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Abstract

Background: One of the questions in the design of cancer clinical trials with combination of two drugs is in which
order to administer the drugs. This is an important question, especially in the case where one agent may interfere with
the effectiveness of the other agent.

Results: In the present paper we develop a mathematical model to address this scheduling question in a specific
case where one of the drugs is anti-VEGF, which is known to affect the perfusion of other drugs. As a second drug we
take anti-PD-1. Both drugs are known to increase the activation of anticancer T cells. Our simulations show that in the
case where anti-VEGF reduces the perfusion, a non-overlapping schedule is significantly more effective than a
simultaneous injection of the two drugs, and it is somewhat more beneficial to inject anti-PD-1 first.

Conclusion: The method and results of the paper can be extended to other combinations, and they could play an
important role in the design of clinical trials with combination therapy, where scheduling strategies may significantly
affect the outcome.
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Background
Anti-vascular endothelial growth factor (anti-VEGF) is
a drug commonly used as anticancer agent, although
numerous studies show only modest results [1]. In com-
bination with chemotherapy anti-VEGF improves anti-
cancer therapy, although the outcome depends on the
cancer type and on the scheduling of the treatment
[2]. The scheduling issue arises from the fact that anti-
VEGF decreases perfusion of chemotoxic agents in some
cancers, including melanoma [3], breast cancer [4, 5]
and ovarian cancer [6], while it increases perfusion of
chemotoxic agents in other cancers, such as colon cancer
[7, 8] and head and neck cancer [9]. More recently Asrid
et al [10] reported a rapid decrease in the delivery of
chemotherapy to the tumor in patients of non-small cell
lung cancer (NSCLC) after anti-VEGF therapy, highlight-
ing the importance of drug scheduling in combination
therapy when anti-VEGF is one of the drugs.

*Correspondence: afriedman@math.osu.edu
2Mathematical Bioscience Institute & Department of Mathematics, Ohio State
University, Columbus, OH, USA
Full list of author information is available at the end of the article

Less than 4% of positive phase II cancer clinical trials
with combination chemotherapy demonstrate improve-
ment of care in phase III [11]. Hence, the decision to go
from phase II to phase III needs to identify more effec-
tively which combinations will have a higher probability of
success in phase III [12]. It was suggested in [13] that the
design of clinical trials with combination therapy should
be based, among other factors, on the scientific rationale
underlying data and hypothesis for the combination.
In a previous work [14] we considered a combination

therapy with a checkpoint inhibitor and cancer vaccine,
and explored the synergy between the two drugs, taking
into account potential negative side effects. In another
paper [15] we considered the combination of BRAF/MEK
inhibitor and checkpoint inhibitor, and showed that
although the two drugs are positively correlated for most
combinations of the doses, there is an exceptional range of
doses where the two drugs are mutually antagonistic.
In the present paper we consider a combination ther-

apy of anti-VEGF and a checkpoint inhibitor, and focus
on the scheduling issue of these drugs. The rationale for
using such a combination originates from the fact that
VEGF impairs the function of anti-cancer T cells [16–20];
hence VEGF inhibition will enhance T cells function, and
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checkpoint blockade could therefore significantly advance
antitumor therapy. The anticancer synergy between anti-
VEGF and checkpoint inhibitors is currently being evalu-
ated in clinical trials in renal cancer [21, 22].
In the case where anti-VEGF therapy decreases the per-

fusion of a second antitumor agent, the following question
arises [23, 24]: Should the treatment with combination
of anti-VEGF and a checkpoint inhibitor be given at
the same time, or is it more beneficial to delay treat-
ment of one of the two drugs, so that they are given
non-overlappingly?
To address this question we develop a mathematical

model using a system of partial differential equations
(PDEs). The variables of the model include CD4+ (Th1)
and CD8+ T cells, regulatory T cells (Tregs), dendritic
cells (DCs), endothelial cells, and cancer cells. The model
also includes VEGF and TGF-β produced by cancer cells,
and cytokines IL-12 and IL-2. The network of interac-
tions among these species is shown in Fig. 1. This figure
includes also oxygen concentration, and programmed cell
death protein 1 (PD-1) and its ligand PD-L1. As indi-
cated in Fig. 1. VEGF impairs the maturation of (antigen-
presenting) dendritic cells [25, 26], and it suppresses
the functions of activated T cells [16–20]; VEGF also
enhances the expression of PD-1 on CD8+ T cells [27],
and induces Treg proliferation [28].
Themathematical model is based on the network shown

in Fig. 1. The basic assumption in the model is that anti-
VEGF decreases the perfusion of anti-PD-1 in the tumor
microenvironment as in the case in melanoma, breast

cancer, and ovarian cancer. The range of the injected
amounts of drugs in themodel was chosen so that the sim-
ulations will be in agreement with experimental results in
mice models [27, 29].
We can use the model to assess the efficacy of the

combination therapy when the treatment with anti-VEGF
is delayed or advanced relative to anti-PD-1, for differ-
ent schedules if treatment. In particular we show that
the treatment is significantly more effective if instead of
administering the two drugs at the same time, we admin-
ister them non-overlappingly.
We finally consider briefly the case where anti-VEGF

increases the perfusion of anti-PD-1, and show that in this
case there are more benefits when the two drugs are given
simultaneously.

Methods
Mathematical model
The mathematical model is based on the network shown
in Fig. 1. The list of variables is given in Table 1.
We assume that the total density of cells within the

tumor remains constant throughout the tumor tissue, for
all time:

D + T1 + T8 + Tr + E + C = constant, (1)

and that the density of debris of dead cells is also constant.
We further assume that the densities of immature den-
dritic cells, and of naive CD4+ and CD8+ T cells, remain
constant throughout the tumor tissue. As cancer cells pro-
liferate, they “push away,” or displace, other cells. There is

Fig. 1 Interaction of immune cells with cancer cells. Sharp arrows indicate proliferation/activation, blocked arrows indicate killing/blocking, and the
inverted arrow indicates recruitment/chemoattraction. C: cancer cells, D: dentritic cells, T1: CD4+ Th1 cells, T8: CD8+ T cells, Treg: T regulatory cells,
Endo: endothelial cells, Ox: Oxygen from the blood. T1 and T8 cells and Tregs express PD-1 and PD-L1; tumor expresses PD-L1
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Table 1 List of variables (in units of g/cm3)

Notation Description

D density of dendritic cells

T1 density of activated CD4+ T cells

T8 density of activated CD8+ T cells

Tr density of activated Treg cells

E density of endothelial cells

C density of cancer cells

NC density of necrotic cell

H HMGB-1 concentration

I12 IL-12 concentration

I2 IL-2 concentration

Tβ TGF-β concentration

W oxygen concentration

G VEGF concentration

P1 concentration of PD-1 on CD4+ T cells

P8 concentration of PD-1 on CD8+ T cells

L PD-L1 concentration

Q PD-1-PD-L1 concentration

A anti-PD-L1 concentration

B anti-VEGF concentration

also migration of endothelial cells and immune cells into
the tumor. Since the total density of cells was assumed
to be constant at each point and time, by Eq.(1), these
increases in the population of cells create a pressure (p)
among the cells with an associated velocity field u. Under
some additional assumptions on the material structure of
the tumor, one can actually connect u to p (for example,

by Darcy’s law in porous media), but we shall not need to
do this in our model. The vector u is a function of space
and time, taken in units of cm/day.
We also assume that all the cytokines and anti-tumor

drugs are diffusing within the tumor tissue, and that
also the cells are undergoing diffusion (i.e. dispersion),
although with much smaller coefficients.
Although in our model we use densities of cells, it

is interestingly to visualize how individual cells interact
within the tumor. Figure 2 displays a distribution of cells in
space, based on Fig. 1. We note, in particular, that cancer
cells move toward the tumor boundary where the oxygen
level can supports their abnormal proliferation; hence, by
Eq. (1), the other types of cells are “pushed” toward the
tumor core.

Equation for DCs (D)
By necrotic cancer cells (NC) we mean cancer cells under-
going the process of necrosis. Necrotic cancer cells release
high mobility group box 1 protein (HMGB-1) [30]. We
model the dynamics of NC and HMGB-1 (H) by the
following equations:

∂NC
∂t

+ ∇ · (uNC)
︸ ︷︷ ︸

velocity

− δNC∇2NC
︸ ︷︷ ︸

difusion

= λNCCC
︸ ︷︷ ︸

derived from life cancer cells

− dNCNC
︸ ︷︷ ︸

removal

,

∂H
∂t

− δH∇2H
︸ ︷︷ ︸

difusion

= λHNCNC
︸ ︷︷ ︸

released from nerotic cancer cells

− dHH ,
︸ ︷︷ ︸

degradation

where λNCC is the rate of cancer cells becoming necrotic
and λHNC is the production rate of HMGB-1 by necrotic
cells. We note that since molecules like HMGB-1, or other
proteins, are several orders of magnitude smaller than

Fig. 2 Distribution of cells in space
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cells, their diffusion coefficients are several orders of mag-
nitude larger than the diffusion coefficients of cells, and
they are only marginally influenced by the cells velocity u,
so we do not include a velocity term in their equations.
The degradation of HMGB-1 is fast (∼0.01/day) [31], and
we assume that the process of necrosis is also fast. We
may then approximate the two dynamical equations by
the steady state equations λNCCC − dNCNC = 0 and
λHNCNC − dHH = 0, so that H is proportional to C.
Dendritic cells are activated by HMGB-1 [32, 33].

Hence, the activation rate of immature dendritic cells,
with density D0, is proportional to D0

H
KH+H , or to

D0
C

KC+C . Here, the Michaelis-Menten law was used to
account for the limited rate of receptor recycling which
takes place in the process of DCs activation. The dynamics
of DCs is given by the following equation:

∂D
∂t

+ ∇ · (uD)
︸ ︷︷ ︸

velocity

− δD∇2D
︸ ︷︷ ︸

difusion

= λDCD0
C

KC + C
︸ ︷︷ ︸

activation by HMGB-1

· 1
1 + G/KDG
︸ ︷︷ ︸

inhibition by VEGF

− dDD,
︸ ︷︷ ︸

death

(2)

where δD is the diffusion coefficient, dD is the death rate
of DCs, and 1/(1+G/KDG) represents the impairment of
maturation of dendritic cells by VEGF [25, 26].

Equations for CD4+ T cells (T1) and CD8+ T cells (T8)
Naive CD4+ T cells differentiate into active Th1 cells (T1)
under IL-12 (I12) environment [34, 35], and this process
is inhibited by Tregs [36, 37] and by VEGF [16–20]. The
proliferation of activated T1 cells is enhanced by IL-2.
Both processes of activation and proliferation of T1 are
assumed to be inhibited by PD-1-PD-L1 (Q) [38, 39]; we
represent this inhibition by the factor 1

1+Q/KTQ
. Hence T1

satisfies the following equation:

∂T1
∂t

+ ∇ · (uT1) − δT∇2T1

=
(

λT1I12T10 · I12
KI12 + I12

︸ ︷︷ ︸

activation by IL-12

· 1
1 + Tr/KTTr
︸ ︷︷ ︸

inhibition by Tregs

· 1
1 + G/KTG
︸ ︷︷ ︸

inhibition by VEGF

+ λT1I2T1
I2

KI2 + I2

)

︸ ︷︷ ︸

IL-2-induced proliferation

× 1
1 + Q/KTQ
︸ ︷︷ ︸

inhibition by PD-1-PD-L1

− dT1T1,
︸ ︷︷ ︸

death

(3)

where T10 is the density of the naive CD4+ T cells.
Similarly, inactive CD8+ T cells are activated by IL-12

[34, 35], a process resisted by Tregs [36, 37] and VEGF
[16–20], while IL-2 enhances the proliferation of activated
CD8+ T cells. Hence,

∂T8
∂t

+ ∇ · (uT8) − δT∇2T8

=
(

λT8I12T80 · I12
KI12 + I12

︸ ︷︷ ︸

activation by IL-12

· 1
1 + Tr/KTTr
︸ ︷︷ ︸

inhibition by Tregs

· 1
1 + G/KTG
︸ ︷︷ ︸

inhibition by VEGF

+ λT8I2T8
I2

KI2 + I2

)

︸ ︷︷ ︸

IL-2-induced proliferation

× 1
1 + Q/KTQ
︸ ︷︷ ︸

inhibition by PD-1-PD-L1

− dT8T8,
︸ ︷︷ ︸

death

(4)

where T80 is the density of the inactive CD8+ T cells.

Equation for Tregs (Tr)
Naive CD4+ T cells differentiate into Tr cells under the
influence of TGF-β: (Tβ ) [37, 40] and VEGF [28]. The
equation for Tr takes the following form:

∂Tr
∂t

+ ∇ · (uTr) − δT∇2Tr =T10

(

λTrTβ

Tβ

KTβ
+ Tβ

︸ ︷︷ ︸

TGF−β−induced proliferation

+ λTrG
G

KG + G

)

︸ ︷︷ ︸

promotion by VEGF

− dTrTr .
︸ ︷︷ ︸

death

(5)

Equation for endothelial cells (E)
Endothelial cells are chemoattracted by VEGF, and their
proliferation is increased by VEGF [41, 42]. The equation
for the density of endothelial cells is given by
∂E
∂t

+ ∇ · (uE) − δE∇2E = λE(G)E
(

1 − E
EM

)

︸ ︷︷ ︸

proliferation

− ∇ · (χGE∇G)
︸ ︷︷ ︸

recruited by VEGF

− dEE,
︸︷︷︸

death

(6)

where EM is the carrying capacity of endothelial cells,
λE(G) = λEG(G−G0)+, andG0 is a threshold belowwhich
endothelial cells do not proliferate [43]. Here we used the
notion: X+ = X if X ≥ 0 and X+ = 0 if X < 0.

Equation for cancer cells (C)
We assume a logistic growth for cancer cells, with carry-
ing capacity (CM), in order to account for competition for
space among these cells. The proliferation rate depends on
the density of oxygen (W ) [42]. The equation for C takes
the following form:

∂C
∂t

+ ∇ · (uC) − δC∇2C = λC(W )C
(

1 − C
CM

)

︸ ︷︷ ︸

proliferation

− η1T1C − η8T8C
︸ ︷︷ ︸

killing by T cells

− dCC,
︸ ︷︷ ︸

death

(7)



Lai and Friedman BMC Systems Biology           (2019) 13:30 Page 5 of 18

where η1 and η8 are the killing rates of cancer cells by T1
and T8 cells, respectively. dC is the natural death rate of
cancer cells, and

λC(W ) =
{

λCW
W
W0

if W ≤ W0
λCW if W > W0,

where W0 is the normal level of oxygen concentration in
the blood.

Equation for IL-12 (I12)
The proinflammatory cytokine IL-12 is secreted by acti-
vated DCs [34, 35]; hence it satisfies the equation:

∂I12
∂t

− δI12∇2I12 = λI12DD
︸ ︷︷ ︸

production by DCs

− dI12 I12.
︸ ︷︷ ︸

degradation

(8)

Equation for IL-2 (I2)
IL-2 is produced by activated CD4+ T cells (T1) [35].
Hence,

∂I2
∂t

− δI2∇2I2 = λI2T1T1
︸ ︷︷ ︸

production by T1

− dI2 I2.
︸ ︷︷ ︸

degradation

(9)

Equation for TGF-β: (Tβ )
TGF-β is produced by tumor cells [36] and Tregs [37], so
that
∂Tβ

∂t
− δTβ

∇2Tβ = λTβCC
︸ ︷︷ ︸

production by cancer cells

+ λTβTrTr
︸ ︷︷ ︸

production by Tregs

− dTβ
Tβ .

︸ ︷︷ ︸

degradation

(10)

Equation for oxygen (W)
Oxygen is infused through the blood [41, 42]. We identify
the blood concentration with the density of endothelial
cells and, accordingly, write the equation for W in the
following form:

∂W
∂t

− δW∇2W = λWEE
︸ ︷︷ ︸

source from blood

− dWW ,
︸ ︷︷ ︸

consumption by cells

(11)

where dWW represents the take-up rate of oxygen by all
the cells.

Equation for VEGF (G)
VEGF is produced by cancer cells [41, 42] and is depleted
by anti-VEGF. Hence G satisfies the following equation:
∂G
∂t

− δG∇2G = λG(W )C
︸ ︷︷ ︸

production by cancer cells

− μGBGB
︸ ︷︷ ︸

inhibition by anti-VEGF

− dGG
︸︷︷︸

degradation

,

(12)

where B is the effective anti-VEGF concentration in the
tumor, and

λG(W ) = λGW×
⎧

⎨

⎩

W
W∗ if 0 ≤ W ≤ W ∗
1 − 0.7 W−W∗

W0−W∗ if W ∗ < W ≤ W0
0.3 if W > W0.

Here we assumed that the secretion rate of VEGF by can-
cer cells increases with the oxygen level, but falls off when
oxygen level exceeds a certain level,W ∗ [44].

Equations for PD-1 (P), PD-L1 (L) and PD-1-PD-L1 (Q)
PD-1 is expressed on the surface of activated CD4+ T
cells, activated CD8+ T cells, and Tregs [38, 45]. We
assume that the number of PD-1 receptors per cell is the
same for T1 and T8 cells, but is smaller, by a factor εT , for
Tr cells. VEGF increases the PD-1 on T8 cells by a factor
εGG [27]. If we denote by ρP the ratio between the mass of
one PD-1 protein to the mass of one T cell, then the total
concentration of PD-1 on T1 and Tr cells is given by

P1 = ρP (T1 + εTTr) , (13)

and the concentration of PD-1 on T8 cells is given by

P8 = ρPT8(1 + εGG). (14)

PD-L1 is expressed on activated CD4+ T cells, activated
CD8+ T cells [38], Tregs [46], and cancer cells [38, 39].We
assume that the number of PD-L1 per cell is the same for
T1 and T8 cells, and denote the ratio between the mass of
one PD-L1 protein to the mass of one cell by ρL. Then

L = ρL(T1 + T8 + εTTr + εCC),

for some parameters εT , εC , where εC depends on the
specific type of tumor.
To a change in T = T1 + εTTr , given by ∂T

∂t , there cor-
responds a change of P1, given by ρP

∂T
∂t . For the same

reason, ∇ · (uP1) = ρP∇ · (uT) and ∇2P1 = ρP∇2T
when no anti-PD-1 drug is injected. Hence, P1 satisfies the
following equation:

∂P1
∂t

+ ∇ · (uP1) − δT∇2P1 =ρP

[

∂(T1 + εTTr)

∂t
+ ∇ · (u(T1 + εTTr))

−δT∇2(T1 + εTTr)

]

.

Recalling Eqs. (3) and (5) for T1 and Tr , we get,

∂P1
∂t

+∇ · (uP1) − δT∇2P1

= ρP
[

RHS of Eq. (3) + εT ,×RHS of Eq. (5)
]
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where RHS=right-hand side. Similarly,
∂P8
∂t

+∇ · (uP8) − δT∇2P8

= ρP
[

(1 + εGG) × RHS of Eq. (4) + εGT8 × RHS of Eq. (12)

+εGT8∇ · uG + εG(δG − δT )T8∇2G − 2εGδT∇T8 · ∇G
]

.

When only anti-PD-1 drug (A) is injected, PD-1 is
depleted at a rate μPAP1A, but when also anti-VEGF (B) is
injected the depletion of PD-1 is reduced, due to restricted
perfusion, by a factor 1

1+B/KPB
; since all other species of

the model evolve within the tumor, we ignored the effect
of restricted perfusion in setting up their dynamics. We
conclude that P1 satisfies the following equation:

∂P1
∂t

+∇ · (uP1) − δT∇2P1

= ρP
[

RHS of Eq. (3) + εT × RHS of Eq. (5)
]

− μPAP1A
︸ ︷︷ ︸

depletion by anti-PD-1

× 1
1 + B/KPB

.
︸ ︷︷ ︸

blockade of perfusion by anti-VEGF

(15)

Similarly,
∂P8
∂t

+∇ · (uP8) − δT∇2P8

= ρP
[

(1 + εGG) × RHS of Eq. (4)

+ εGT8 × RHS of Eq. (12)

+εGT8∇ · uG + εG(δG − δT )T8∇2G − 2εGδT∇T8 · ∇G
]

− μPAP8A
︸ ︷︷ ︸

depletion by anti-PD-1

× 1
1 + B/KPB

.
︸ ︷︷ ︸

blockade of perfusion by anti-VEGF

(16)

PD-L1 combines with PD-1 on the plasma membrane
of T cells, to form a complex PD-1-PD-L1 (Q) [38, 39].
Denoting the association and disassociation rates of Q by
αPL and dQ, respectively, we can write

P + L
αPL�
dQ

Q,

where P = P1 + P8. The half-life of Q is less then 1 s
(1.16 × 10−5 day) [47], so that dQ is very large. Hence
we may approximate the dynamical equation for Q by the
steady state equation, αPLPL = dQQ, so that

Q = σPL, (17)

where σ = αPL/dQ.

Equation for anti-PD-1 (A)
We assume that the drug enters the tumor from the
boundary and quickly diffuses, so that its concentration
is a constant γA throughout the tumor during the dosing
period. We denote by μAP the depletion rate of A caused
by blocking PD-1. Hence,

∂A
∂t

− δA∇2A = γAIA(t) − μAPPA
︸ ︷︷ ︸

depletion through blocking PD-1

− dAA,
︸︷︷︸

degradation

(18)

where IA(t) = 1 during dosing, and IA(t) = 0 otherwise.

Equation for anti-VEGF (B)
We denote by γB the concentration of the injected drug B
during the dosing period, and by μBG the depletion rate of
B blocking VEGF. The equation for B is then given by

∂B
∂t

− δB∇2B =γBI(t) − μBGGB
︸ ︷︷ ︸

depletion by VEGF

− dBB,
︸︷︷︸

degradation

(19)

where IB(t) = 1 during dosing, and IB(t) = 0 otherwise.

Equation for cells velocity (u)
We assume that the density of each cell type in the grow-
ing tumor tends to a steady state, and take the density
of the extracellular matrix (ECM) in steady state to be
0.6g/cm3.
We take the steady state density of endothelial cells to be

E = 2.5 × 10−3 g/cm3 [43]. The steady state densities of
the immune cells D, T1, T8, Tr and C (in units of g/cm3)
are taken to be (see Appendix: Parameter estimation)

D = 4 × 10−4, T1 = 2 × 10−3, T8 = 1 × 10−3, Tr = 5 × 10−4, C = 0.4.

(20)

With these choices, the constant in Eq. (1) equal to 0.4064.
We further assume that all cells have approximately the
same diffusion coefficient. Adding Eqs. (2)-(7), we get

0.4064 × ∇ · u =
7

∑

j=2

[

RHS of Eq. (j)
]

. (21)

To simplify the computations, we assume that the tumor
is spherical and denote its radius by r = R(t). We also
assume that all the densities and concentrations are radi-
ally symmetric, that is, they are functions of (r, t), where
0 ≤ r ≤ R(t). In particular, u = u(r, t)er , where er is the
unit radial vector.

Equation for free boundary (R)
We assume that the free boundary r = R(t) moves with
the velocity of the cells, so that

dR(t)
dt

= u(R(t), t). (22)

Boundary conditions
We assume that the naive CD4+ T cells and CD8+ T cells
which migrated from the lymph nodes into the tumor
microenvironment have constant densities T̂1 and T̂8 at
the tumor’s boundary, and, that upon crossing the tumor
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boundary, T1 and T8 are activated by IL-12 and Tr is acti-
vated by Tβ . We then have the following flux conditions at
the tumor’s boundary:

∂T1
∂r

+ σT (I12)(T1 − T̂1) = 0,
∂T8
∂r

+ σT (I12)(T8 − T̂8) = 0,

∂Tr
∂r

+ σTr (Tβ)(Tr − T̂1) = 0 at r = R(t),

(23)

where we take σT (I12) = σ0
I12

KI12+I12 and σTr (Tβ) =
σ0

Tβ

KTβ
+Tβ

. We assume that the endothelial cells that are
attracted by the VEGF into the tumor microenvironment
have constant density Ê at the tumor’s boundary, and take

∂E
∂r

+ σE
G

KG + G
(E − Ê) = 0 at r = R(t). (24)

The boundary condition for the oxygen is given by

∂W
∂r

+ σW (W − W0) = 0 at r = R(t), (25)

where W0 is the normal level of oxygen concentration in
the blood. We impose no-flux boundary condition for all
the remaining variables:

No-flux for D,C, I12, I2,Tβ ,G,P1,P8,A, and B at r = R(t).
(26)

It is tacitly assumed here that the receptors PD-1 become
active only after the T cells are already inside the tumor.

Initial conditions
We take the following initial values (in units of g/cm3):

D = 2 × 10−3, T1 = 4 × 10−3, T8 = 2 × 10−3, Tr = 3 × 10−4, E = 2.45 × 10−3,

C = 0.39565, I12 = 2.88 × 10−9, I2 = 4.74 × 10−11, Tβ = 2.57 × 10−13,

W = 1.52 × 10−4, G = 6.3 × 10−8, P1 = 1.06 × 10−9, P8 = 5.43 × 10−11,

R(0) = 0.01 cm.

(27)

Note that the total density of cells at time t = 0 satis-
fies Eq. (1) with the already chosen constant 0.4064. We
also mention that the choice of initial conditions does not
affect the simulation results after a few days.

Results
The simulations of the model were performed by Mat-
lab, based on the moving mesh method for solving partial
differential equations with free boundary [48] (see the
section on computational method).

Simulation results for mouse model
Figure 3 shows the profiles of the average densi-
ties/concentrations of all the variables of the model in
the control case (no drugs) and the tumor volume in
the first 30 days. We note that each species X reaches
a nearly steady state that is approximately the half-
saturation value,KX , as assumed in the estimation of some
of the model parameters (in Appendix). This shows the
consistency in the parameters estimation.

Fig. 3 Average densities/concentrations, in g/cm3, of all the variables in the model with control case (no drugs). All parameter values are the same
as in Tables 3 and 4, for a mouse model
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From Fig. 3 we see that in the first few days E, and corre-
spondingW, are increasing before they begin to gradually
decrease and reach a steady state. The production rate of
G is given by λ(W )C where λ(W ) is bimodal and the oscil-
lation in the profile of G is affected by the bimodal profile
of W and the initial growth in the profile of C. The ini-
tial increase inG results in initial decrease inD, and hence
also a decrease in IL-12 and the T cells. The profile of C
is affected by the growth in W and by the decrease in T1
and T8:C begins to grow after a short time, but the growth
rate decreases to near 0 as time increases.
Before applying ourmodel to clinical situations, we need

to determine the order of magnitude of γB and γA. The
parameter γB is proportional to the amount of anti-VEGF
administered to a patient, but it is difficult to determine
this proportionality coefficient; the same is true for γA.We
therefore conducted simulations with different choices of
γB, γA in order to find values for which the simulations
agree qualitatively with mice experiments. One set of sim-
ulations is displayed in Fig. 4. Figure 4a shows that with
γB = 3× 10−8 g/cm3 · day and γA = 3× 10−8 g/cm3 · day
the anti-PD-1 as a single agent reduces the volume of
tumor more than anti-VEGF as a single agent, in agree-
ment with Fig. 1 in [29]. Figure 4b shows that with γB =
3.5 × 10−8 g/cm3 · day and γA = 0.5 × 10−8 g/cm3 · day
the anti-VEGF as a single agent reduces the tumor volume
more than the anti-PD-1 as single agent, in agreement
with Fig. 4j in [27]. In Fig. 5 we see that (with γA = 0) anti-
VEGF with γB = 2×10−8 g/cm3 ·day reduces significantly
the PD-1 expression on CD8+ T cells, in agreement with
experimental results in [27].

Clinical trials in silico
In clinical trials the treatment and follow-up periods are
much longer than inmousemodels, and the tumor growth
is significantly slower. Accordingly, we shall modify some
of the parameters in order to slow the growth of the
tumor; these parameters are λDC , λE , λCW . We shall also
decrease the range of the drug, from order of magnitude
10−8 to 10−9 − 10−10.
We consider clinical treatment in cycles of 9 weeks,

whereby each drug is given continuously for 3 weeks dur-
ing a cycle with drug holiday for 6 weeks. We introduce
three different schedules. In schedule S1 anti-PD-1 and
anti-VEGF are both administered continuously in the first
3 weeks of the 9-week cycle. In schedule S2 anti-PD-1 is
given continuously in the first 3 weeks, followed by anti-
VEGF in the next 3 weeks, with no drugs for the remaining
3 weeks of the cycle. Schedule S3 is similar to schedule
S2 with anti-VEGF in the first 3 weeks and anti-PD-1 in
the next 3 weeks. We refer to schedules S2 and S3 as
non-overlapping schedules.
Figure 6 shows the profile of the tumor volume under

schedules S1, S2 and S3 for four different dose pairs
(γB, γA). Table 2 summarizes the time, in weeks, at which
the tumor volume decreased by 95% from its initial size.
We see that the non-overlapping schedules S2 and S3
reduce the tumor volume significantly faster than sched-
ule S1, and schedule S2 is somewhat more effective than
schedule S3.
Figure 7 displays the density profiles of the immune

cells, endothelial cells and cancer cells at different times
along the radius of the tumor, with γA = 1.2 × 10−10

a b

Fig. 4 Growth of tumor volume under treatment with γB or γA , or combination (γB , γA). The anti-VEGF or/and the anti-PD-1 treatment started at day
0 and continued for 10 days. a γB = 3 × 10−8 g/cm3 · day, γA = 3 × 10−8 g/cm3 · day; b γB = 3.5 × 10−8 g/cm3 · day, γA = 0.5 × 10−8

g/cm3 · day. All other parameters are same as in Fig. 3
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a b

Fig. 5 Anti-VEGF decreases PD-1 expression on CD8+ T cells. The treatment with anti-PD-1 drug started at day 0 and continued for 30 days with
γB = 2 × 10−8 g/cm3 · day (a) Growth of tumor volume. (b) Expression level of PD-1 on CD8+ T cells

g/cm3 · day, γB = 9.5× 10−9 g/cm3 · day. Figure 7a shows
the profiles under schedule S2 at times t = 0, 8, 15 and 16
weeks, and Fig. 7b shows the profiles under schedule S3
at times t = 0, 8, 18 and 19 weeks. We see that the ini-
tially assumed flat density profiles are evolving to develop
a distinct monotonic form. The density of cancer cells (C)
is increasing from the tumor core to the tumor bound-
ary where the level of oxygen (W ) is more favorable to
their abnormal proliferation. Since the total density of all
the cells is constant (by Eq. (1)), the immune cells and the
endothelial cells are “pushed” back toward the core of the
tumor, so that their profile is monotone decreasing from
the tumor core toward the tumor boundary.

Figure 8 shows “efficacy maps,” namely, the time at
which tumor volume was reduced by 95%, under sched-
ules S1, S2 and S3, for a range of the parameters γB and γA.
The horizontal axis scales the dose amount of anti-VEGF,
γB, in units of g/cm3 · day, and the vertical axis scales
the dose amount of anti-PD-1, γA, in unit of g/cm3 · day.
The color columns show the time at which the tumor vol-
ume decreased by 95% from its initial size. We see that as
γA or γB increases, the time when the tumor volume was
reduced by 95% is decreased. Also, as in the special case
of Fig. 6, schedules S2 and S3 reduce significantly the time
for the 95% reduction, and the tumor volume reduction by
schedule S2 is a little faster than by schedule S3.

a b c

Fig. 6 Tumor volume under schedules S1, S2 and S3 for 4 pairs (γB , γA). Here γB1 = 9.5 × 10−9 g/cm3 · day, γA1 = 1.2 × 10−10 g/cm3 · day,
γB2 = 10 × 10−9 g/cm3 · day, γA2 = 1.5 × 10−10 g/cm3 · day. a Tumor volume under schedule S1; b Tumor volume under schedule S2; c Tumor
volume under schedule S3
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Table 2 The time, in weeks, at which the tumor volume
decreased to 5% of its initial size

Schedule (γB1, γA1) (γB1, γA2) (γB2, γA1) (γB2, γA2)

S1 48.59 39.17 40.4 33.99

S2 16.05 13.26 15.25 12.78

S3 19.22 16.46 18.24 15.83

We conclude that non-overlapping treatment is farmore
beneficial than simultaneous treatment, and there is some
advantage in injecting anti-PD-1 before anti-VEGF.
So far we considered the case where anti-VEGF blocks

perfusion. We next consider briefly the case where anti-
VEGF increases perfusion (as in colon cancer [7, 8]). In
this case we have to modify Eqs. (13) and (14) by replac-
ing the term 1/(1+ B/KPB) by

(

1 + B
KB+B

)

. In contrast to
Figs. 6, 9 shows that simultaneous injection reduces the
tumor volume (by 95%) faster than non-overlapping injec-
tions: S1 is preferable to S2 and S3, while S2 is preferable
to S3. These conclusions hold also when γB and γA vary in
the same range as in Fig. 8.

Sensitivity analysis
We performed sensitivity analysis with respect to the
tumor volume at day 30 for parameters λDC , λT8I12 , λTrG,
λE , λGW , η8,KDG,KTQ,KTG,KPB. Following themethod of
[49], we performed Latin hypercube sampling and gener-
ated 5000 samples to calculate the partial rank correlation
coefficients (PRCC) and the p-values with respect to the

tumor volume at day 30. In sampling all the parameters,
we took the range of each parameter from 1/2 to twice its
value in Tables 3 or 4. The results are shown in Fig. 10.
We see that parameters that promote the killing of

cancer cells, such as λDC , λT8I12 and η8, are negatively
correlated with the tumor volume, while parameters that
promote the inhibition of immune cells, such as KDG, KTQ
and KTG, and the proliferation of endothelial cells and
Tregs, such as λE , λTrG and λGW , are positively correlated
with the tumor volume. We also see that the inhibition of
perfusion of the anti-PD-1 drug by anti-VEGF promotes
cancer growth, namely, KPB is positively correlated to the
tumor volume. Among the various parameters, η8 (the
killing rate of cancer cells by CD8+ T cells) has the largest
impact in reducing tumor volume, and KTQ (the param-
eter which increases the inhibition of CD8+ T cells by
PD-1-PD-L1) has the largest impact on increasing tumor
volume.

Discussion
Combination therapy for cancer has already shown
improved benefits over a single agent therapy [50]. But
significant challenges remain, as seen, for example, from
the fact that of the successful phase II clinical trials with
combination chemotherapy, less then 4% demonstrated,
in Phase III, improvement of care within 5 years [11].
It was suggested in [13] that a selection of clinical trials
needs to include scientific rationale underlying the data
and hypothesis for the combination. Combination clinical
trials should be preceded by analysis of the expected

a

b

Fig. 7 Spatial profiles of the densities of dendritic cells, T cells, endothelial cells and cancer cells with γA = 1.2× 10−10 g/cm3 · day, γB = 9.5× 10−9

g/cm3 · day. a Profiles under schedule S2 at day t = 0, 8, 15 and 16 weeks. b Profiles under schedule S3 at days t = 0, 8, 18 and 19 weeks
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Fig. 8 Efficacy maps: The time in weeks (Tcrit) at which the tumor volume decreases by 95% from its initial size under treatment with (γB , γA). a
Efficacy map under schedule S1; b Efficacy map under schedule S2; c Efficacy map under schedule S3. The color columns show the time at which
the tumor volume was reduced by 95%

interactions between the diverse agents, addressing, for
example the following questions:

1. Are the two drugs positively correlated at any
amount of dose, and, if so, what should be the most
beneficial ratio between the two agents?

2. If the drugs are not always positively correlated,
what are the zones of antagonism, i.e., what are the
amounts of, and the ratios between, the agents in the
combination that may decrease the treatment
benefits, and should not be used in clinical trials?

3. If the two drugs are injected intermittently, should
they be injected simultaneously or
non-overlappingly, and, in the latter case, which
drug should be injected first?

In [14] and [15] we addressed the questions (i) and
(ii) in the case where one of the drugs is a checkpoint
inhibitor (anti-PD-1), and the second drug is a cancer vac-
cine [14] or a BRAF-inhibitor [15]. In the present paper we
addressed the question (iii) when the two drugs are anti-
PD-1 and anti-VEGF. Anti-VEGF is known to block the

a b c

Fig. 9 Tumor volume under the schedules S1, S2 and S3 for 4 pairs (γB , γA). Here γB1 = 9.5 × 10−9 g/cm3 · day, γA1 = 1.2 × 10−10 g/cm3 · day,
γB2 = 9.5 × 10−9 g/cm3 · day, γA2 = 1.5 × 10−10 g/cm3 · day. a Tumor volume under schedule S1; b Tumor volume under schedule S2; c Tumor
volume under schedule S3
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Table 3 Summary of parameter values

Notation Description Value used References

δD Diffusion coefficient of DCs 8.64 × 10−7 cm2 day−1 [59]

δT Diffusion coefficient of T cells 8.64 × 10−7 cm2 day−1 [59]

δE Diffusion coefficient of endothelial cells 8.64 × 10−7 cm2 day−1 [59]

δC Diffusion coefficient of tumor cells 8.64 × 10−7 cm2 day−1 [59]

δI12 Diffusion coefficient of IL-12 6.05 × 10−2 cm2 day−1 [15]

δI2 Diffusion coefficient of IL-2 9.58 × 10−2 cm2 day−1 [15]

δTβ Diffusion coefficient of TGF-β 8.52 × 10−2 cm2 day−1 [15]

δW Diffusion coefficient of oxygen 0.8 cm2 day−1 Estimated

δG Diffusion coefficient of VEGF 8.64 × 10−2 cm2 day−1 [57]

δA Diffusion coefficient of anti-PD-L1 4.73 × 10−2 cm2 day−1 [15]

δB Diffusion coefficient of anit-VGEF 4.70 × 10−2 cm2 day−1 Estimated

σT Flux rate of T1 and T8 cells at the boundary 1 cm−1 [59]

σE Flux rate of T1 and T8 cells at the boundary 1 cm−1 [59]

χG Chemoattraction coefficient of VEGF 10 cm5/g · day [64, 65]

λDC Activation rate of DCs by tumor cells (mice) 17.5 day Estimated

λDC Activation rate of DCs by tumor cells (humans) 7.5 day Estimated

λT1 I12 Activation rate of CD4+ T cells by IL-12 11.65 day−1 Estimated

λT1 I2 Activation rate of CD4+ T cells by IL-2 0.25 day−1 [59]

λT8 I12 Activation rate of CD8+ T cells by IL-12 10.38 day−1 Estimated

λT8 I2 Activation rate of CD8+ T cells by IL-2 0.25 day−1 [59]

λTrTβ Activation rate of Tregs by TGF-β 0.415 day−1 Estimated

λTrG Activation rate of Tregs by VEGF 0.083 day−1 Estimated

λE Growth rate of endothelial cells (mice) 2.77 × 107 cm3/g · day Estimated

λE Growth rate of endothelial cells (humans) 2.08 × 107 cm3/g · day Estimated

λCW Growth rate of cancer cells (mice) 2.24 day−1 Estimated

λCW Growth rate of cancer cells (humans) 1.76 day−1 Estimated

λI12D Production rate of IL-12 by DCs 2.21 × 10−6 day−1 [15]

λI2T1 Production rate of IL-2 by CD4+ T cells 2.82 × 10−8 day−1 [15]

λTβC Production rate of TGF-β by cancer cells 3.27 × 10−10 day−1 Estimated

λTβ Tr Production rate of TGF-β by Tregs 5.57 × 10−9 day−1 [61]

λWE Production rate of oxygen by endothelial cells 7 × 10−2/day [43]

λGW Production rate of VEGF by cancer cells 2.21 × 10−6 day−1 Estimated

εT Relative expression of PD-1 in Tregs 0.8 [15]

εC Relative expression of PD-L1 in tumor cells 0.01 [15]

εG Relative rate of PD-1 promotion by VEGF 1.43 × 106 cm3/g Estimated

perfusion of chemotherapy inmelanoma [3], breast cancer
[4, 5, 9] and ovarian cancer [6], but to increase perfusion
in colon cancer [7].
We developed a mathematical model and simulations

for in silico clinical trials that addressed the complex-
ity of interactions among the two drugs. The model is
represented by a system of PDEs that includes the most
relevant cells and cytokines associated with the treatment.
The simulations show that in the case where anti-VEGF

decreases the perfusion of the anti-PD-1, the time it takes
to reduce tumor volume by 95% is much shorter when the
injections of the two drugs are non-overlapping thanwhen
the injections are given at the same time. Furthermore, in
the non-overlapping treatment, if we inject the anti-PD-1
first we get the 95% -reduction somewhat faster than if we
inject anti-VEGF first.
On the other hand, in the case when anti-VEGF

increases the perfusion of anti-PD-1, a treatment with
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Table 4 Summary of parameter values

Notation Description Value used References

dD Death rate of DCs 0.1 day−1 [59]

dT1 Death rate of CD4+ T cells 0.197 day−1 [59]

dT8 Death rate of CD8+ T cells 0.18 day−1 [59]

dTr Death rate of Tregs 0.2 day−1 [61]

dE Death rate of endothelial cells 0.69 day−1 [43]

dC Death rate of tumor cells 0.17 day−1 [59]

dI12 Degradation rate of IL-12 1.38 day−1 [59]

dI2 Degradation rate of IL-2 2.376 day−1 [59]

dTβ Degradation rate of TGF-β 499.066 day−1 [15]

dW Take-up rate of oxygen by cells 1.04 day−1 Estimated

dG Degradation rate of VEGF 12.6 day−1 [43]

dA Degradation rate of anti-PD-L1 0.34 day−1 Estimated

η1 Killing rate of cancer cells by T1 30.19 cm3/g · day Estimated

η8 Killing rate of cancer cells by T8 60.375 cm3/g · day Estimated

dB Degradation rate of anti-VEGF 0.17 day−1 Estimated

μPA Blocking rate of PD-1 by anti-PD-1 4.33 × 107 cm3/g · day Estimated

μAP Degradation rate of anti-PD-1 in blocking PD-1 4.33 × 107 cm3/g · day Estimated

μGB Blocking rate of VEGF by anti-VEGF 2.19 × 107 cm3/g · day Estimated

μBG Degradation rate of anti-VEGF in blocking VEGF 1.31 × 108 cm3/g · day Estimated

KD Half-saturation of CD4+ T cells 4 × 10−4g/cm3 [15]

KT1 Half-saturation of CD4+ T cells 2 × 10−3g/cm3 [15]

KT8 Half-saturation of CD8+ T cells 1 × 10−3g/cm3 [15]

KTr Half-saturation of Tregs 5 × 10−4g/cm3 [15]

KE Half-saturation of endothelial cells 2.5 × 10−3g/cm3 [43]

KC Half-saturation of tumor cells 0.4 g/cm3 [15]

KI12 Half-saturation of IL-12 8 × 10−10g/cm3 [15]

KI2 Half-saturation of IL-2 2.37 × 10−11g/cm3 [15]

KTβ Half-saturation of TGF-β 2.68 × 10−13g/cm3 [15]

KW Half-saturation of oxygen 1.69 × 10−4g/cm3 [43]

KG Half-saturation of VGEF 7 × 10−8g/cm3 [43]

KTTr Inhibition of function of T cells by Tregs 5 × 10−4g/cm3 [15]

K ′
TQ Inhibition of function of T cells by PD-1-PD-L1 1.68 × 10−18g2/cm6 Estimated

KPB Block of anti-PD-1 perfusion by anti-VEGF (mice) 1 × 10−8g/cm3 Estimated

KPB Block of anti-PD-1 perfusion by anti-VEGF (humans) 1 × 10−9g/cm3 Estimated

D0 Density of immature DCs 2 × 10−5 g/cm3 [59]

T10 Density of naive CD4+ T cells 4 × 10−4 g/cm3 [15]

T80 Density of naive CD8+ T cells 2 × 10−4 g/cm3 [15]

EM Carrying capacity of endothelial cells 5 × 10−3 g/cm3 [43]

CM Carrying capacity of cancer cells 0.8 g/cm3 [59]

G0 Threshold VEGF concentration 3.65 × 10−10 g/cm3 [43]

T̂1 Density of CD4+ T cells from lymph node 4 × 10−3 g/cm3 [15]

T̂8 Density of CD8+ T cells from lymph node 2 × 10−3 g/cm3 [15]

Ê Density of endothelial cells from outside of tumor 5 × 10−3 g/cm3 Estimated

W∗ Hypoxia threshold oxygen level 1.69 × 10−4 g/cm3 [44]

W0 Normal threshold oxygen level 4.65 × 10−4 g/cm3 [44]
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simultaneous infections is more beneficial than a treat-
ment with non-overlapping injections.
The optimal scheduling in combination therapy for can-

cer was considered in several publications, both in terms
of toxicity [51] and efficacy [52–54]. The present paper
considered the efficacy question by amathematical model.
The method and results of the paper can be extended
to other combinations, for example to a chemothera-
peutic agent combined with anti-VEGF, and they could
play an important role in the design of clinical trials,
where scheduling strategies may significantly affect the
outcome.

Conclusions
The design of cancer clinical trials with combination of
two drugs should take into account the potential inter-
actions between the two agents, which may suggest an
optimal scheduling strategy in the administration of the
drugs. Mathematical models can play a useful role in
this process. This was illustrated in the case where the
drugs are anti-VEGF and anti-PD-1. Anti-VEGF increases
the activation of anti-cancer cells, but it also modi-
fies the perfusion of other drugs. Using a mathemati-
cal model we showed that a non-overlappling admin-
stration of the two drugs is more effective in reduc-
ing tumor volume than simultaneous administration of
the drugs in the case where anti-VEGF degrades per-
fusion, as it occurs in some cancers, while the oppo-
site is true when perfusion is enhanced by anti-VEGF.
The mathematical methodology developed in this paper
could be extended to treatment with other combinations
of drugs.

Appendix
Parameter estimation
Half-saturation
In an expression of the form Y X

KX+X where Y is activated
by X, the parameter KX is called the half-saturation of X.
We assume that if the average density (or concentration)

of X,
∫

Xdx
∫

dX
,

converges to a steady state X0, then
X0

KX + X0

is not “too small” and not “too close” to 1, and for definite-
ness we take

X0
KX + X0

= 1
2

so that

KX = X0. (28)

To estimate parameters, we assume that all the average
densities and concentrations converge to their respective
steady states, and thus use Eq. (28) in each of the steady
state equations of the model.

Diffusion coefficients
We use the following relation for estimating the diffusion
coefficient of a protein p [55]:

δp = M1/3
G

M1/3
p

δG,

Fig. 10 Statistically significant PRCC values (p-value< 0.01) for tumor volume at day 30
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where MG and δG are respectively the molecular weight
and diffusion coefficient of VEGF, Mp is the molecular
weight of p, andMG = 24kDa [56] and δG = 8.64 × 10−2

cm2 day−1 [57]. Since, MB = 149kDa (bevacizumab), we
get δB = 4.70 × 10−2 cm2 day−1. The diffusion coeffi-
cient of oxygen in the extracellular matrix (ECM) in the
range of 7 × 10−6 − 2 × 10−5 cm2/s [58]; we take it to be
δW = 0.8cm2/day.

Eq. (2).
From the steady state of Eq. (2) (more precisely, by setting
to zero the RHS of Eq. (2)), we get λDCD0

C
KC+C · 1

1+G/KDG
=

dDD, where by [15], dD = 0.1/day, C = KC = 0.4 g/cm3,
D = KD = 4 × 10−4 g/cm3, D0 = 2 × 10−5 g/cm3. We
assume that KDG = 4KG where KG = 7 × 10−8 g/cm3

[43]; hence λDC = 2.5dDD/D0 = 5/day. For simplicity
we had assumed that the source of inactive dendritic cells,
D0, is constant. However, this source actually decreases as
more dendritic cells become activated. We take this into
count by increasing λDC , taking λDC = 17.5/day in mice
and λDC = 7.5/day in humans.

Eqs. (3) and (4).
We assume that in steady state, Q/KTQ = 2 (the value of
KTQ is derived in the estimates for Eqs. (13)-(17)). We also
assume thatKTG = 4KG whereKG = 7×10−8 g/cm3 [43].
From the steady state of Eq. (3), we get

(

λT1I12T10 · 1
2

· 1
2

· 4
5

+ λT1I2T1 · 1
2

)

· 1
3

− dT1T1 = 0,

where, by [15], λT1I2 = 0.25/day, dT1 = 0.197/day, T10 =
4 × 10−4 g/cm3 and T1 = KT1 = 2 × 10−3 g/cm3. Hence
λT1I12 = 11.65/day.
From the steady state of Eq. (4), we have

(

λT8I12T80 · 1
2

· 1
2

· 4
5

+ λT1I2T8 · 1
2

)

· 1
3

− dT8T8 = 0

where by [15], λT8I2 = 0.25/day, dT8 = 0.18/day, T80 =
2 × 10−4 g/cm3, T8 = KT8 = 1 × 10−3 g/cm3. Hence
λT8I12 = 10.38/day.
As in the case of Eq. (2), we had ignored the decrease

in the sources T10 and T80 as more of these cells become
activated, but we also ignored the contribution of the flux
of T cells at the tumor’s boundary.We assume that the flux
of T cells compensates for decrease in the source of the
inactive T cells, and retain the above values of λT1I12 and
λT8I12 . The same considerations apply in the case of Tr .

Eq. (5).
We assume that TGF-β activates Tregs more than VEGF
does, and take λTrTβ

= 5λTrG. From the steady state of
Eq. (5), we get, (λTrTβ

· 1
2 + λTrG · 1

2 )T10 − dTrTr = 0,
where T10 = 1×10−3 g/cm3, Tr = KTr = 5×10−4 g/cm3

[59], and dTr = 0.2/day [59]. Hence λTrG = 0.083/day and
λTrTβ

= 0.415/day.

Eq. (6).
By [43], dE = 0.69/day, EM = 5×10−3 g/cm3, KE = 2.5×
10−3 g/cm3, G0 = 3.65 × 10−10. We take EM = 2KE =
5 × 10−3 g/cm3. From the steady state of Eq. (6), we get
λE = 2dE/(KG −G0) = 1.98× 107 cm3/g · day. Assuming
that the threshold G0 (which was taken to be constant) is
actually increasing with the progression of the cancer in
the control case (no drugs), we increase λE , taking λE =
2.77×107 cm3/g ·day in mice and λE = 2.08×107 cm3/g ·
day in humans.

Eq. (7).
We take dC = 0.17 day−1, CM = 0.8 g/cm3 [59] and
λCW = 1.6/day [60]. In the steady state of the control case
(no drugs), we assume that C is approximately 0.4 g/cm3,
and W = W0 = KW = 1.69 × 10−4 g/cm3 (see the esti-
mates for Eq. (11)). From the steady state of Eq. (7) in the
control case we have,

1
2
λCWKW/W0 − η1KT1 − η8KT8 − dC = 0,

where KT1 = 2 × 10−3 g/cm3, KT8 = 1 × 10−3 g/cm3; we
take η8 = 2η1; hence η8 = (λCKW /(2W0)−dC)/(2KT8) =
60.375 cm3/g · day and η1 = 30.19 cm3/g · day. Since in
the control case the tumor grows, we increase the growth
rate of cancer cells taking λCW = 2.24/day in mice and
λCW = 1.76/day in humans.

Eq. (10).
From the steady state of Eq. (10) we have, λTβCC +
λTβTrTr = dTβ

Tβ , where Tr = KTr = 5 × 10−4 g/cm3,
C = KC = 0.4 g/cm3, and, by [15], Tβ = KTβ

=
2.68 × 10−13 g/cm3 and dTβ

= 499.07 day−1, and by [61],
λTβTr = 5.57×10−9/day. Hence λTβC = 3.27×10−10/day.

Eq. (11).
From steady state of Eq. (11) we get, λWEE − dWW = 0,
where λWE = 7× 10−2/day [43],W = KW = 1.69× 10−4

g/cm3 [43], E = KE = 2.5 × 10−3 g/cm3. Hence, dW =
λWEE/W = 1.04/day.

Eq. (12).
From steady state of Eq. (12) we get, λGWC − dGG = 0,
where dG = 12.6/day [43],G = KG = 7×10−8 g/cm3 [43],
C = KC = 0.4 g/cm3. Hence, λGW = 2.21 × 10−6/day.

Eqs. (13)-(17).
By [15], ρP = 2.49 × 10−7, ρL = 5.22 × 10−7, εT = 0.8,
εC = 0.01. We assume that εG = 0.1/KG = 1.43 × 106
cm3/g. From Eqs. (13)-(16) we get,
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KP1 = P1 = ρP(T1 + εTTr)

= (2.49×10−7) × [

2×10−3+0.8×(5 × 10−4)
]

= 5.98 × 10−10g/cm3,

KP8 = P8 = ρPT8(1 + εGG)

= (

2.49 × 10−7) × (

1 × 10−3) × (1 + 0.1)
= 2.74 × 10−10g/cm3,

and

KL = L = ρL(T1 + T8 + εTTr + εCC)

= (

5.22 × 10−7) × [

3.4 × 10−3 + 0.01 × 0.4
]

= 3.86 × 10−9g/cm3.

In steady state with P = KP = KP1 + KP8 , L = KL,
Q = KQ and G = KG we have, by Eq. (17), KQ = σKPKL.
We take KTQ = KQ = 1

2σKPKL. Hence, Q/KTQ =
PL/

( 1
2KPKL

)

and

1
1 + Q/KTQ

= 1
1 + PL/

( 1
2KPKL

) = 1
1 + PL/K ′

TQ
,

where K ′
TQ = 1

2KPKL = 1
2 ×

(

5.98 × 10−10 + 2.74 × 10−10) × (

3.86 × 10−9) =
1.68 × 10−18 g2/cm6.

Eqs. (18)-(19).
We take dA = 0.34 day−1 and assume that 10% of A is
used in blocking PD-1, while the remaining 90% degrades
naturally. Hence,

μAP = dA
9P

= 0.34
9 × (8.715×10−10)

=4.33×107 cm3/g · day.

Since the molecular mass of anti-PD-1 (32kDa [62])
approximates the molecular mass of PD-1 (20.5 - 40 kDa
[62]), we take μPA = μAP = 4.33 × 107 cm3/g · day.
By [63], the half-life of anti-VEGF is 2.82-4.58 days; we

take it to be 4 days, so that dB = ln2
4 = 0.17 day−1. We

assume that 90% of B is depleted in blocking of VEGF,
while the remaining 10% degrades naturally. Hence,

μBG = 9dB
G

= 9.17
7 × 10−8 = 2.19 × 107 cm3/g · day.

The molecular mass of anti-VEGF is approximately 6
times larger than that of VEGF, so we take μGB = 6μBG =
1.31 × 108 cm3/g · day.

Computational method
We employ a moving mesh method [48] to numerically
solve the free boundary problem for the tumor prolifera-
tion model. To illustrate this method, we take Eq. (7) as an
example and rewrite it in the following form:

∂C(r, t)
∂t

= δC
C(r, t) − div(uC) + F , (29)

where F represents the term in the right hand side of
Eq. (7). Let rki and Ck

i denote numerical approximations
of i-th grid point and C(rki , nτ), respectively, where τ is
the size of the time-step. The discretization of Eq. (29) is
derived by the fully implicit finite difference scheme:

Ck+1
i − Ck

i
τ

=δC

(

Crr + 2
rki
Cr

)

−
(

2
rk+1
i

uk+1
i + ur

)

Ck+1
i

− uk+1
i Cr + Fk+1

i ,
(30)

where Cr = h2−1C
k+1
i+1 −h21C

k+1
i−1 −(h21−h2−1)C

k+1
i

h1(h2−1−h1h−1)
, Crr =

2 h−1Ck+1
i+1 −h1Ck+1

i−1 +(h1−h−1)Ck+1
i

h1(h1h−1−h2−1)
,

ur = h2−1u
k+1
i+1 −h21u

k+1
i−1 −(h21−h2−1)u

k+1
i

h1(h2−1−h1h−1)
, h−1 = rk+1

i−1 − rk+1
i and

h1 = rk+1
i+1 − rk+1

i . The mesh moves by rk+1
i = rki + uk+1

i τ ,
where uk+1

i is solved by the velocity equation. To deal with
the different scales of the variables in the simulations, we
first non-dimensionalized the model and then applied the
above method.
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