
increase in peripheral energy expenditure, we perturbed
each of the N = 32 selected models (that adhered to
physiological constraints in terms of EE and substrate
oxidation) by multiplication of the peripheral ACoA flux
with different activation factors as shown in Fig. 5a. This
factor was iteratively increased from 1 to 25 as explained

A

B

Fig. 4 Contribution of carbohydrate and fat oxidation to the peripheral (a) and hepatic (b) energy expenditure. In subgroup [P] (left-hand side panels),
energy is predominantly utilized in the periphery (> 80% originates from the peripheral compartment). In subgroup [H] (right-hand side panels),
energy is predominantly utilized in the liver (> 80% originates from the hepatic compartment). Subgroup [P + H] (panels in the center) is an
intermediate subgroup in which both periphery and liver contribute significantly (> 20% originates from peripheral compartment and > 20% originates
from the liver). The dark colored areas (bottom right) correspond with fat oxidation, the medium colored areas (top left) indicate protein oxidation and
the light areas (middle) specify carbohydrate oxidation. The dashed line bounds of the acceptable physiological range on the lipid oxidation ratio (at
least 57% originates from lipid substrates). The fraction of individuals that adheres to this constraint is depicted below each graph
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in detail in the Methods section. For each factor, the
steady-state of the model system was re-calculated while
the nutritional intake was kept constant at the original
values for macronutrient intake. Since each virtual indi-
vidual is described by a different parameter set, the dif-
ferent individuals can be expected to respond differently
to perturbation in energy balance.
Figure 5a demonstrates the effects of perturbation in

energy expenditure (results are color-coded for each
model) versus the activation factor on the horizontal
axis. Whereas these models respond differently to the
perturbation, the majority shows a strong increase in
total energy expenditure upon increasing values of the
activation factor and saturating towards a plateau. How-
ever, the level of the plateau is different throughout our
population. This means that in some individuals, the
peripheral energy expenditure can be activated to a
much larger extent than for others. For further analysis,
we selected the activation factor that achieved highest

increase in EE (indicated by the black circle), yielding at
least an increase of 0.1% in total energy expenditure – as
an increase in total energy expenditure should be sub-
stantial in order to induce propagation of effects
throughout the system. This showed that the perturb-
ation was successfully applied in 23 virtual individuals.
The maximally achieved increase in EE is different for

each individual and for some the effects of the perturb-
ation are much higher than for others (Fig. 5a). For
some models, application of larger activation factors led
to depletion of the peripheral ACoA pool, preventing a
further increase in the externally applied perturbation
(these are the solutions that do not span the entire hori-
zontal axis).
The perturbation yielded a decrease of the energy sur-

plus (Fig. 5b) of up to 2 kcal, but not sufficient to create
an energy deficit. Under the condition of fixed food in-
take, increase in peripheral EE (Fig. 5c in red) is paral-
leled by a decrease in hepatic EE (Fig. 5c in blue). This

A

C

B

Fig. 5 In silico activation of peripheral energy expenditure leads to an increase of total EE. a shows the absolute (left vertical axis) and relative
(right vertical axis) change in total EE upon increasing activation factor. Each line depicts a different virtual individual where data are color-coded
according to the maximally achieved increase in peripheral energy expenditure. For each virtual individual, the highest activation result (if
yielding at least 0.1% increase in total EE) was used for further analysis and indicated by the black circle. b displays the resulting decrease of the
energy surplus in the system. Results are color-coded based on (a). c presents the shift in peripheral (red), hepatic (blue) and total (black) EE from
baseline (represented with dots) to in silico activation (represented with upward facing triangles for increasing values and downward triangles for
decreasing values) versus the relative increase in peripheral EE (on the horizontal axis)
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decrease in hepatic EE is more profound when the in-
crease in peripheral energy expenditure is higher (to-
wards the right on the horizontal axis) – but the total
EE (Fig. 5c in black) does increase upon increased per-
ipheral EE.
Figure 6 shows the resulting relative change in metab-

olite pool sizes (A) and metabolic fluxes (B) upon the
highest achieved increase in total EE. Using heatmaps,
we depicted these results for the N = 23 different indi-
vidualized models with from left to right increasing rela-
tive change of peripheral EE. Decreasing pool sizes and
fluxes are shown in red and increases in blue.
Perturbation induced a drastic increase in peripheral

ACoA respiration (top row in Fig. 6b), obviously deplet-
ing large quantities of the peripheral ACoA pool. Results
reveal direct changes in peripheral lipid and lipoprotein
metabolism, but also propagation into the plasma, liver,
and intestine. Circulating lipoprotein levels decrease
with increased peripheral energy expenditure (whilst
dietary intake was kept the same). Remarkably, the per-
turbation did not imply any changes in the carbohydrate
metabolic system.

Discussion
We successfully studied energy handling in metabolic
syndrome development. Our perturbation experiments
have shown that an additional drain of peripheral energy
expenditure successfully decreases lipid and lipoprotein
pools in the periphery, but also lipid contents in the sur-
rounding tissues. This thereby provided insight into how
a change in energy handling could be beneficial in the
treatment of MetS.
The growing incidence rates of obesity and related dis-

eases in combination with the heterogeneity in phenotypic
presentation and metabolic manifestations ask for a more
patient-specific approach towards treatment [45, 46].
Hereto we should first gain insight in which patient sub-
groups can be identified. Recently we have demonstrated
the differential response to high-fat, high-cholesterol feed-
ing, which induces two different MetS phenotypes [27].
These findings are in line with the expected phenotypic het-
erogeneity in metabolic component combinations [47, 48],
but also the heterogeneity within the same phenotypic pres-
entation – and energy handling – may be large. Whereas
most conventional studies make predictions based on the
population level, we therefore took a step further and evalu-
ated virtual patient subgroups. This follows the path to-
wards evaluating individual, patient-specific data and
enabling predictions in an individualized framework by
classifying patients into a corresponding subgroup [32].
We have shown the feasibility of (virtual) patient stratifi-

cation. Relevant individuals were first filtered out based
on physiological constraints. This approach parallels with
many in vivo experimental setups as a reduction of the

population is applied to retain only those individuals ex-
pressing the desired features, but also yielding a manage-
able amount of data. This is a crucial step in the “era of
precision medicine” [49] towards identifying a framework
to classify patients in corresponding subgroups and often
used in virtual (and clinical) trials [50, 51].
Our perturbation experiment can also be regarded as a

virtual trial. For this we even took one step further and
provided simulations on an individual level. For instance,
we can demonstrate that enhanced peripheral energy ex-
penditure can be used as an in silico proxy to study the
effects of BAT activation. Firstly, the imposed perturb-
ation is in the same order of magnitude as achieved in
clinical practice with exposure to cold (despite possibly
extra energy intake). In our virtual individuals, large dif-
ferences have been observed to what extent the energy
expenditure could be increased. However, (pre)clinical
studies report that cold exposure (CEX) induces a simi-
larly large range of average increase of energy expend-
iture compared to thermo-neutral conditions ranging
from only a few percent to several dozen percents in-
crease [25, 52, 53]. These results strongly depend on the
conditions of the experiment: degree (mild versus
strong, i.e. how cold) and the duration of the period of
cold exposure.
Secondly, the imposed flux changes are in line with

clinical observations showing that BAT can be activated
by cold exposure [25, 26, 54–57] and that it possesses
anti-obesogenic properties [52]. We found a reduction
of (circulating) lipid and cholesterol levels after simulat-
ing short and acute CEX. Radioactive tracer experiments
confirmed direct changes in TG uptake fluxes after
one-day of CEX but did not report changes in plasma
markers [21, 58].
This difference could be explained by differences in ex-

perimental conditions: the in silico study induced a quite
extreme activation compared to one-day CEX treatment.
If CEX would have induced an activation as strong as in
the in silico case, supposedly changes in plasma metabol-
ite pools would have been observed as well.
Literature indicates that BAT also possesses the ability

to improve glucose handling. This is in contrast to our
results as the carbohydrate system remains unaffected
upon increased peripheral EE. This difference may be
explained by considering the model’s stoichiometry, and
more specifically, the direction of the fluxes in the
model. MINGLeD was designed to describe the most
important elements and processes in lipid, cholesterol,
and carbohydrate metabolism. Thorough model testing
using different scenarios or metabolic conditions (such
as in this study the in silico activation of peripheral EE)
indicates how MINGLeD can be extended and im-
proved. The observation that the glucose system remains
unaffected upon increased peripheral EE is an indication
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A

B

Fig. 6 Increased peripheral energy expenditure affects metabolite pools (a) and metabolic fluxes (b) throughout the system. The impact of the
activation is depicted as relative change using a heatmap for N = 23 virtual individuals (from left to right: increasing relative change of peripheral
energy expenditure). The changes are color-coded such that decreases are shown in red and increases in blue, and according to intensity: a
darker color indicates a stronger change in metabolite concentration than a lighter color. White indicates 0% change
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to further investigate the relationship between glucose
and ACoA, which is currently implemented as a
one-way interaction (glucose-6-phosphate can only be
donated to ACoA).
Experimental studies have shown that BAT activation

can induce weight loss [18–20]. Our perturbation ex-
periment has shown that increased peripheral energy ex-
penditure is able to induce a decrease of the energy
surplus in the system. To yield a negative energy bal-
ance, we would recommend longer and/or more fre-
quent periods of CEX treatment to induce a sustained
and/or prolonged BAT activation. Experimental studies
with intermittent CEX schemes have shown to be feas-
ible to do this [22, 59, 60]. Recent studies have also
shown the potential to chronically activate BAT using a
pharmacological intervention with the thermogenic
β3-adrenergic receptor agonist CL316,243 [23, 61]. Diet-
ary supplementation of the short-chain fatty acid butyr-
ate has shown promising results in both animals [62]
and in humans [63, 64] to reduce both appetite and ac-
tive BAT through the gut-brain axis.
Most computational models describing energy metab-

olism are specifically developed for the human metabolic
system, and hardly any for murine energy metabolism
[65]. Whereas specific metabolic pathways may be differ-
ent between mouse and human [66], much can be learnt
from mouse computational models. Our computational
model (Fig. 1) was designed to be a generic representa-
tion for both murine and human energy metabolism.
Since no human data is available as of yet, our work
using the murine model calibration provides a step to-
wards translation of in silico models developed using
genetically modified mice towards the human energy
management in metabolic diseases.

Conclusions
The computational analysis of energy handling and en-
ergy expenditure for stratification and perturbation ex-
periments confirmed that the energy imbalance plays an
important role in the development of obesity and its re-
lated diseases. Furthermore, increasing peripheral energy
expenditure has a positive effect on lipid metabolism in
Metabolic Syndrome.

Methods
Stratification of energy handling in an in silico model
We employ our previously developed computational
model MINGLeD (Model Integrating Glucose and Lipid
Dynamics) describing the metabolic system from a healthy
state towards development to Metabolic Syndrome [27].
MINGLeD is composed of ordinary differential equations
that have been implemented in MATLAB (2013b, The
Mathworks, Natick, Massachusetts), which is available on
GitHub (via github.com/yvonnerozendaal/MINGLeD).

MINGLeD was utilized in combination with ADAPT
(Analysis of Dynamic Adaptations in Parameter Trajec-
tories) [67–69] to achieve a model library describing
various phenotypes. Here we analyze the N = 1000
model simulations for the dyslipidemic Metabolic Syn-
drome phenotype. These model simulations describe
MetS development over a timescale of 3 months, with a
discretization of 90 days. Based on this large set of in
silico data, we performed data reduction by applying
physiological constraints to obtain a manageable amount
of physiologically-correct data.
Physiological data on the energy expenditure was ob-

tained using metabolic cages (see also subsequent
Methods paragraphs). In the experimental study of [27],
the animals were subjected to indirect calorimetry after
3 and 10 weeks of diet induction. This information was
used to select those virtual individuals of which the en-
ergy expenditure lies within a physiologically correct
range, defined using both the three-week (8.4–13.7 kcal/
day) and the 10-week (9.5–15.7 kcal/day) 99.7% confi-
dence interval (see Table 1).
Moreover, this physiological data was also utilized to

define a threshold for the relative contribution of fat oxi-
dation to energy expenditure. As criterion we used that
for mice on a high-fat diet at least 57% of the energy
should originate from lipid substrates. This cut-off value
is based on the lower bound of the 99.7% confidence
interval for fat oxidation (see Table 1) obtained by indir-
ect calorimetry after 10 weeks of MetS induction (since
this resembles the fully developed phenotype the best).
The virtual individuals we selected for further analysis
predominantly utilize energy in the periphery (subgroup
[P]), with approximately 75% of energy from carbohy-
drates, 15% from fat oxidation and ~ 10% from protein,
resulting in a cohort of N = 32 individuals that was used
for further analysis.

Converting energy expenditure into energy units
Traditionally, all fluxes in MINGLeD are expressed in
μmol/day. To recalculate the energy expenditure fluxes
in MINGLeD into energy units, we made use of the en-
ergy content of TG particles. Hereto, we first recalcu-
lated the ACoA respiratory fluxes into the equivalent of
TG particles assuming that 1 mol of TG is equivalent to
21.4 mol of ACoA:

EE
μmol TG

day

� �
¼ EE

μmol ACoA
day

� �
� 1
21:4

ð1Þ

Then these fluxes were converted from molar units
to grams per day by assuming that the molar mass of
TG is 853 u:
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EE
g TG
day

� �
¼ EE

μmol TG
day

� �
� 853 � 10−6 g

μmol

� �
ð2Þ

And then we can calculate how much energy is
equivalent to this flux assuming that 1 g of fat contains
9 kcal:

EE
kcal
day

� �
¼ EE

g TG
day

� �
� 9 kcal

g

� �
ð3Þ

Hence, the energy expenditure fluxes can easily be
converted from molar units into energy content using:

EE
kcal
day

� �
¼ EE

μmol ACoA
day

� �
� 1
21:4

� 853 � 10−6 � 9
ð4Þ

Physiological ranges provided by in vivo assessment of
energy expenditure
Male E3L.CETP transgenic mice (as described in [27])
were housed in a temperature-controlled environment
(21 °C) under standard conditions with a 12 h light/dark
cycle (7 AM-7 PM), with free access to diet and water in
individually ventilated cages, unless indicated otherwise.
At the age of 11 weeks, mice were fed a high-fat,
high-cholesterol diet (the same individuals as were the
subjects in the previously published study [27]) for 3
months. To measure energy expenditure in the in vivo
situation, after 3 and 10 weeks of diet induction, respect-
ively, mice (n = 8) underwent indirect calorimetry using
metabolic cages. Mice were housed individually in these
metabolic cages for 4 days. The first day is used to let
the mice get used to the new environment. The animals
were non-invasively, fully computer operated monitored
during these 4 days. Afterwards the animals were put
back into their normal cages.
O2 and CO2 concentrations were measured every

10 min to calculate the energy expenditure [40]. Dif-
ferent substrates yield different consumption rates.
We can infer the relative contribution of substrate
utilization from the measured changes in oxygen and
carbon dioxide:

EEtotal ¼ EEglucose þ EEfat þ EEprotein

EEglucose ¼ VO2 � f glucose � REDglucose

EEfat ¼ VO2 � f fat � REDfat

EEprotein ¼ VO2 � f protein � REDprotein

ð5Þ

where VO2 represents consumed oxygen (L O2/day),
REDx is the respiratory energy density (in kcal/L O2) of
substrate x and fx is the relative contribution to the total
oxygen consumption by oxidation of substrate x. Based
on the respiratory quotient (RQ):

RQ ¼ VCO2

VO2

RQ ¼ f glucose∙RQglucose þ f fat ∙RQfat

þ f protein∙RQprotein ð6Þ

assuming RQglucose = 1, RQfat = 0.71, RQprotein = 0.835
[70], the respiratory energy density parameter should ad-
here to:

f glucose þ f fat þ f protein ¼ 1 ð7Þ

Assuming that body mass of protein is constant, the
rate of protein oxidation should equal the rate of protein
intake. Hence, protein oxidation will be a consistent fac-
tor γ of the total energy expenditure:

EEprotein ¼ γ ∙ EEglucose þ EEfat þ EEprotein
� � ð8Þ

Substitution with Eq. (5) and some rearranging yields:

f protein ¼
γ

1−γ
∙ f glucose∙REDglucose þ f fat ∙REDfat

� �

REDprotein
ð9Þ

which can be simplified using substitution with α and β
by:

α ¼ γ
1−γ

� REDglucose

REDprotein

β ¼ γ
1−γ

� REDfat

REDprotein

ð10Þ

and yields:

f protein ¼ α∙ f glucose þ β∙ f fat ð11Þ

Therefore the relative contribution of the other sub-
strates is determined by:

f glucose ¼
RQ−

RQfat þ β � RQprotein

� �
1þ β

RQglucose þ α � RQprotein−
1þ αð Þ RQfat þ β � RQprotein

� �
1þ β

f fat ¼
1− f glucose � 1þ αð Þ

1þ α

ð12Þ

assuming that γ = 0.2, REDprotein = 4.17, REDfat = 4.66
and REDglucose = 5.02 [70].
These statistics of the obtained calculations for the en-

ergy expenditure for the different substrates are depicted
in Table 1.
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In silico perturbation experiment inducing enhanced
peripheral energy expenditure
Since we aim to study the effects of short-term BAT acti-
vation through cold exposure, we chose to perform our
in silico simulation using the one-day metabolic snap-
shot obtained in the fully developed phenotype, i.e. after
3 months of MetS induction. This timescale is also con-
sistent with the time window in which an in vivo cold
exposure intervention would be applied.
The perturbation experiment involved applying an ex-

ternal perturbation such that an in silico increase in per-
ipheral energy expenditure was achieved. Since the
peripheral compartment comprises of all metabolically
active tissues apart from the liver, plasma, and intestinal
lumen, we assumed that the respiration of peripheral
acetyl Coenzyme A (represented by the red arrow in
Fig. 1) can be used as a proxy for BAT activation.
An increase in peripheral ACoA respiratory flux was

induced by multiplication of the flux equation with acti-
vation factor fact:

jACoAresp;per ¼ kresp;per � ACoAper � f act ð13Þ
However, since it is not a priori known how high this

activation factor should be, and this factor may differ
among different virtual individuals, we applied a variety
of activation factors that ranged different scales (1 +
1e-10, 1 + 1e-8, 1 + 1e-6, 1 + 1e-4, 1 + 1e-3, 1 + 1e-2,
1.1:0.1:1.9 2:9 10:5:25) to the system. The system was
re-simulated to steady state with these perturbations ap-
plied, yielding the results presented in Figs. 5 and 6.
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Additional file 1: Table S1. Division into subgroups characteristic for
the peripheral and hepatic contribution to the total energy expenditure.
(DOCX 15 kb)

Additional file 2: Figure S1. Metabolite pool sizes depend on where the
majority of energy is utilized. The mean pool sizes in individuals with
predominantly peripheral energy expenditure [P] are depicted in red; mean pool
sizes in individuals with predominantly hepatic energy expenditure [H] in blue;
and mean pool sizes of individuals with both peripheral and hepatic energy
expenditure [P +H] in purple. All pool sizes of plasma metabolites are expressed
as concentration in mM; all other pool sizes are expressed in μmol. Figure S2.
Metabolic fluxes depend on where the majority of energy is consumed. The
mean fluxes in individuals with predominantly peripheral energy expenditure [P]
are depicted in red; mean fluxes in individuals with predominantly hepatic
energy expenditure [H] in blue; and mean fluxes of individuals with both
peripheral and hepatic energy expenditure [P +H] in purple. All fluxes are
expressed in μmol/day. (DOCX 360 kb)

Additional file 3: Table S2. Relative contribution of substrate oxidation
to peripheral and hepatic energy expenditure. The relative contribution
of substrate oxidation is depicted as mean ± standard deviation, and the
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number of virtual individuals adhering to the physiological bound of at
least 57% fat oxidation is highlighted in grey. (DOCX 16 kb)
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