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Abstract
Background: Current advances in genomics, proteomics and other areas of molecular biology
make the identification and reconstruction of novel pathways an emerging area of great interest.
One such class of pathways is involved in the biogenesis of Iron-Sulfur Clusters (ISC).

Results: Our goal is the development of a new approach based on the use and combination of
mathematical, theoretical and computational methods to identify the topology of a target network.
In this approach, mathematical models play a central role for the evaluation of the alternative
network structures that arise from literature data-mining, phylogenetic profiling, structural
methods, and human curation. As a test case, we reconstruct the topology of the reaction and
regulatory network for the mitochondrial ISC biogenesis pathway in S. cerevisiae. Predictions
regarding how proteins act in ISC biogenesis are validated by comparison with published
experimental results. For example, the predicted role of Arh1 and Yah1 and some of the
interactions we predict for Grx5 both matches experimental evidence. A putative role for frataxin
in directly regulating mitochondrial iron import is discarded from our analysis, which agrees with
also published experimental results. Additionally, we propose a number of experiments for testing
other predictions and further improve the identification of the network structure.

Conclusion: We propose and apply an iterative in silico procedure for predictive reconstruction
of the network topology of metabolic pathways. The procedure combines structural bioinformatics
tools and mathematical modeling techniques that allow the reconstruction of biochemical
networks. Using the Iron Sulfur cluster biogenesis in S. cerevisiae as a test case we indicate how this
procedure can be used to analyze and validate the network model against experimental results.
Critical evaluation of the obtained results through this procedure allows devising new wet lab
experiments to confirm its predictions or provide alternative explanations for further improving
the models.

Background
Increasing amounts of data that can be mined for infor-
mation about how proteins in cells assemble as metabolic
pathways, signal transduction pathways, and gene cir-
cuits, are generated each day. Datasets available for such

tasks include the primary literature, large scale micro array
experiments, whole genome two hybrid screenings, full
genome sequences, and the patterns of conserved/non-
conserved homologues and orthologues in them. Theoret-
ical and computational methods are being developed and
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used to analyze these different types of data and infer net-
works of proteins or genes that are involved in the same
cellular process(es) (e.g. [1-10]).

In general, the networks derived by the computational
analysis of these data are static, in the sense that they pro-
vide little information, if any, about the flow of causality
and events in the process and no information about the
dynamics of the processes and its regulation (however, see
[11]). For example, the involvement of proteins X, Y and
Z in a process does not elucidate if X catalyzes a reaction
that produces a substrate for another reaction catalyzed by
Z or by Y, or if X modulates Y or Z activity. This can be an
important problem while assembling the network struc-
ture of either novel pathways (e.g. Iron-Sulfur Cluster bio-
genesis) or complex pathways with an unclear reaction
and regulation network, (e. g. cell cycle). Thus, it is a chal-
lenge to transform the network of interactions inferred
from the analysis of static data into a causal network that
allows for the creation of mathematical models whose
dynamic behavior can be analyzed and tested against
experimental observations.

To achieve such a goal, strategies that combine the differ-
ent theoretical and computational methods to identify
proteins and generate a set of plausible alternative net-
work topologies for the process of interest are needed.
Such networks can then be translated into mathematical
models whose dynamic behavior can be analyzed and
compared to that of the real system, thus discriminating
against some of the proposed topologies when they do
not reproduce the expected behavior. Such an analytical
process integrates omics data and provides testable predic-
tions and information about systemic behavior.

The more than likely absence of known mechanistic and
kinetic data for each of the individual proteins in a novel
pathway hinders the process of translating network topol-
ogy into a mathematical model. A way around the prob-
lem is by using approximation theory [12]. This well-
established methodology approximates the continuous
functions that typically describe the kinetics of protein
processes by using, for example, truncated Taylor series,
either in linear or non-linear spaces (see e.g. [13-19]).
Among the non-linear approximations, the power-law
formalism provides a useful representation that comes
associated with powerful and eclectic analytical methods
(see e.g. [20-24]).

In this paper, we shall focus on defining and applying a
global strategy combining bioinformatics tools and math-
ematical modeling to reconstruct the network structure of
a pathway. Computational tools will be used for a)
obtaining relevant information on genes and proteins that
are identified as playing a role in the target pathway, b)

checking putative interactions between proteins, c) testing
the co-evolution of different proteins, and d) for setting-
up alternative networks that accommodate all this infor-
mation. Then, expert knowledge is used to curate the set
of alternative network structures. Finally, mathematical
models are used to explore the systemic behavior of each
alternative network and comparing it with existing exper-
imental data.

As a benchmark problem we shall focus on the Iron-Sulfur
Cluster (ISC) biogenesis pathway. ISC are widespread
cofactors of proteins that work as catalytic mediators, as
electron transport mediators, and as sensors for the oxida-
tion state of the cell and of its environment [25-32].
Although ISC have been known to assemble autono-
mously in proteins, in recent years, an evolutionarily con-
served set of proteins that controls this assembly has been
identified [29,33,34]. In eukaryotes, initial ISC biogenesis
is mitochondrial [35]. Deregulation of ISC biogenesis in
humans can create different pathological effects, leading
to diseases such as Friedreich's ataxia, X-linked sideroblas-
tic anemia, or hypochromic anemia. In yeast, deleting one
ISC biogenesis gene creates cells that accumulate iron and
have a decrease/deregulation in the activity of ISC
dependent proteins. The extent of the phenotype ranges
from mild (e.g. ΔGRX5 strains [36]) to lethal (e.g. ΔARH1
strains [37]), depending on the protein that is mutated.
Friedreich's ataxia is linked to mutations in one of the ISC
biogenesis proteins (Frataxin) which has as a homologous
protein in yeast the proteinYfh1 (Yeast Frataxin Homo-
logue 1). Additionally, iron accumulation can lead to cel-
lular aging and its associated diseases.

Although spontaneous assembly of ISC has been known
to occur both in vivo and in vitro, it has been observed that
mutations in a set of proteins that are evolutionarily con-
served cause defects in ISC biogenesis. These proteins are
evolutionarily conserved and form a putative ISC biogen-
esis pathway. The details and topology of this pathway are
still not fully understood. In S. cerevisiae, the eukaryotic
organism in which the ISC biogenesis has been more
extensively studied, the following proteins are involved:
Arh1, Yah1, Yfh1, Isu1, Isu2, Isa1, Isa2, Nfu1, Nfs1, Isd11,
Mge1, Ssq1, Jac1, Atm1 and Grx5 (Table 1). The current
dogma in the field assumes that Isu1, Isu2, Isa1, Isa2 and
Nfu1 are somehow the scaffolds where the ISC initially
assembles before being transferred to the appropriate ISC
dependent apo-proteins. However, recent results may be
casting some doubt into this, as there appears to be some
involvement of Isa1/Isa2 in Fe supply for the clusters of
specific ISC dependent apo-proteins. Furthermore, the
role of Nfu1 is unclear. Atm1 is likely to be the transporter
involved in exporting ISC to the cytoplasm. Arh1 and
Yah1 are a feredoxin reductase-feredoxin pair that proba-
bly regulates electron transfer during the initial assembly
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of the cluster. Nfs1 is a cysteine desulfurase that provides
the sulfur for the clusters and Isd11 is fundamental for
Nfs1 to fulfill its role. It is unclear how Isd11 facilitates the
functions of Nfs1. In bacteria, some cysteine desulfurases
also have an assistant protein that facilitates the transfer of
sulfur to the clusters via formation of and S-S bond. How-
ever, Isd11 does not have cysteine residues, which pre-
cludes such a mechanism for its action. Ssq1 (HSP 70 like
protein), Jac1 (HSP 40 like protein) and Mge1 (Nucle-
otide exchange factor) are protein chaperones that are
involved in assisting the pathway, although their exact
role is unclear. It has been shown that Isu1 activates the
ATPase activity of the HSP70 type chaperone Ssq1. Atm1

appears to participate in the exporting of the ISC clusters
from the mitochondrial matrix to the cytoplasm. Again,
the exact substrate of Atm1 is unknown. Grx5 is a mono-
thyolic glutaredoxin whose function in ISC biogenesis is
unclear. In prokaryotes this biogenesis is cytoplasmatic. In
some cases more than one system is involved in the bio-
genesis of ISC. For example in E. coli, the ISC system
(homologue to that of S. cerevisiae) [38-42] and the Suf
system [43] are parallel systems that are involved in the
biosynthesis of ISC. While the ISC system is the one
responsible for regular assembly of ISC, the Suf system
becomes important when the bacteria are under oxidative
stress.

Table 1: Proteins involved in ISC synthesis in Saccharomyces cerevisiae.

Proteins Protein Function Type of evidence for Protein 
Function

Suggested Function In ISC 
Assembly

Type of evidence for suggested 
systemic role

Arh1 Ferredoxin Reductase Homology to known ferredoxin/
adrenodoxin reductases

Reduces Yah1/Provides electrons 
for ISC assembly/transfer/repair

Homology, Physiological, Genetic

Yah1 Ferredoxin Homology to known ferredoxin/
adrenodoxin

Provides electrons for ISC 
assembly/transfer/repair

Physiological, Genetic

Yfh1 Frataxin Homology, Biochemical; 
Structural

Stores/Provides Fe directly to ISC 
assembly and Heme synthesis

Physiological, Structural, Genetic

Grx5 Glutaredoxin Homology, Biochemical Regulates glutathionylation state 
of protein cysteinyl residues

Physiological, Biochemical

Isa1 Scaffold As dimer scaffolds initial ISC 
assembly between two 
monomers and then transfers it 
to apo-proteins

Biochemical, Spectroscopic, 
Direct transfer observation

Isa2 Scaffold As dimer scaffolds initial ISC 
assembly between two 
monomers and then transfers it 
to apo-proteins

Biochemical, Spectroscopic, 
Direct transfer observation

Isu1 Scaffold As dimer scaffolds initial ISC 
assembly between two 
monomers and then transfers it 
to apo-proteins

Biochemical, Spectroscopic, 
Direct transfer observation

Isu2 Scaffold As dimer scaffolds initial ISC 
assembly between two 
monomers and then transfers it 
to apo-proteins

Biochemical, Spectroscopic, 
Direct transfer observation

Nfu1 Scaffold As dimer scaffolds initial ISC 
assembly between two 
monomers and then transfers it 
to apo-proteins

Biochemical, Spectroscopic

Ssq1 Hsp70 Chaperone Homology, Biochemical, Genetic, 
Structural

Assists in proper folding of ISC 
biosynthetic proteins, namely 
Yfh1 and Isa-Isu proteins/Assists 
in maintaining ISC assembled in 
scaffold dimer for proper transfer

Biochemical, Structural

Jac1 Hsp40 Co- chaperone Homology, Biochemical, Genetic, 
Structural

Assists Ssq1 in interacting with 
Isu/Isa proteins

Biochemical, Genetic, Structural

Mge1 Co- chaperone/Nucleotide 
exchange factor

Homology, Biochemical, Genetic, 
Structural

Assists Ssq1 Biochemical, Genetic, Structural

Nfs1 Cysteine Desulfurase Homology, Biochemical Provides sulphur for ISC assembly 
in scaffold dimers or in situ ISC 
assembly/repair

Physiological, Biochemical, 
Genetics

Atm1 ABC transporter Homology Involved in ISC export for 
cytoplasm and nuclear proteins

Physiological, Genetic

Isd11 unknown Biochemical, Genetic Fundamental for Nfs1 action Physiological, Genetic
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As mentioned in the previous paragraph, there is enough
information to attribute a function to some of the pro-
teins involved in ISC biogenesis in S. cerevisiae. This is the
case for example of Nfs1, Isu1, Isu2, or Atm1. However,
the role of other proteins is still not clear. For example,
what do Isa1, Isa2 or Nfu1 do in the process? What is the
role of the chaperones Ssq1-Jac1-Mge1 or of Grx5 in ISC
biogenesis? Thus ISC biogenesis is a good benchmark
problem for the application of the methodology we
describe, as it will provide the chance to validate some of
the prediction with published experimental results.
Simultaneously, the methodology will generate biological
insight regarding some of the proteins with an unclear
role, thus creating an added value from the methodologi-
cal and from the biological point of view. In previous
papers [34,44,45] we combined structural bioinformatics
with experiments and kinetic modeling to investigate the
possible role of proteins Arh1, Yah1 and Grx5 in mito-
chondrial ISC biogenesis. In this paper we present a struc-
tured computational approach that is used to infer and
analyze probable topologies for the global network of
mitochondrial ISC biogenesis. We analyze seven of the
proteins involved in the process (Arh1, Yah1, Yfh1, Grx5,
Nfs1, Ssq1 and Jac1), proposing likely systemic roles for
their action in ISC biogenesis.

Results
The proteins that are known to be involved in ISC mito-
chondrial biogenesis in S. cerevisiae are shown in Table 1.
We shall first describe how the different large scale data-
sets are analyzed and combined, using different computa-
tional tools in order to infer initial alternatives for the
network assembly of the pathway. Then, we use mathe-
matical modeling strategies to further analyze the differ-
ent alternative and identify the most reliable network
structure, based on comparing the dynamic behavior of
the models to experimental observations.

Pathway Reconstruction using automated literature 
analysis
Automated bibliomic analysis of published abstracts and
papers can be used to identify the different proteins or
genes involved in a given process [46]. We have used the
genes known to be involved in mitochondrial ISC biogen-
esis in S. cerevisiae to test this assumption. iHOP [47-49]
is a Web-based tool that allows a fairly automated analysis
of abstracts in search for gene names, generating a net-
work of genes that are co-present in papers. This network,
one expects, translates into a group of genes involved in
the same process as our original gene of interest. When
applied to the ISC biogenesis, iHOP identified all genes
corresponding to the proteins that are thought to be
involved in the process as well as some additional ones
that are marginally important. The identification of the
genes involved in the network was done by starting a new

search for each of the gene names from Table 1. As a new
gene was found during the search we analyzed the content
of the abstract. If the abstract referred to ISC biogenesis or
Fe metabolism and the gene was native to S. cerevisiae, the
gene was added to the network model; otherwise it was
not. If the new gene was added, then we appended its
name to the original list of genes and used it as an initial
seed in one of the searches. We continued this process
manually until the results converged and no new gene
name was added to the network. For each search, all genes
known to be involved in ISC were found by iHOP. This
suggests that semi-automated literature analysis methods
are indeed effective in identifying known component
parts of cellular processes of interest and in providing an
initial network of proteins for the study. Figure 1 shows
the network of interactions for the proteins involved in
mitochondrial ISC biogenesis in S. cerevisiae as derived
from the automated literature analysis. We have not
included Isd11, as this gene works complementarily with
Nfs1 [50,51].

Pathway Reconstruction using Phylogenetic profiling
It is not possible to infer probable network structure(s) for
the ISC biogenesis pathway just from the co-occurrence of
genes in papers. Additional data is necessary in order to
translate the group of proteins that are identified to be
involved in the biological process of interest into a struc-
tured network of causal and regulatory relationships. Phy-
logenetic profiling [52,53] of the genes assists in adding
some structure to the network. In this type of analysis, one
searches for patterns of co-occurrence of sets of ortho-
logues over a large number of fully sequenced genomes.
The assumption behind the use of this approach is that, if
the pattern of presence and absence of two or more pro-
teins in a number of genomes is very close, this is an indi-
cation of co-evolution among the proteins. Such co-
evolution can be taken as an indication that they are likely
to be involved in the same cellular process(es).

Results from phylogenetic co-evolution analysis of the dif-
ferent genes involved in ISC biogenesis are summarized in
Figure 1. This additional information already assists in
inferring some form of causality to the network structure
of the pathway. For example, Grx5 homologues coincide
with Isa1 and Isa2 homologues in more genomes than
with any other of the identified proteins. This suggests
that Grx5 is more likely to act directly on these proteins
than with other proteins that are also involved in ISC bio-
genesis. As can be seen in Table 1, Grx5 is a glutaredoxin
that is likely to regulate (de)glutathionylation of protein
cysteine residues. The phylogenetic analysis suggests that
the scaffold proteins are likely targets for that regulation.
Similarly, Atm1 homologues coincide with Isu1 and Isu2
homologues in more genomes than with homologues of
other ISC biogenesis proteins. Because Atm1 is a mem-
Page 4 of 19
(page number not for citation purposes)



BMC Systems Biology 2007, 1:10 http://www.biomedcentral.com/1752-0509/1/10
brane transporter, this result suggests that Isu1 and Isu2
are more likely to be involved in ISC transfer to the cyto-
plasm than other scaffold proteins. Sqq1, Jac1 and Mge1
are a chaperone, a co-chaperone, and a nucleotide
exchange factor respectively. Homologues of the three
proteins are present together in many genomes. Finally,
Yah1 and Yfh1 homologues coincide in a high number of
genomes, suggesting a common role for these two pro-
teins.

Pathway Reconstruction using low definition protein 
docking and in vitro protein interaction data
Alternatives for a partial network structure of the ISC bio-
genesis pathway have emerged from the phylogenetic
analysis in the previous section. Additional information
regarding this structure can be obtained through the use of
protein docking methods [54-60].

Using protein docking to determine how proteins assem-
ble in a pathway is not a standard procedure and may

present various types of problems. First, proteins in the
same pathway need not physically interact. Products from
an early step may be released into solution and used by a
protein involved in a later step of the process. However,
this problem is not relevant in the current case. Because
ISC are labile, a direct physical interaction between pro-
teins is required for synthesis and transfer of the clusters.
Second, protein modeling and/or docking is computa-
tionally very expensive. However, in the current case a
limited number of proteins are involved in the target
pathway. Thus, this problem is reduced to manageable
levels. Third, docking any two proteins will always give a
result. For example, consider proteins A and B that co-
occur in the same cellular compartment and are involved
in the same process, while protein C is located in another
cellular compartment and has no role in the process of
interest. If we dock protein A to protein B and then dock
protein A to protein C, the score of the later docking may
be much larger than that of the former. Choosing A and C
as the preferred docking partners would be an erroneous

Network of protein and gene interactions as derived from different theoretical and computational approachesFigure 1
Network of protein and gene interactions as derived from different theoretical and computational approaches. Light blue lines 
connect genes that co-occur in papers, as determined using iHOP. Mauve lines connect genes that have a significant phyloge-
netic coincidence, as measured by both the mutual information and the transformed Hamming distance index we use. Yellow 
lines connect proteins that have either been experimentally reported to interact or have been predicted in this work via in sil-
ico protein docking as being more likely to interact. Dark blue lines connect genes that co-occur in the literature and have a 
significant Phylogenetic coincidence. Green lines connect genes/proteins that co-occur in the literature and have been pre-
dicted to interact by our in silico docking experiments. Red lines connect genes/proteins that have a significant Phylogenetic 
coincidence and are predicted to interact by our docking experiments. Black lines connect genes/proteins that co-occur in the 
literature, have a significant Phylogenetic conservation and have been predicted to interact by the docking experiments.
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result because A and C never meet in vivo. This problem is
avoided in the present case because the proteins we are
docking co-exist in the same cellular compartment and are
involved in the same pathway. Fourth, docking a large
aggregate of proteins that works together to form a path-
way is still beyond the scope of protein docking. This is an
important problem but we have made the assumption
that, because physical interaction between proteins that
catalyze a step is required, the individual docking results
would be indicative of actual physical interactions.

In silico protein docking methods require protein struc-
tures. Of the proteins involved in ISC biogenesis in S. cer-
evisiae only Yfh1 has had its structure experimentally
determined [61]. We built models for the structures of the
remaining proteins. These models were obtained by hom-
ology modeling as described in the methods section.

Extending our previous work with this system [34,44,45],
we use GRAMM [54-60] and Hex [62] to perform all
against all in silico protein docking studies. The GRAMM
methodology is specially suited to dock protein models
because it averages over possible errors in the conforma-
tion that are unquestionably larger than in the case of
crystallographic structures [55,63,64]. Figure 1 shows the
four highest scores of interaction for each of the relevant
genes. Several possibilities for the structure of the network
can be inferred from these results. On one hand, both
Nfs1 and Yfh1 show stronger docking scores with the four
scaffold proteins. This suggests that both proteins act in
the processes that assemble the cluster in the scaffolds.
Arh1 and Yah1 are likely to be a pair that acts together,
given that their mutual docking score is high. Grx5 dock-
ing scores are higher for Nfs1 and Arh1, suggesting that
the later proteins are targets for the regulation of cysteine
(de)glutathionylation by Grx5.

We have complemented the network of interactions
inferred from the docking experiments with the interac-
tions reported in two-hybrid screenings of yeast proteins
from the published literature [34,65-69]. Within these
data sets, we have only found evidence for interaction
between Nfs1 and Isu1, Nfs1 and Isu2, Isa1 and Isa2, and
between Isa1 and Grx5. The Nfs1-scaffold interactions are
predicted by protein docking, thus suggesting that using
docking methods to resolve pathway structure might be
an adequate method, under similar circumstances. The
Grx5-Isa1 interaction is consistent with the phylogenetic
analysis reported in a previous section.

Generating a curated pathway model using expert 
knowledge
The previous analysis suggests a skeletal structure for the
ISC Biogenesis pathway. However, this structure needs to
be further refined before it can be analyzed using mathe-

matical modeling. A more detailed topology requires a
deeper analysis of the data available in the literature.
Additionally, non-genetic regulatory influences to the
pathway are hard to identify automatically, and one must
include such information using expert knowledge. At this
stage, human curation is needed to turn the automated
analysis of the previous sections into a network of reac-
tions and to add further detail to the reaction topology
and regulation. This curation is described in detail in the
Supplementary Appendix [see Additional File 1].

Alternative Mathematical Models
The inherent complexity of the alternative reaction
schemes in Figure 2 require the use of mathematical mod-
els in order to compare their in silico dynamic behavior
against the phenotype reported in the literature for differ-
ent genetically manipulated cell lines. However, the
detailed mechanism of the processes and reactions in the
various models are mostly unknown and appropriate
parameter values are difficult to estimate. Therefore, to
derive a useful mathematical model for each alternative
network one needs to use approximate kinetic functions
with parameters whose values can be bound to some
extent. The power-law formalism, which is based on a
Taylor approximation in a logarithmic space truncated in
the first order term, provides a kinetic representation that
a) is easily normalized and b) has parameter values
boundaries that can be approximately estimated. This for-
malism and a scanning procedure similar to the one used
here have previously been used to identify probable
unknown regulatory interactions that were latter vali-
dated, in a detailed model of the red blood cell metabo-
lism [70]. Furthermore, this formalism retains some non-
linear character for the dynamics of the process under
study [16-18,71].

We use the power-law formalism in its Generalized Mass
(GMA) Action form for building-up a mathematical
model that can accommodate the different alternatives in
Figure 2. Details on the kinetic equations for our models,
which are automatically generated from the network of
reactions, are given in the supplementary appendix. The
power-law description in GMA form of the network from
Figure 2 is given in SBML format as supplementary mate-
rial (see appendix for complete list of reactions and tech-
nical details of the approximation and parameter
scanning procedure).

Normalization and parameter scanning
A power law model has two types of parameters. Multipli-
cative parameters are analogous to rate constants (γi).
They can be appropriately normalized and roughly deter-
mine the time scale of the processes. Apparent kinetic
order fij measures the direct influence (sensitivity) of
metabolite j on flux i. Their values are typically smaller
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Network model for ISC biogenesis in S. cerevisiaeFigure 2
Network model for ISC biogenesis in S. cerevisiae. The letters in the grey circles stand for the different stage of the Biogenesis. 
A stands for the recovery of Arh1 by Grx5. D stands for the recovery of the dead end complex between Nfs1 and the scaffold 
by Grx5. F stands for folding. FI stands for Fe import. I stands for the recovery of the scaffolds by Grx5. N stands for Nfs1 
recovery by Grx5. R stands for the repair of the clusters. S stands for the synthesis of ISC. St stands for stabilization of the 
ISC assembled on the scaffolds. T stands for the transfer of the ISC to apo-proteins. The species Apo-P and P in the transfer of 
a 2Fe2S cluster reaction represent the pairs Apo P1 and P1, Apo P2 and Fe2S2P2 or Fe2S2P2 and P2, respectively. See text and 
supplementary materials for details and for kinetic representation of the reactions. Dotted arrows represent reactions that 
have been observed to occur experimentally. Dashed arrows represent the alternative modes of regulatory action for the dif-
ferent proteins. Light grey arrows represent the network interactions that are not likely to exist in the pathway, according to 
our analysis.
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than the number of binding sites for the metabolite in the
reaction, in absolute value [20,72]. Kinetic orders are pos-
itive if the flux is activated by the metabolite, negative if
the flux is inhibited by the metabolite and zero if the con-
sidered metabolite has no direct influence upon the flux.
The alternative networks we consider in order to evaluate
the role of different proteins on ISC biogenesis can be
derived as special cases of a general model that incorpo-
rates all the possible reactions and regulatory effects. Each
alternative network is generated by setting to zero specific
kinetic orders corresponding to proteins that do not
directly modulate the flux of a given process in a specific
network alternative. For example, when we consider that
Grx5 may act upon recovery of Nfs1 activity by deglutath-
ionylation, the kinetic order for Grx5 in the deglutathio-
nylation flux is positive; otherwise this kinetic order is
zero.

To analyze the behavior of each alternative network, we
scan the relevant parameter values and evaluate the result-
ing dynamic behavior of the corresponding mathematical
model. Because values for the kinetic orders have a limited
range of permissible values, after normalization of the rate
constants, one can do a fairly comprehensive scan of the
parameter values for the alternative networks and charac-
terize the most relevant behaviors associated with each
topology.

Experimental semi-quantitative data about the effect of
regulating the expression of the different genes involved
in ISC assembly are available in the literature (see refer-
ences in Figure 3). The following general methodology is
used in the experiments reported in the literature:

1- The gene of interest is knocked out from the yeast
genome and replaced with the same gene in a plasmid
with expression controlled by either a repressible or an
inducible promoter.

2- The phenotype of the mutated strain is compared to the
wild type. This is done under conditions when the
mutated strain synthesizes the protein of interest and
repeated under conditions where the synthesis of that spe-
cific protein is shut off.

The experiments described in the previous paragraph can
be reproduced in the following way, using our in silico
models:

1- Introduce a sink flux for the protein of interest with the
purpose of mimicking the shutting off of gene expression.
For example, consider Grx5. When we are scanning to pre-
dict the role of Grx5, we define an auxiliary first-order
reaction for Grx5 consumption. By changing the value of
the rate-constant for this auxiliary reaction, we cause the

amount of Grx5 to decrease as the simulation time
increases. This reproduces the effect of the dilution and
destruction of the protein in strains in which the gene has
been knocked out [36].

2- Scan the parameter values and compute the resulting
activity of ISC dependent enzymes, represented by P1 and
P2 levels, and the mitochondrial iron levels. Rate con-
stants are scanned for 3 orders of magnitude about each
side of their normalized values. Details on the exact values
for the scanning parameters are given in the supplemen-
tary appendix.

3- Save the simulation data. Plot it as is done in Figure 3.
Verify if the concentration of Fe increases and the concen-
tration of holo P1, holo P2, and holo Yah1 decreases
upon the knock out of a specific gene, as observed experi-
mentally.

As a result of this strategy, we obtain for each of the alter-
native networks a qualitative picture of the possible
dynamic response regimes that the network may have.
Following this methodology, the analysis of the in silico
dynamic behavior of each network can have the following
alternative outcomes: (i) A network reproduces the exper-
imental depletion of ISC dependent protein activity and
Fe accumulation that is observed in experiments upon
knock out of a given protein, independent of parameter
values; (ii) A network reproduces the experimental results
for particular subsets of parameter values; (iii) A network
does not reproduce the experimental results, independent
of parameter values. Clearly, the last case means that the
considered network is not a plausible representation of
the target system. Designs that lead to reproducing
observed results independently of the parameter choice
are the most likely to be good approximations to the real
network structure. Networks that reproduce experimental
results only for particular parameter values are in between
both extreme cases.

Using this approach, here we explore the role of the fol-
lowing proteins: (i) Arh1-Yah1, (ii) Yfh1, (iii) Grx5, (iv)
Nfs1, and (v) Ssq1, Jac1 and Mge1. The results will help in
discriminating between competing roles and in suggesting
experiments to validate the predictions. Table 2 shows the
possible roles each of the proteins in the scheme of Figure
2. All possible combinations of individual roles for each
protein are also considered.

The Role of Arh1-Yah1
The analysis from the bioinformatics section leads us to
consider that Arh1-Yah1 can act in regulating S(ynthesis),
T(ransfer) or R(epair) of the clusters (Table 2) or in any
combination of the three roles. When comparing the sim-
ulations for the alternative roles of Arh1-Yah1 to the
Page 8 of 19
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Comparison of the phenotypes in each of the alternative networks upon depletion of a given protein to the corresponding phenotype observed experimentallyFigure 3
Comparison of the phenotypes in each of the alternative networks upon depletion of a given protein to the corresponding 
phenotype observed experimentally. Within each panel, we present the overall shapes of the curves that were obtained in our 
in silico simulations upon depletion of the target protein and points are presented to represent the curves of published exper-
iments. Only in two cases were there more than two measurements made along the depletion curve. The curves are con-
nected to the alternative networks according to the following labels. R: network where deleted protein acts only on repair. F: 
network where deleted protein acts only on folding. S: network where deleted protein acts only on synthesis. St: network 
where deleted protein acts only on stability of clusters. A: network where Grx5 acts on regulating glutathionylation state of 
Arh1. Any combination of labels indicates that the deleted protein in the network acts on more that one process. For example 
RS means that said protein acts on repair and synthesis of clusters. Panels A, C, D, E, G and I compare the accumulation of Fe 
in the network to that in the experiments. The Y-axis represents the level of free Fe. Panels B, D, F, H and J compare the evo-
lution of ISC dependent protein activity in the alternative networks to that observed experimentally upon depletion of the pro-
tein. The Y-axis represents normalized ISC dependent protein activity. Panels A and B – Experimental data from [74] and [73]. 
Panels C and D – Experimental data from [88] and [87]. Panels E and F – Experimental data from [36]. Panels G and H – Exper-
imental data from [125] and [126]. Panels I and J – Experimental data from [77, 127, 128].
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experimental results, we see that only the curves where
Arh1-Yah1 participate in S or ST reproduce experimental
results. Only for those roles does the activity of ISC
dependent proteins decreases and Fe accumulates in
response to a depletion in Arh1-Yah1 levels (Figure 3A
and 3B). These results refine our previous predictions [44]
and are in agreement with previous experimental results
that have been interpreted as indicating that Arh1-Yah1
do not regulate ISC in situ repair [73,74].

It is interesting to note that the results from Arh1 deple-
tion studies [74] show a slight increase in the activity of
ISC-dependent proteins upon initial depletion of Arh1,
followed by a decrease in ISC-dependent protein activity
upon further depletion of Arh1. This behavior is not
reproduced in Yah1 depletion studies [73]. Within the
range of our parameter scanning, only the networks where
Arh1-Yah1 acts on ISC synthesis shows the same behavior
for the ISC-dependent proteins as that observed in Li et al.
[74]. In our models this effect can be explained as follows.
The simulations start with an overexpression of Arh1-
Yah1. At high concentrations, much of the ISC biosynthe-
sis takes place to keep Arh1-Yah1 active, as this protein
requires ISC for activity. When the levels of Arh1-Yah1
drop bellow saturation levels the ISC biogenesis machin-
ery can upload more ISC into the other ISC-dependent
proteins, thus increasing their activity. As Arh1-Yah1 lev-
els continue to drop there is not enough Arh1-Yah1
around to keep the full fraction of other ISC-dependent
proteins in active form.

There is also the possibility that Arh1 and Yah1 act on ISC
biogenesis in an unknown way that is not represented in
the network. To look for additional evidence to support
this hypothesis, we reanalyzed the phylogenetic profile of
both proteins. This analysis reveals that Arh1 and Yah1
have a strong co-evolution with the proteins Sco1/Sco2
and Hol1, which are involved in cation transport. There
are other connections between ISC biosynthesis and diva-

lent ion mitochondrial transport, which suggests that the
connection between Arh1/Yah1 and Sco1/Sco2 may be
worth investigating in the future. Co-affinity purification
experiments would provide evidence for this interaction.
Additionally, measuring accumulation of iron and an
impaired ISC dependent protein activity in mutants in
which Sco1, Sco2 or Hol1 have been knocked out would
provide evidence for the involvement of these proteins in
ISC biogenesis.

We have also investigated the unsolved problem of the
mutual functional relationship between Arh1 and Yah1.
Homology with other ferredoxin/ferredoxin reductase
pairs suggests that Arh1 is the reductase for Yah1. How-
ever, two-hybrid experiments have failed to recover an
interaction between the two proteins [75], (Herrero, E. &
Vilella, F. unpublished results). This negative result could
be explained by the fact that the two-hybrid essay
attempts to recover the interactions in a nuclear environ-
ment while the relevant interactions, if they exist, occur at
the mitochondrial matrix.

Our structural modeling and protein docking experiments
suggest that the two proteins interact in a way that is sim-
ilar to their bovine homologues. We have repeated all the
relevant analysis reported previously [44] for new struc-
tural models derived from updated structure information.
We found that, although detailed numbers change, the
general pictures remains the same. We have identified
three arginine residues (Arg268, Arg272 and Arg273) in
Arh1 that, upon mutation are likely to disturb Arh1-Yah1
interaction and thus reproduce both Δarh1 and Δyah1
mutant phenotypes [44]. This suggests a way of experi-
mentally testing the predictions. If these proteins act
together, disrupting this docking would affect their role in
ISC biogenesis. This can be experimentally tested by creat-
ing point mutants of the two proteins, changing specific
Arginine and Aspartate residues into alanine. Then, one
could create mutant strains with different combinations

Table 2: Possible alternative regulatory roles for the different proteins in the scheme shown in Figure 2. A '+' sign in a row indicates 
that the protein could participate in the regulation of reactions in the corresponding block of reactions in Figure 2.

Sites in Figure 2 Proteins
Arh1-Yah1 Yfh1 Nfs1 Ssq1-Jac1 Grx5

R + + +
S + + +
T + +
FI +
St +
F +
D +
I +
N +
A +
Page 10 of 19
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of these two proteins. If the mutant strains accumulate Fe
and show an impaired ISC dependent protein activity, this
would be indirect evidence that the mutated residues are
important for the function. Strains with tagged Arh1 and
with tagged Yah1 could be used to over-express and purify
the proteins by tag affinity purification (TAP). TAP analy-
sis and co-purification experiments with the different
point mutants of Arh1 and Yah1 should help in clarifying
if Arh1 and Yah1 act in tandem during ISC biogenesis.

The Role of Yfh1
The analysis from the bioinformatics section leads us to
consider that Yfh1 can act in regulating Fe I(mport) and
ISC S(ynthesis), T(ransfer) or R(epair) of the clusters
(Table 2) or in any combination of the four roles. Only
the curves for the simulations where Yfh1 participates in
S, T or ST reproduce experimental results (Figure 3C and
3D). The activity of ISC dependent proteins decreases and
Fe accumulates in response to the depletion of Yfh1, when
Yfh1 acts in any of those roles. The phylogenetic and
docking analysis supports that Yfh1 acts in S, T or ST
because that analysis suggests that Yfh1 functionally
cooperates with Arh1-Yah1. Recent experimental evidence
detected physical and functional interactions between
Yfh1, the scaffold proteins and Nfs1 [76-79] which pro-
vides further support for our interpretation. Other modes
of action also cause accumulation of Fe and ISC depend-
ent protein activity depletion; however either the Fe accu-
mulation is small (R) or the protein activity depletion is
biphasic (RS, RT, RST). Therefore we do not consider
these as likely alternatives.

A speculative mechanistic model of how Arh1, Yah1 and
Yfh1 may collaborate in ISC biogenesis is as follows. Yfh1
can regulate the oxidation state of iron ions, independ-
ently of the protein's oligomerization state [61,80,81].
Thus, Yfh1 could be responsible for supplying iron in the
appropriate oxidation state for ISC biogenesis and repair.
This has been previously suggested by Gakh et al. [80].
Arh1 and Yah1 can act as alternative electron donors/
acceptors for Yfh1, ensuring Yfh1's ability to provide iron
in the appropriate state of oxidation for synthesis and
repair of ISC. The other donor/acceptor could be a mito-
chondrial respiratory chain. This alternative model could
explain why some experiments detect independence of
Yfh1 function from mitochondrial respiration [82] while
others detect functional interaction between Yfh1 func-
tion and mitochondrial respiration [83]. One way to test
this model would be the following. First, one would
inhibit respiratory chain electron transfer (while still pro-
viding ATP for the cell) and Arh1-Yah1 independently,
under the same experimental conditions. Yfh1 should
remain active to some level in either case. Then, one
would inhibit both simultaneously. If the model is correct

then Yfh1 activity should be severely hindered in this dou-
ble mutant cell lines.

Experimental evidence shows that, in vitro, Yfh1 can form
large homo-multimers and store great amounts of iron
that can be mobilized for later usage [81,84,85]. This is
mimicked in our models by the role of Yfh1 in Section I
of Figure 2. The analysis of these mathematical models
shows that, if Yfh1 had such a function, Δyfh1 cells would
have impaired ISC dependent protein activity. However, if
the pool was as large as in vitro studies suggest it can be
mitochondrial iron levels would be lower in Δyfh1 cells
than in wild type cells. Thus, our simulations, together
with recent experimental work [86], suggest that iron stor-
age by Yfh1 is dispensable for its in vivo function.

The Role of Grx5
The analysis from the bioinformatics section leads us to
consider that Grx5 can act in regulating the D(ead end
complex recycling), A(rh1-Yah1 deglutathionylation),
I(SS) and N(fs1 deglutathionylation) blocks in Figure 2
(Table 2) or in any combination of the four roles. Only
the simulation curves where Grx5 participates in regulat-
ing at least D, I or N are able to reproduce published
experimental results (Figure 3E and 3F). Only the A mode
of action for Grx5 can be excluded by our simulations.

In silico protein docking of Grx5 with each of the ISC pro-
teins indicates that Nfs1 is the protein that has a better
surface complementary with Grx5. Furthermore, the dock-
ing of Grx5 and Nfs1 suggests that Grx5 could be regulat-
ing the glutathionylation state of the Cys421 residue in
Nfs1, which is the putative active site cysteine. This predic-
tion could be tested by purifying and isolating the differ-
ent proteins involved in ISC biogenesis, together with
appropriate control proteins. Then one would incubate
each protein with reduced glutathione, to create protein-
GS adducts. In a different experiment, one would put the
proteins under strong oxidizing conditions that lead to
disulfide bridge formation. After that, one would mix
each protein that has been submitted to oxidative stress
with Grx5 and follow the reduction of the oxidized pro-
teins. The targets for Grx5 should be the proteins that
become reduced at a quicker rate. This experiment should
clarify the role of Grx5 in ISC biogenesis. In parallel one
could also perform co-affinity purification studies with
Grx5 and identify which proteins interact with Grx5.

The Role of Nfs1
Nfs1 catalyzes the removal of sulfur from cysteine and
provides sulfur for ISC formation [29,87,88]. Neverthe-
less, it is not clear how it does so. It has been shown that
Nfs1 transfers this sulfur to ISS proteins for ISC assembly
[89,90]. It has also been shown in vitro that Nfs1 can
directly repair ISC in situ upon oxidative damage, if iron is
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available in the ISC dependent protein [91-93]. However,
it is unclear whether this later role is important in gener-
ating the phenotype of ISC deletion mutants. Thus we
consider that Nfs1 can act in S(ynthesis) or R(epair) of the
ISC (Figure 2, Table 2) or in both. The simulations show
that the models can reproduce the experimental results if
Nfs1 does not work on R (Figures 3G and 3H). Occam's
razor suggests that participation of Nfs1 in S is sufficient
to justify the phenotype. Nevertheless, the network where
Nfs1 acts on SR can also reproduce the experimental phe-
notype observed upon Nfs1 depletion (Figure 3).

The Role of the Chaperones and Co-chaperones Ssq1-
Jac1-Mge1
We consider that Ssq1-Jac1-Mge1 can act in regulating
F(olding of the proteins), R(epair of the clusters) and
St(abilization of the clusters in the scaffolds) (Figure 2,
Table 2) or in any combination of the three roles. When
comparing the simulations for the alternative roles of the
chaperones to published experimental results, only the
curves where Ssq1-Jac1-Mge1 participate in regulating R
can be excluded (Figure 3I and 3J). However, again fol-
lowing Occam's razor, there is no need to consider any
role for the chaperones other than the folding of ISC pro-
teins. This is in agreement with recently published work
[94]. One way to test whether the chaperones are involved
in the stabilization of the clusters in the scaffold proteins
would be to create the following two in vitro systems. One
system would contain scaffold proteins and Yah1. Then
one would create favorable conditions so that the scaf-
folds would be loaded with ISC and follow the kinetics of
both ISC assembly in the scaffolds and ISC transfer to
apo-Yah1. This is an experiment that has been repeated
and published using homologues from different species
(see for example reference [95]). Finally, one would
repeat the experiment adding chaperones to the medium.
Faster kinetics of ISC assembly would suggest that the

chaperones assist in stabilizing the clusters on the scaf-
folds.

Discussion
The identification and reconstruction of novel pathways is
an emerging area of great interest. The accumulation of
data from different origins and the development of meth-
ods and software to mine that data create an opportunity
to bridge the gap between the fragmentary view of genes
and proteins and the more integrated approach of Sys-
tems Biology. In this paper we use a combination of theo-
retical, mathematical, and computational methods to
reconstruct the topology of the reaction and regulatory
network for the mitochondrial ISC biogenesis pathway in
S. cerevisiae. The network elements (proteins) are identi-
fied and a network of interactions between them is pre-
dicted using automated literature mining, genomic data,
structural bioinformatics data and evolutionary analysis.
Although automatic tools do provide a first approxima-
tion of the network structure, human analysis remains
necessary for curating all the relevant information. In fact,
human curation of the network is a critical step for the
derivation of possible alternative reaction schemes for the
ISC biogenesis. At this point, mathematical models are
needed to predict and validate the systemic behavior of
each alternative network by comparing it to experimental
data. Table 3 shows the likely roles for the proteins that
have been analyzed. This eliminates some of the alterna-
tive network structures and assists in refining the remain-
ing, by suggesting experiments that can further
differentiate between them. These experiments are sum-
marized in Table 4. As in any scientific approach, the proc-
ess should continue iteratively.

As shown is this paper, bioinformatics tools, expert
knowledge, and modeling techniques can thus be used to
assist in the predictive analysis of the system, and in sug-

Table 3: Roles for the proteins in ISC biogenesis. Likely roles for the different proteins in the scheme shown in Figure 2 are indicated 
by a '+' sign. The letter codes refer to the blocks in Figure 2. Entries not in bold are not likely due to Occam's razor rule, although they 
reproduce the experimental results.

Proteins

Arh1-Yah1 Yfh1 Nfs1 Ssq1-Jac1 Grx5

Roles S S S F D
ST T SR St I

ST FSt N
FR DI
RSt
FRSt DN

IN
DIN
ADIN
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gesting experimental test for the predictions. Another use-
ful aspect of our approach is that it can be used in
reassessing the interpretation of experimental data. For
example, if Yfh1 had an important role in accumulating a
mitochondrial Fe pool, then our model predicts that
Δyfh1 mutants would have less mitochondrial iron, which
is opposite to what is observed. It is our goal to continue
to refine our model and to apply this analysis to other
organisms, thus assisting in the understanding of how the
ISC biogenesis pathways have evolved.

In principle, the combination of approaches presented
here could be used in a flexible way to analyze similar
problems in other molecular biological systems. In sum-
mary, the full procedure would be the following (Figure
4):

1) Choose the biological process of interest (in our bench-
mark example the proteins involved in ISC assembly in
Saccharomyces cerevisiae)

2) Determine the proteins and metabolites of interest that
are thought to be involved in the process (Bibliomic analy-
sis and Phylogenetic profiling). Use phylogenetic profiling as
a first indicator of which proteins may be acting together
in the process of interest.

3) Interrogate available databases for physical interactions
between the proteins of interest.

4) If possible, obtain structures for the proteins. If no
structure is available, obtain structural models from
homologue proteins (Structural bioinformatics)

5) Use all against all protein docking to derive the most
likely interactions (Structural bioinformatics). Analyze
those interactions (Protein-protein data sets).

6) Derive a degenerate/incomplete set of possible network
structures based on the interactions obtained from 4).

7) Eliminate from/add to 5) any interactions that are
eliminated/suggested from known data (Expert knowledge)

8) Identify alternative models corresponding to different
hypothesis for the component elements and processes.

9) Derive mathematical models for the selected schemes
using the GMA approach (Mathematical modeling)

10) Normalize the models and scan parameters over large
permissible ranges to determine which alternative net-
works are able to reproduce known experimental behav-
ior of the system.

11) If some of the alternatives reproduce known experi-
mental results, devise thought experiments that can also
be executed experimentally and that could differentiate
between the behavior of the alternatives. Go back to step
6).

12) If none of the alternative networks is able to repro-
duce the known experimental behavior use Phylogenetic
profiling to determine new potential components of the
system of interest. Go back to step 3).

In certain cases, some of the steps proposed here can be
avoided, as they would add no extra information. It is
likely that, by applying this procedure to the reconstruc-
tion of different metabolic processes, the various methods
will contribute differently for the reconstruction. In some
cases, there will be overlap of the network of interactions
that are predicted by each data set, while in others the
analysis of the different datasets will provide different and
sometimes contradictory networks of interactions. This

Table 4: Experimental validation of the predictions and suggested experiments. See text for details on the suggested experiments.

Prediction Experimental Validation Suggested experiments

Grx5 acts in recovering the activity of Nfs1 or of the 
scaffold proteins

Experimentally detected 
interaction with the scaffolds [34]

Use of kinetic assays and TAP assays to pinpoint the 
most likely targets for Grx5

Arh1-Yah1 act on S or ST Yes [73, 74]
Arh1-Yah1 interact in a similar way to their bovine 
homologues

No Point Mutants and use of TAP assays combined with 
measurements of ISC dependent protein activity and 
Fe accumulation in mutant strains

Yfh1 acts on S, T or ST Yes [76-79]
Yfh1 storage of Fe is not important for its ISC 
biogenesis role

Yes [86]

Nfs1 role in synthesis is sufficient to justify Δnfs1 
phenotype

No

Chaperone role in F or St Yes for F [94] In vitro systems with and without chaperones to 
compare rate of assembly of ISC onto the scaffold 
would provide some evidence for or against St.
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emphasizes the need for expert curation of the networks at
this stage of the methodology's development. Any pro-
gram/server/software package that would allow the imple-
mentation of such a procedure would have to be
sufficiently flexible so that the use of only certain parts of
the procedure would be possible for non expert users. It is
also critical that such an application is flexible enough to
allow the researcher to modify the pathway topology
interactively, using expert knowledge. Once the alterna-
tive pathways are identified, the use of GMA models
greatly facilitates the mathematical modeling. These mod-
els can automatically be derived from the reaction scheme
and dynamic simulations can be performed by scanning
parameters of the normalized models. When it comes to
ill-defined pathways with almost no parameter determi-
nation studies available, the scanning procedure is a lim-
iting step, as tens of hundreds to a few millions of
simulation curves may be needed even for fairly small
pathways. The scanning of the parameter space can be

bounded by the availability of good measurements for at
least some of the parameter values. This is for example
what happens in reference [70].

Conclusion
The ISC biogenesis pathway of S. cerevisiae is partially
reconstructed using a flexible in silico methodology that
combines sequence analysis, literature analysis and struc-
tural bioinformatics methods. The role of different S. cer-
evisiae proteins in ISC biogenesis is predicted. Some
predictions are validated by published experimental
results. Other predictions need further experimental work
to validate. The methodology proposed here is flexible
and is applicable to the reconstruction of other systems.
This methodology could be a step forward in integrating
different types of data to a) obtain systemic knowledge
about novel pathways, and b) clarify how current models
of known pathways would work, generating rational
hypothesis for testing.

A simplified flow chart of the procedure suggested in the discussionFigure 4
A simplified flow chart of the procedure suggested in the discussion. See discussion for details.
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Methods
Pathway Reconstruction from Automated Literature 
Analysis
Bibliometric methods consider that the co-occurrence of
the names of two or more genes or proteins in the same
paper is an indication that both proteins are likely to be
involved in common cellular processes. Under this
assumption one can identify proteins that are know to be
involved in a given cellular process. iHOP [49] is a
resource that allows this type of literature meta-analysis.
We used this tool to identify possible additional genes
involved in mitochondrial ISC biogenesis and as a first
predictor of likely interactions between these different
yeast proteins.

Phylogenetic Profiling
This technique proposes that if the homologues of two
proteins are equally present or absent in a set of fully
sequenced genomes, then the two proteins are likely to be
involved in some common cellular function [52,53,96].
The rationale for this assumption is that, given two pro-
teins, they will co-evolve if some functional requirement
of the organism is dependent on both in a similar way. To
perform phylogenetic profiling of the proteins involved in
mitochondrial ISC biogenesis we have downloaded the
proteome of all fully sequenced organisms described in
the KEGG database (Version 36.0). Homology searches
for each of the S. cerevisiae proteins in each of the other
proteomes was done by running version 2.2.4 of PSI-
BLAST [97] locally, with e-value ≤ 0.0001 and three itera-
tions. A vector of present or absent homologues in each
genome was built for each yeast protein. Then, taking as
reference the vector for the relevant protein, a co-occur-
rence index (CI) is calculated for each of the other pro-
teins in the yeast genome: CI = Σ δij-iPR/Total number of
genomes = 1-Normalized Hamming Distance between
two genes. In this formula δij-PR is the Kronecker delta
function, taken to be 1 if the reference protein PR and pro-
tein j both have (or do not have) homologues in the pro-
teome of organism i and 0 otherwise. The Hamming
distance has been used before and benchmarked both in
S. cerevisiae and in other organisms [98]. We calculate the
p value for each coefficient using the hypergeometric dis-
tribution as described in [99]. All CI values between any
pair of ISC proteins have a p values smaller than10-7. Due
to this, the p-value provides no discrimination for the like-
lihood of interaction between any pair of ISC biogenesis
proteins. Thus, we selected as having a significant phylo-
genetic co-evolution any other ISC protein with a CI
higher than that for 95% of all the proteins in the genome.
Results are shown in Figure 1.

Large Scale Protein Interaction Datasets
We have analyzed large scale protein interaction datasets
downloaded from BIND [100], DIP [101-103], GRID

[104,105], PathCalling [68,106] and YRC [107] to deter-
mine which proteins have been found to physically inter-
act within the set of proteins involved in mitochondrial
ISC biogenesis.

Protein Modeling and Docking
Because the structure of the proteins involved in mito-
chondrial ISC biogenesis in S. cerevisiae has not been
determined we had to create structural models to perform
low resolution docking. These model have been obtained
either by homology modeling, using 3DJIGSAW [108-
114] and SWISSMODEL [115-118] or by ab initio mode-
ling using ROSETTA [119-123]. Models were optimized
locally by selected loop reconstruction using DEEPVIEW
[115-118]. When more than one model was obtained for
the same protein we used a genetic algorithm to optimize
the structures [113], followed by loop reconstruction.
Model optimization was finalized with a full energy min-
imization using the GROMACS97 force field [124] as
implemented in DEEPVIEW. The protein models are
given as supplementary material [See Additional File 2]

Given the atomic coordinates of two proteins, docking
methods search for the best complex between them in
which the shape of the two surfaces fit best [63,64], while
also considering electrostatic interactions and hydrogen
bonds. Protein docking experiments were done using
GRAMM [54,55,57-60] and Hex [62]. The ability of these
methods to recover existing complexes has been bench-
marked by different authors [54,62] and, on a limited
scale, by us for the ISC biogenesis pathway.

To calculate the docking score for a given pair of proteins,
we used the list of the 20 highest docking scores from
GRAMM. Within that list, we separated the clusters of
docking solutions. The cluster score was obtained by add-
ing the score of each individual solution within that clus-
ter. Hex was then used to perform the same docking
experiment. If the a solution from the cluster with the
highest GRAMM score was not present in the best twenty
Hex docking solutions, the GRAMM result was discarded
and the score of the next best cluster that was also found
by HEX was used instead. The results are shown in Figure
1. The scores are the product of the best fit solution within
a cluster, predicted using GRAMM, by the size of the clus-
ter within the 20 highest score predictions. In previous
work, we performed several tests with positive and nega-
tive controls to ensure that this usage of the methods
could indeed provide reasonable guesses. For negative
controls of the docking we chose Grx5. We obtained struc-
tures for the proteins Rex2, Cyt1, Lip2, Atp16 and Cox 11.
These are all proteins that either are not located in the
mitochondria or, if located in the mitochondria, are not
involved in ISC biogenesis. Then, we performed docking
of Grx5 against these proteins as well as against the ISC
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biogenesis proteins. The results rank the five negative con-
trols as the 5 smallest docking scores [34]. As positive con-
trol we performed pair wise docking of Arh1, Yah1 and
their bovine homologues. The test scores are higher for
the appropriate pairs (Arh1-Yah1 and Bovine Ferredoxin
Reductase-Bovine Ferredoxin; data not shown). Further-
more, the best docking for the bovine pair had a RMSD of
less than three Angstroms with respect to the crystallized
structure of the complex. This suggests that the docking
methods used here are useful for the purpose we describe.

Mathematical Modeling
In this paper the generalized mass action (GMA) canoni-
cal representation of the power-law formalism is used for
the set of ordinary differential equations that describes the
dynamical behavior of the metabolic network of interest.
The derivation and normalization of the models using
this formalism is explained in detail in the supplementary
appendix. The complete model is provided as supplemen-
tary material [see Additional File 3]. The GMA models are
used to predict the dynamic behavior of the alternative
networks. This behavior is then compared to that
observed in published experiments and network alterna-
tives are validated or invalidated on the basis of being able
or unable (respectively) to reproduce published those
experimental results.

The experimental data regarding changes in concentration
for this system are mostly qualitative or semi quantitative
and incomplete. For example when there are measure-
ments at several time points for the accumulation of iron
or for the decrease of ISC dependent protein activity, there
are no measurements regarding the decrease in concentra-
tion of the protein being knocked out of the genome.
Also, in most cases, there are only two measurements for
Fe concentrations and ISC dependent protein activity.
One measurement is made in wild type cells and the other
measurement in the mutated strains at a suitable time
point. This precludes using any current fitting algorithm
with precision to determine goodness of fit between the
dynamic behavior of a given topology and the experimen-
tal results. If accurate quantitative data regarding the con-
centrations of the different proteins, the variation of Fe
concentration and ISC dependent protein activity were
available, we would apply such a fitting algorithm to find
the set(s) of parameter values that would best fit those
data. For each alternative topology, the least square devi-
ation between the observed data and the best fit set(s) of
parameter values could then be used to determine which
topology would be more likely to explain the experimen-
tal data. Ranking the more likely models in the absence of
accurate experimental data is less straight forward. If no
topology can reproduce experimental results over the
entire range of scanned parameter values one can calcu-
late the percentage of the parameter space in which the

experimental behavior is qualitatively reproduced. The
higher that percentage, the more likely it is that a given
topology is able to explain the experimental results. How-
ever if more than one topology reproduces the qualitative
experimental observations over the entire range of param-
eter values that are scanned, it is difficult to define a meas-
ure for the goodness of fit of these topologies to the
experimental data.
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