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Abstract

Background: The completion of several genome projects showed that most genes have not yet
been characterized, especially in multicellular organisms. Although most genes have unknown
functions, a large collection of data is available describing their transcriptional activities under many
different experimental conditions. In many cases, the coregulatation of a set of genes across a set

of conditions can be used to infer roles for genes of unknown function.

Results: We developed a search engine, the Multiple-Species Gene Recommender (MSGR), which
scans gene expression datasets from multiple organisms to identify genes that participate in a
genetic pathway. The MSGR takes a query consisting of a list of genes that function together in a
genetic pathway from one of six organisms: Homo sapiens, Drosophila melanogaster, Caenorhabditis
elegans, Saccharomyces cerevisiae, Arabidopsis thaliana, and Helicobacter pylori. Using a probabilistic
method to merge searches, the MSGR identifies genes that are significantly coregulated with the
query genes in one or more of those organisms. The MSGR achieves its highest accuracy for many
human pathways when searches are combined across species. We describe specific examples in
which new genes were identified to be involved in a neuromuscular signaling pathway and a cell-

adhesion pathway.

Conclusion: The search engine can scan large collections of gene expression data for new genes
that are significantly coregulated with a pathway of interest. By integrating searches across
organisms, the MSGR can identify pathway members whose coregulation is either ancient or newly

evolved.

Background about the genes involved is often incomplete. However,
One of the current challenges of genetics is to identify the =~ new high-throughput datasets make it possible to search
genes involved in the major physical, regulatory, and sig-  for hitherto unclassified genes that display coordinated

naling events that direct molecular processes. Even for  activity with known members of a pathway.

well-characterized genetic pathways, our knowledge
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Genes that participate in the same pathway or whose
products are part of the same protein complex are often
coregulated. For example, genes encoding proteins that
bind each other in a complex may be coregulated to main-
tain its stoichiometry. Similarly, gene products that signal
to each other in a phosphorylation cascade must be
present together to communicate. Thousands of DNA
microarray experiments have been conducted to investi-
gate various cellular processes [1]. Evidence for functional
relatedness may be found by searching this growing body
of gene expression data [2,3].

The clustering of genes according to shared expression
patterns across diverse microarray experiments has pro-
vided insights into gene regulation and has assigned func-
tion to previously uncharacterized genes. Clustering
methods are successful when the set of conditions is small
[2,4,5], but are limited when the set of conditions is large
[6,7]. As gene expression repositories grow, finding the
experimental context in which a pathway is coregulated
will be a key step in identifying previously unknown genes
in a pathway. Biclustering methods such as Plaid [8] and
coupled-two way clustering [4,9-11] identify subsets of
experiments and genes simultaneously. However, these
methods are unsupervised and do not use existing infor-
mation about a pathway to guide the search for new mem-
bers. Methods that incorporate such information are
needed when a gene may belong to multiple pathways or
when a pathway is activated under a small set of experi-
mental conditions.

Integrating expression data across organisms is another
promising approach to increase the accuracy of pathway
discovery. Coexpression identified in a single organism
may result from inherent biological or experimental
noise. If identified in multiple organisms, however, coex-
pression is more likely to reflect a functional link between
genes because the coordinated regulation occurs in com-
pletely independent datasets and has survived millions of
years of selection.

Our goal is to develop a search engine that uses gene
expression data to predict new pathway members with
high accuracy. Given a set of genes as input, called the
query, the search engine outputs a search ordering in which
all of the genes in the genome are ranked according to
their coregulation with the query genes. If the pathway
genes are loosely coregulated, or the pathway is coregu-
lated with many other pathways in parallel, the pathway
genes may not sort to the top of the search ordering. This
complicates the identification of new members because
many unrelated genes will instead sort toward the top.

We hypothesized that integrating search results obtained
on different organisms would improve our ability to iden-
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tify pathway members. If a pathway's genes are loosely
coregulated in not one, but several organisms, the path-
way members and their orthologs may consistently rank
higher than unrelated genes in searches across the organ-
isms. A search engine that makes use of this tendency may
produce a more accurate result. To test this hypothesis, we
developed a search engine, the Multiple-Species Gene Rec-
ommender (MSGR), which combines search results
obtained by the GeneRecommender [7] run on multiple
organisms. The GeneRecommender is a search engine that
identifies genes highly coregulated with the query genes
using data from a single organism. Each microarray
hybridization, which contains gene expression measure-
ments for a major fraction of genes in the genome, is
scored by the GeneRecommender to reflect the extent to
which the expression levels of the query genes are coregu-
lated with each other. High scores indicate significantly
coordinated up- or down-regulation. The hybridizations
with the highest scores are chosen for the next step. The
GeneRecommender then returns a search ordering in
which the genes are ranked by their coregulation with the
query genes under the chosen hybridizations (see Figure
1). Genes at the top of the search ordering are considered
to have higher coregulation with the query genes. Here we
show that combining search results across species using
the MSGR improves our ability to predict gene function
for several pathways.
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Figure |

The GeneRecommender search engine. A query set of
five genes that participate in the cell cycle is given to the
GeneRecommender search engine. The search engine out-
puts a search ordering, which is an ordered list of genes
sorted by the extent of their coregulation with the query
genes. A hit list is defined as the set of top-scoring genes that
include half of the original query genes.
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Results

Searching single organisms

To identify pathways for which combining multiple
searches across organisms could improve search accuracy,
we assessed the ability of the GeneRecommender to pre-
dict pathway membership using data from only a single
organism. We extended the GeneRecommender search
engine to scan six organisms, including C. elegans, for
which the GeneRecommender was designed. Gene expres-
sion data were assembled from 5962 Homo sapiens
(human), 334 Drosophila melanogaster (fly), 1209
Caenorhabditis elegans (worm), 753 S. cerevisiae (yeast),
649 Arabidopsis thaliana (plant), and 293 Helicobacter
pylori (bacterium) microarray hybridizations. A diverse
range of experimental conditions was included for each of
these distantly related organisms (see Methods). We
tested the GeneRecommender on 51 pathways from the
GenMAPP pathway collection [12], a diverse and approx-
imately nonredundant collection of human pathways
derived from Gene Ontology [13] and KEGG [14], and
pathways contributed by experts in the field (see Supple-
mental Table 1).

To determine the accuracy of the GeneRecommender
when searching a single organism, we measured the preci-
sion of the search orderings returned for each of the six
organisms. Precision was computed as the fraction of
query genes in a hit list, formed by truncating the search
ordering at a cutoff that included half of the original query
genes, guaranteeing a 50% recall rate for the hit list. Half,
but not all, of the query genes were included in the hit list,
rendering the estimated precision insensitive to genes
erroneously included in the query list or to errors in the
microarray data (e.g., poor-quality probes for one or a few
of the query genes). In the example shown in Figure 1, the
hit list contains 11 genes because three of the five human
Cell Cycle query genes were ranked in the top 11 of the 22
genes in the search ordering. The precision for the hit list
shown in this example is therefore 3/11 (0.27).

A search result was considered to be "highly precise" if it
attained precision levels of at least 20%. At this level of
precision, five genes on average would need to be tested to
ensure that a related member of the pathway was tested. A
search result was considered to be "moderately precise" if
it attained precision levels above 2%. At this level, 50
genes would need to be tested to ensure that a related
member was tested.

To obtain a conservative estimate of the precision, we
used query ranks obtained from cross-validation rather
than a single search in which all of the query genes were
included. We performed a cross-validation in which 80%
of the pathway genes were used as the input query to
obtain a search ordering from which the ranks of the
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remaining 20% were recorded. By iteratively withholding
a distinct 20% of the query genes, we collected cross-vali-
dation ranks for each of the query genes (see Methods).

For each GenMAPP pathway, we constructed a corre-
sponding GenMAPP pathway by replacing each human
gene from the original pathway with its putative ortholog
in the target species (see Methods). Of the 51 GenMAPP
pathways, 39 had the minimum number of five genes,
required for use with the GeneRecommender, in at least
two organisms. A coexpression score for each pathway was
computed as the sum of a pathway's precisions in each of
the six organisms. High coexpression scores indicated
pathways in which the GeneRecommender identified
either a highly precise hit list in one organism or moder-
ately precise hit lists in several organisms.

To identify pathways with significant coexpression scores,
we ran the GeneRecommender on 1000 randomly gener-
ated queries of the same size as the input queries (see Fig-
ure 2A). The mean of the coexpression scores for the
random queries was 1.31 + 1.49 (SD). A coexpression
score of at least 10 was significant at the 0.001 level since
only a single random query obtained a better precision
(10.03, see Figure 2A).

Twelve of the 39 GenMAPP pathways tested had signifi-
cant coexpression scores (see Figure 2B). Six of these path-
ways had already been shown to be tightly coregulated in
gene expression databases: Cytoplasmic Ribosomal Proteins,
Glycolysis and Gluconeogenesis, Electron Transport Chain, Pro-
teasomal Degradation, tRNA Synthetases, and Fatty Acid Deg-
radation [2]. These pathways contain genes involved in
basic cellular processes (e.g., cell growth and energy gen-
eration). Pathways that did not score well were involved
in specific biosynthetic processes (e.g., Steroid Biosynthesis,
Eicosanoid Synthesis, and Methionine Metabolism), G-pro-
tein coupled receptor pathways, Apoptosis, Ovarian Infertil-
ity Genes, and Blood Clotting Cascade. The scores may have
been low because the current gene expression databases
lacked conditions under which the genes in these path-
ways are coordinately regulated or because these pathways
may represent biological processes with high levels of evo-
lutionary divergence.

To assess the ability of the MSGR to identify genes
involved in pathways specific to animals, we tested it on
two high-scoring pathways, Calcium Channels and Colla-
gens. The Calcium Channels pathway comprises a multi-
functional set of genes that regulate intracellular calcium
levels (Supplemental Table 2) and plays a role in hor-
mone and neurotransmitter release, muscle contraction,
and immune cell activation. The GeneRecommender
achieved a high coexpression score for the Calcium Chan-
nels category (127) due to its high-precision searches in
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Figure 2

Performance of the search engine using data from
separate organisms. A. Random control pathways were
scored by the GeneRecommender in all six organisms, and
the coexpression score was computed from the search
orderings as the sum of the precision at the 50% recall rate
across all six organisms. B. Precision scores of the top-scor-
ing pathways from the GenMAPP database. Each bar corre-
sponds to a single pathway. Colored segments indicate the
precision at the 50% recall rate for each organism. The height
of each bar corresponds to the pathway's coexpression
score. Asterisks indicate names that were modified to fit on
the plot: Ribosome, Cytoplasmic Ribosomal Proteins; Glycolysis,
Glycolysis and Gluconeogenesis; Electron Transport, Electron
Transport Chain; Proteasome, Proteasome Degradation; Fatty Acid
Deg, Fatty Acid Degradation; Cholesterol, Cholesterol Biosynthesis.

both fly (27%) and worm (100%). We therefore chose the
Calcium Channels pathway as a positive control. If a high
proportion of the genes that rank to the top of the fly
result also rank to the top of the worm result, then the
multiple-species approach should perform well on this
pathway.

The Collagens pathway represents a more challenging test
of the MSGR's ability than the Calcium Channels pathway.
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The GenMAPP Collagens pathway contains 49 human
genes, including the collagen structural genes and other
cell-adhesion genes with important roles in the formation
of basement membranes, cytoskeletal structures, and the
extracellular matrix (Supplemental Table 2) [15]. The sin-
gle-species results for the Collagens pathway were moder-
ately precise (5.1% in fly, 2.7% in worm, and 2.4% in
human). The pathway's coexpression score of 10.2 was
slightly better than that seen in the random controls (Fig-
ure 2B). Thus, for the multiple-species approach to suc-
ceed for the Collagens pathway, it must combine multiple
weak signals into a more predictive result

Combining search orderings across multiple organisms to
investigate multicellular pathways

Next, we asked whether the search orderings obtained in
separate organisms for the Calcium Channels and Collagens
pathways could be combined to complement one another
and produce a more accurate search ordering. The MSGR
generates new search orderings by combining two or more
of the GeneRecommender's search orderings, using a data
structure called a phylogenetic merge tree (PMT) to deter-
mine which species-specific search orderings to combine
(see Figure 3A and Methods). The MSGR stores the search
ordering for a single organism at an organism node corre-
sponding to the organism's phylogenetic position in the
tree. The MSGR computes a search ordering for a common
ancestor by combining the search orderings stored in all
of the organism nodes beneath the ancestral node in the
tree. The MSGR only produces combinations present in
the PMT to allow the search engine to scale to a large
number of organisms while still producing evolutionarily
coherent merges. Nodes in the tree are labeled with an ini-
tial uppercase letter to distinguish its use from an organ-
ism or ancestor (e.g., "Human" for search orderings
collected using only human data and "Animal" for search
orderings obtained by merging results from the multicel-
lular animals).

Each node in the PMT contains a different ranking of
genes. Figure 3B shows an example of how the MSGR
combines human, fly, and worm search orderings for a
human cell cycle query at the Animal PMT node. At such
an ancestral node in the tree, genes are ranked according
to a joint P value that reflects the degree to which a gene
sorted to the top of the search orderings in each of the
organisms beneath that node (see Methods). More signif-
icant (smaller) P values correspond to genes that are
ranked toward the top of multiple search orderings. For
example, in Figure 3B, HDACT1 sorts higher than MCM3 in
the Ecdysozoan search ordering because the probability of
achieving a rank of 3 in fly and a rank of 114 in worm is
lower than the probability of achieving a rank of 60 in fly
and 6 in worm. Rather than simply summing up or mul-
tiplying the ranks across different searches, the MSGR
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Overview of the MSGR. A. The genes mapped through the BTP table, denoted "Ortholog Map," are supplied as queries to
an organism-specific GeneRecommender [7] search (gray ovals). The search orderings of each organism (dashed arrows) and
of all ancestral search nodes that are parents in the phylogenetic merge tree (solid arrows) are reported. The five ancestral
merge nodes are Ecdysozoan (Ecdy), Animal (Anim), Opisthokont (Opis), Eukaryote (Euk), and Cellular (Cell). H.sap, Homo
sapiens; D.mel, Drosophila melanogaster; C.ele,Caenorhabditis elegans;S.cer, Saccharomyces cerevisiae; A.tha, Arabidopsis thaliana;
H.pyl, Helicobacter pylori. B. lllustration of the merging of search orderings using a human cell-cycle pathway as the query.
Nodes in the phylogenetic merge tree are shown as gray ovals. GR, GeneRecommender. Boxes represent search orderings
output as lists of genes. Numbers in parentheses are the ranks of the genes in the search ordering.

computes a P value that factors in the number of genes
considered in each species and the statistical chance of
achieving the observed ranks independently at random
(see Methods and the Appendix in Additional file 1).
Results from fly and worm are combined at the Ecdysozoa
node of the tree, yielding a search ordering specific to
those two molting organisms. Results from human, fly,
and worm are combined at the Animal node in the tree,
yielding a search ordering specific to those three multicel-
lular organisms. Some combinations of organisms may
yield more accurate results than others for a particular
pathway. For this reason, the search engine inspects the
precision of the search orderings at every ancestral and
organism node in the PMT to identify good combina-
tions.

To translate a query from a source organism to a target
organism, the MSGR uses only genes conserved between
the two species. For a gene in the source organism's query,

the MSGR adds a putative ortholog to the target organ-
ism's query. To perform this mapping, we use a single
best-matching protein, which we refer to as the best target
protein (BTP), rather than a collection of related proteins,
to avoid including large gene families containing paralogs
of possibly diverged function (see Methods). For the
remainder of the discussion, we assume that human is the
source organism; however, genes from any one of the
included organisms can be used to initiate a search.

Multiple-species search for genes involved in calcium
signaling

The MSGR obtained high precision for the Calcium Chan-
nels query when it combined the search orderings from all
three multicellular organisms at the Animal PMT node.
The human query set supplied to the MSGR had 26 genes.
Predicted orthologs in either worm or fly were found for
seven of these genes (see Additional file 7, Supplemental
Table 2). The remaining 19 genes did not have best-target
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proteins in worm or fly either because they belonged to
duplicated gene groups (12 genes) or because no match-
ing gene could be found in either organism (seven genes).
After combining human, worm, and fly search orderings
in the Animal node, the MSGR identified a hit list with a
precision at the 50% recall rate of 50% (4 of 8 query genes
lie above dashed line in Table 1). Of the seven original
genes in the pathway, four scored in the top 10 of the Ani-
mal node results (with ranks 1, 2, 3, and 8), and three
received poorer ranks (359, 531, and 861).

Inspecting the known functions of the genes returned by
the MSGR suggested that the search engine identified
genes coregulated with a conserved calcium-dependant
signaling pathway involved in neuromuscular function.
Of the top 25 hits for Calcium Channels', 21 genes were not
included in the original query. Out of these, 16 had func-
tions related to neuromuscular processes (see Table 1),
including six that participate in neural or muscular signal-
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ing, three that are involved in muscle contraction, and two
that are expressed in neurons but with unknown roles.
Several genes had no known association with neuromus-
cular signaling, but were known to be involved in other
signaling functions. Interestingly, of the three ryanodine
receptors, only the neuron-specific ryanodine receptor 2
(RYR2) [16] was returned; the two non-neural receptors
were excluded from the list. The functions of the known
genes are consistent with a core calcium-dependent sign-
aling pathway with a specific role in neuromuscular func-
tion (for a list of the 500 top-scoring genes see Additional
file 8, Supplemental Table 3).

Two of the genes in the list, SHOC2 and USP11, had no
prior association with calcium-dependent signaling.
SHOC?2 encodes an ortholog of the C. elegans soc-2 gene,
which is expressed in neurons and muscle of adult worms.
USP11 is a ubiquitin-specific protease that removes ubiq-
uitin groups from specific proteins to provide "switch-

Table I: Top 25 genes returned by the Animal PMT node using the GenMAPP Calcium Channels pathway as a query. The horizontal
line indicates the 50% recall point, above which half of the query genes are included.

Gene Product? Symbol P-valueb S N4 Ze Mf  Be
Calcium channel, voltage-dependent, beta 2 CACNB2 7.6E-10 yh y y
Calcium channel, voltage-dependent, L type, alpha D CACNAID 3.1E-08 y y y y y
Calcium channel, voltage-dependent, P/Q type, alpha |A CACNAIA 1.4E-07 y y y y
Regulating synaptic membrane exocytosis 2 RIMS2 1.6E-07 y y y
MAP-kinase activating death domain MADD 2.5E-07 y y
Contactin | CNTNI 6.2E-07 y y y
Glutamate decarboxylase | GADI 7.2E-06 y y y y
Ryanodine receptor 2 RYR2 1.2E-05 y y y

HIVI enhancer binding protein | HIVEPI 1.3E-05 y y y
Membrane metallo-endopeptidase MME 1.8E-05 y y y y
Stonin 2 STN2 2.0E-05 y y y y
Cholinergic receptor, nicotinic, delta CHRND 2.0E-05 y y y y
Transforming growth factor, beta | TGFBI 2.3E-05 y y y
Spectrin, beta, non-erythrocytic | SPTBNI 2.4E-05 y y y

Spectrin, alpha, non-erythrocytic | SPTANI 3.5E-05 y y y

Soc-2 suppressor of clear (C. elegans) SHOC2 4.0E-05 y
Protein tyr. Phosph., receptor type, N 2 PTPRN2 4.6E-05 y y
Potassium channel, subfamily K, member 3 KCNK3 4.7E-05 y y y y
Neurotransmitter transporter, noradrenalin, member 2 SLC6A2 4.9E-05 y y y y
Protein tyrosine phosphatase, non-receptor type 4 PTPN4 6.9E-05 y y

Ras association (RalGDS/AF-6) domain family | RASSFI 7.6E-05 y y y
Troponin T2, cardiac TNNT2 7.9E-05 y y y
Inositol 1,4,5-trisphosphate 3-kinase B ITPKB 8.7E-05 y y
Ubiquitin specific protease | | USPI | 9.1E-05 y

Titin TTN 1.0E-04 y y

aThe HUGO name for the gene. Genes in the original query set are italicized.
bMSGR combined P value. This P value was not adjusted to reflect multiple testing; a Bonferroni correction could be applied by multiplying each by

I'l to account for searches at each node in the PMT.

¢Involved in cell — cell or intracellular signaling.

dNeuromuscular function.

¢Predicted binding site for the ZIC family of transcription factors.
fPredicted binding site for MAZ or MAZR.

8Predicted binding site for the BRAIN2 transcription factor.

hA "y" indicates that a gene had a positive hit for a particular field.
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like" behavior in response to multiple different intracellu-
lar events, including signal transduction [17]. Recent stud-
ies in D. melanogaster also link ubiquitin modification
with a signal transduction cascade initiated after immune
cell activation [18].

To test the hypothesis that the genes returned by the
MSGR patrticipate in a common signaling pathway impli-
cated in neural function, we looked for putative cis-regu-
latory control sequences (see Methods). Seven
transcription factor binding sites were overrepresented in
the upstream regions of 24 of 25 genes from this group
(see Additional file 10, Supplemental Table 5). Among
the transcription factors with binding sites represented in
the MSGR's search ordering were the neuronal factors
ZIC1 and ZIC2. The ZIC family is a group of zinc finger
proteins that are expressed in the cerebellum and regulate
several brain-specific genes [19]. Of the top 25 hits, 13
contained a ZIC1 binding site and eight contained a ZIC2
binding site (see Additional file 11, Supplemental Table
6). From simulations with collections of 25 genes drawn
randomly from the genome, we expected 6.9 (P < 0.004)
genes with hits for ZIC1 and 2.8 (P < 0.004) genes with
hits for ZIC2. Significant hits were also found for the
MYC-associated zinc finger (MAZ) protein, which inter-
acts with the neural survival factor netrin-1 [20]. The
upstream sequences of the genes identified in the Calcium
Channels hit list were also enriched for binding sites for
the BRAIN2 transcription factor. BRAIN2 is required for
establishing mammalian neural cell lineages [21] and is
expressed in various parts of the brain [22,23].

More Calcium Channels genes than expected by chance
had upstream sequences containing binding sites related
to immune system functions. For example, enrichment
was found for the binding site of the myeloid differentia-
tion factor MZF1, a transcription factor involved in the
differentiation of immune responsive myeloid cells from
hematopoietic stem cell progenitors. Calcium signaling
plays a fundamental role in immune cell signaling and
activation [24]. For example, T-cell activation triggers cal-
cium release from vacuolar stores [25]. This suggests the
MSGR identified a set of genes regulated by both neural-
and immune-related factors. These genes may represent a
core calcium-dependent signaling pathway that functions
in multiple contexts.

Next, we analyzed the upstream sequences of the Calcium
Channels query genes that were excluded from the Animal
hit list based on their expression patterns. Of the three
excluded query genes, only one had a hit to any of the
seven binding sites enriched for the Calcium Channels hit
list (ITPR3 had hits to MAZ and MZF1). This finding dem-
onstrates the MSGR's ability to divide the query genes into
a set of genes that are strongly coexpressed with each other

http://www.biomedcentral.com/1752-0509/1/20

and a set of genes that are not coexpressed with each
other, as supported by the independent transcription fac-
tor binding site analysis.

Multiple-species search for genes involved in cell adhesion
To determine if the MSGR could combine the moderately
precise search orderings from human, fly, and worm to
more accurately predict new members, we used the MSGR
to scan for new genes with functions related to the Colla-
gens pathway. Twelve genes from the human Collagens
query set had putative orthologs in worm (nine) and/or
fly (10) (see Additional file 7, Supplemental Table 2).

The query genes sorted significantly toward the top of the
multiple-species search orderings. For example, at the
50% recall rate, combining the search orderings gave a
precision of 57% at the Ecdysozoa node and a precision of
50% at the Animal node. Among the top 25 genes
returned by the MSGR, the Animal node had the highest
recall rate (9/12), which was higher than that of the single
organism results, including human (11/49), worm (3/9),
and fly (3/10) (see Table 2).

To obtain evidence that the search engine identified genes
belonging to a coherent functional group, we inspected
the top 25 genes returned by the MSGR (see Table 3). Sev-
eral genes had functions related to cell-adhesion proc-
esses. Among the 16 non-query genes identified were both
the o and g subunits of the non-erythrocytic spectrin,
which interacts with cell-adhesion molecules to form cell-
attachment sites [26]; crystallin alpha-2, which is involved
in structural integrity of eye cells and has been implicated
in the structural integrity of neurons [27] and muscle cells
[28]; and adiponectin, whose protein sequence contains a
conserved collagen-like domain and is highly expressed in

Table 2: Search result ranks for the Collagens pathway returned
by the MSGR

Query Gene Human Fly Worm Animal
Collagen, type IV, alpha 2 15 98 | |
Nidogen | 189 10 146 2
Heparan sulfate proteoglycan 5994 52 2 4
2

Collagen, type IV, alpha 5 1218 | n/a 9
Secreted protein, acidic, 20 n/a* 24 6
cysteine-rich

Laminin, beta | 1588 34 131 8
Laminin, alpha 2 16 158 1728 7
Collagen, type XV, alpha | 12 2291 1193 17
Laminin, gamma | 10883 23 96 12
Lumican 6 1049 n/a 29
Dystonin 274 103 n/a 50
Collagen, type V, alpha | 87 nfa 5551 263

*n/a corresponds to cases where no best target protein could be
identified in a particular organism.
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Table 3: Top 25 genes returned by the Animal PMT node using the GenMAPP Collagens pathway as a query. The horizontal line
indicates the 50% recall point, above which half of the query genes are included.

Gene Product? Symbol P-valueb Ac Ed
Collagen, type IV, alpha 2 COL4A2 1.25E-09 ye y
Nidogen NID 1.42E-07 y

Actin binding LIM protein | ABLIMI 1.49E-07

Heparan sulfate proteoglycan 2 HSPG2 5.65E-07 y y
Spectrin, alpha, non-erythrocytic | SPTANI 7.97E-07 y
Osteonectin SPARC I.16E-06 y

Laminin, alpha 2 LAMA2 3.61E-06 y

Laminin, beta | LAMBI 4.89E-06 y y
Collagen, type 1V, alpha 5 (Alport Syndrome) COL4A5 8.22E-06 y

Ataxin 2 ATXN2 I.01E-05 y
Adipocyte, C1Q and collagen domain Containing ACDC 1.44E-05 n/a*
Laminin, gamma | (formerly LAMB2) LAMCI 1.77E-05 y y
Syntaxin binding protein | STXBPI |.95E-05 y
Calumenin CALU 2.24E-05 y
High density lipoprotein binding protein (vigilin) HDLBP 2.33E-05

Crystallin, alpha B CRYAB 2.41E-05 y
Collagen, type XV, alpha | COLI5AI 2.53E-05 y

ATPase, H+ transporting, lysosomal accessory protein | ATP6API 2.57E-05
Procollagen-lysine, 2-oxoglutarate 5- dioxygenase 3 PLOD3 2.89E-05

Contactin | CNTNI 2.92E-05

AMP-activated protein kinase family member 5 ARKS 2.93E-05

Integrin, alpha 8 ITGAS8 3.13E-05 n/a
Filamin A, alpha (actin binding protein 280) FLNA 3.22E-05 y
Aminoadipate-semialdehyde synthase AASS 3.46E-05

Spectrin, beta, non-erythrocytic | SPTBNI 3.49E-05

aThe HUGO name for the gene. Genes in the original query set are italicized.
bMSGR combined P value. This P value was not adjusted to reflect multiple testing; a Bonferroni correction could be applied by multiplying each by

Il to account for searches at each node in the PMT.
cInvolved in cell — adhesion.
dPredicted binding site for the EGR family of transcription factors.

*n/a indicates that an upstream region could not be obtained for the given gene.

non

eA "y" indicates that a gene had a positive hit for a particular field.

muscle cells [29]. Six of the remaining 12 genes also had
cytoskeletal roles (P < 1E-11), including limatin, syntaxin,
filamin, contactin, integrin, and procollagen-lysine 2-
oxoglutarate 5-dioxygenase 3.

Six of the 25 genes had no known direct involvement in
cell adhesion. These genes were ataxin 2, high density
lipoprotein binding protein (vigilin), AMPK catalytic sub-
unit family member 5 (ARK5), aminoadipate-semialde-
hyde synthase, ATPase H+ transporting lysosomal
accessory protein 1, and calumenin. These findings pro-
vide additional evidence to link two of these genes to
cytoskeletal roles: the ataxin 2 gene associates with T- and
L-plastins, which belong to a highly conserved actin bind-
ing family [30], and calumenin is a Ca2+-binding protein
of unknown function that is upregulated during bone
healing [31]. These genes may be good candidates for
future studies to further characterize their relationship to
cell adhesion (for a list of the 500 top-scoring genes see
Additional file 9, Supplemental Table 4).

To test the hypothesis that the genes returned by the
MSGR participate in a core cell-adhesion pathway, we
searched for potential cis-regulatory control sequences in
the hit list returned by the MSGR (see Methods). The
genes returned by the MSGR for the Collagens pathway
shared binding sites for transcription factors that regulate
members of the collagen family. The upstream sequences
of these genes were significantly enriched for motifs corre-
sponding to binding sites recognized by the early growth
response family of transcription factors EGR1, EGR2, and
EGR3. EGRI1 is a structural gene regulator that increases
transcription levels of the 1 and 02 chains of type I col-
lagen and the al chain of type II collagen [32]. We found
upstream sequences for 23 of the top 25 scoring genes in
the hit list. Our transcription factor analysis identified 14
putative EGR-family transcription factor binding sites
(either EGR1 or EGR) in 10 of these 23 genes. Nine genes
had hits to the more general EGR binding site. Based on
random simulation (see Methods), we found this to be
significantly more than the 3.6 genes expected by chance
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(P < 0.001, see Additional file 10, Supplemental Table 5).
When the mean score across all genome-wide upstream
sequences was used as the cutoff, six additional genes were
found to have hits (see Additional file 12, Supplemental
Table 7). Thus, 16 of the 23 genes may be regulated by
EGR-family transcription factors.

One gene from the original query set, COL5A1, was
excluded by the MSGR algorithm. This gene did not have
a hit to either the EGR or EGR1 binding site. This finding
is consistent with the MSGR's prediction that COL5A1 is
under different regulatory control than the other collagen-
related query genes.

To determine if the identified binding motifs localize to
areas of high sequence conservation, we used the UCSC
Genome Browser's PhastCons track [33] to estimate the
probability of conservation for each nucleotide in the
human genome based on an alignment of 17 vertebrate
animals. Ten of the 12 regions representing the predicted
binding sites had high levels of sequence conservation
(see Additional file 13, Supplementary Table 8). The con-
servation of these sites supports the hypothesis that the
high-scoring genes returned by the MSGR belong to a
module under common regulatory control by a known
cell-adhesion transcription factor.

Systematic evaluation of the MSGR

Next, we tested the MSGR on a large collection of path-
ways from the GenMAPP database [12]. To measure its
specificity, we compared the search engine's performance
on GenMAPP to randomly constructed pathways that
matched the sizes of the GenMAPP pathways. Genes unre-
lated to a pathway should be assigned rank-ratios that are
uniformly distributed between 0 and 1. We cross-vali-
dated both the GenMAPP pathways and the random path-
ways and plotted the rank-ratios. The MSGR ranked genes
from known pathways closer to the top of its hit lists than
genes from random pathways (see Figure 4). The rank-
ratios from the GenMAPP pathways were shifted signifi-
cantly to the left (toward smaller rank-ratios) while the
random pathways were distributed more uniformly. For
example, 15 times more query genes from GenMAPP
pathways were in the top 1%, with rank-ratio less than
0.01, than from random pathways.

To systematically compare the precision achieved in mul-
tiple- versus single-species searches, we evaluated the
MSGR's performance on every pathway that had at least
five query genes available for searches in single- and a
multiple-species. For each pathway, the average precision
across the GenMAPP pathways at the 50% recall rate at
each of the 11 nodes in the PMT was plotted (see Figure
5A and Methods). At the 50% recall rate, the Opisthokont
node achieved the highest precision (31%), followed by

http://www.biomedcentral.com/1752-0509/1/20

35 F T T T T T T T 3
[__1GenMAPP pathways, single species
300 Il GenMAPP pathways, multiple species|
” [_Jrandom pathways, single species
Q 25H [ random pathways, multiple species -
@
o
5 20 b
& 15 i
<]
@
o 10Q b
s J
0 U
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Rank Ratio
Figure 4

The MSGR ranks pathway genes higher than genes
from random pathways. Each bin counts the percent of
genes belonging to a pathway that sorted to a particular posi-
tion in the search ordering. A rank-ratio of 0.10 is equivalent
to the 90t percentile; a rank-ratio of 0.01 is equivalent to
99th percentile. Bars correspond to GenMAPP pathways run
through single-species PMT nodes (dark gray) or multiple-
species ancestral PMT nodes (black) and to random pathways
run through single-species nodes (white) or multiple-species
ancestral nodes (light gray).

the Ecdysozoa node (22%), and finally the Yeast node
(18%). The combination of a set of organisms yielded a
higher average precision than any single organism over
the majority of recall levels tested. For example, the preci-
sion-recall curve for the Ecdysozoa node was always above
the curves for the Fly and Worm nodes.

We then asked whether the precision levels of the multi-
ple-species search orderings were significantly higher than
those of the single-species searches when all levels of
recall were considered. The area under the precision recall
curve was computed for each pathway, and the means and
standard deviations of these areas for each search node
across the pathways was determined. The precision of
search orderings of Ecdysozoa and Opisthokont nodes
was statistically higher than the precision of the corre-
sponding single-species search nodes (see Additional file
2, Supplemental Figure 1). In other cases, the precision of
the multiple-species search was statistically comparable to
that of the single-species searches (e.g., Worm versus Ani-
mal search orderings). In such cases, not enough statistical
power is available to conclude that the multiple-species
search is more precise. Using a larger collection of path-
ways might provide a clearer separation in these cases.
When the best precision achieved by any of the multiple-
species nodes was compared to the best of the single
organism nodes for each pathway, the majority of path-
ways had higher precision for a multiple-species node.
(see Figure 5B; most points lie above the line of equal per-
formance).
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Accuracy of single- versus multiple-organism searches. A. Precision, averaged across all GenMAPP pathways, is plotted
against different levels of recall. The results obtained for individual PMT nodes are shown as separate lines with single-organism
results shown as dashed lines and multiple-organism node results shown as solid lines. Average precisions for A. thaliana, H.
pylori, Eukaryote, and Cellular nodes are not shown because each had fewer than 10 pathways with the minimum number of
query genes. B. The highest precision level at 50% recall rate for all single-organism nodes versus multiple-organism nodes.
Each dot corresponds to the precision obtained by the search-engine for a single pathway. Solid line indicates y = x, the line of
equal performance; multiple-organism searches resulted in higher precision for pathways above the line and a lower precision
for pathways below the line. Dashed lines indicate a high precision rate of 20%.
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The higher performance of the multiple-species searches
was robust to several factors. To determine if the particular
datasets used in the search significantly affected the Colla-
gens search result, we removed 5 - 90% of random micro-
array hybridizations for each organism. The Collagens
search orderings were highly reproducible. For example,
even when 90% of the data was withheld, the search
engine found 20 - 60% of the original top 50 hits (see
Additional file 3, Supplemental Figure 2). To determine if
the higher precision of the multiple-species searches than
the single-species searches simply reflected the use of con-
served query genes, we repeated the cross-validation anal-
ysis for the Human node using only query genes that had
predicted orthologs in both worms and flies. The preci-
sion obtained by the Human node using only conserved
query genes was comparable to that obtained using the
full set of query genes, suggesting that the improvement
observed in the MSGR search is not simply due to restrict-
ing query genes to those genes that are highly conserved
(see Additional file 4, Supplemental Figure 3).

Finally, to determine if the search results were sensitive to
errors in the orthology prediction, we randomly shuffled
a fraction of the orthology mapping, reran the MSGR on
the 39 GenMAPP pathways, and recorded the average pre-
cision for every level of average recall at the Ecdysozoa
node. While the accuracy of the search does rely on a good
orthology prediction, the search orderings had precision
levels comparable to those of single-species searches, even
when as many as 25% of the orthology assignments were
shuffled. Shuffling more than 25% of the orthology
assignments led to decreased performance when searches
were combined across species (see Additional file 5, Sup-
plemental Figure 4).

Global prediction of new pathway members

We used the MSGR to identify pathways that were signifi-
cantly coregulated in datasets from two or more organ-
isms, as these are the most promising for identifying new
candidates. In addition to the GenMAPP pathways, we ran
the MSGR on pathways from Gene Ontology [13], Bio-
Carta [34], and KEGG [14]. Altogether, we collected a
total of 553 pathways for our search (see Additional file 6,
Supplemental Table 1).

In general, the searches combining multiple organisms
had higher precision levels for more pathways than the
searches conducted on single organisms. The result of
cross-validation identified 40 pathways with high preci-
sion (at least 20% at the 50% recall rate) in at least one
organism (see Figure 6, and Additional file 14, Supple-
mental Table 9 for the full set of predictions). Over half
(21) of these pathways achieved high precision when
searches from multiple species were combined even
though no single species achieved high precision; 14 had

http://www.biomedcentral.com/1752-0509/1/20

high precision in both multiple- and single-species (see
Figure 6). Of the 19 pathways with high precision in one
organism, 74% (14) also had high precision in multiple
organisms. Thus, the expression data appear to have an
appreciable degree of complementary information useful
for cross-species inferences about gene function.

Pathways with high precision at multiple nodes in the
PMT correspond to highly conserved core processes. As
expected, several pathways related to the ribosomal subu-
nits and ribosome assembly ranked at the top of the list,
as did pathways related to protein degradation, energy
generation (e.g., ATP synthesis, TCA cycle, and glycolysis),
and stress response. On the other hand, only five path-
ways achieved higher precision with results from a single
organism than with results from multiple species. These
may represent cases where experiments relevant to the
pathway were collected only on a single organism or
where pathways diverged in a lineage-specific fashion so
that different sets of genes are coregulated with one
another across the organisms.

Discussion

Combining search orderings from multiple organisms
into a single search ordering using the MSGR algorithm
improved our ability to predict gene function for several
pathways. The MSGR ranked more query genes to the top
of the search orderings compared to the search orderings
returned by the GeneRecommender on the same Gen-
MAPP pathway. Overall, the precision levels were statisti-
cally higher for multiple-species searches than for single-
species searches. In most cases where a search in an organ-
ism yielded a highly precise result for a pathway, the per-
formance could be improved by combining results from
at least one other organism, The results were relatively
insensitive to the particular experiments included in the
gene expression database and to small levels of error in
the orthology predictions.

The MSGR predicted genes for multifunctional pathways
with high precision. For example, combining search
orderings across the multicellular animals significantly
improved the predictive power for finding genes involved
in the Collagens pathway. The genes returned in the Colla-
gens search may represent a conserved cell-adhesion mod-
ule. Several genes returned by the search engine were not
known to function with genes in the query and yet shared
cis-regulatory sequences with high-scoring query genes.
The gene that encodes calumenin was a high-scoring hit
for the Collagens query and contains a putative binding
site for the collagen-inducing factor encoded by the EGR1
gene. These results suggest specific follow-up experiments
to test calumenin's association with the collagens. For
example, one could conduct a chromatin-immunoprecip-
itation assay (ChIP-chip) in which EGR1 binding affinity
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Pathways with precise search results. The precision obtained at every PMT search node is shown for pathways that
achieved a precision of at least 20% in one or more nodes of the PMT at the 50% recall rate. Yellow corresponds to high pre-
cisions near 100%, and blue to low precisions near 0%. The first 21 rows (Multi) correspond to pathways for which a precision
of at least 20% was achieved only by a multiple-organism node. The next 14 rows (Multi & Single) correspond to pathways for
which both multiple- and single-organism nodes achieved a precision of at least 20%; the last five rows (Single) correspond to
pathways for which only a single-organism node achieved a precision of at least 20%. Superscript letters indicate the database
from which pathways were collected: K, KEGG [14]; G, GO [13]; M, GenMAPP [12]; B, BioCarta [34]. Superscript numbers
indicate pathway names that were abbreviated: |, Rab GTPases Mark Targets in the Endocytotic Machinery; 2, Electron Transport
Reaction in Mitochondria; 3, NFAT and Hypertrophy of the Heart Transcription in the Broken Heart; 4, ATP-Binding Cassette ABC Trans-
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to the upstream region of calumenin is measured. Other
high-scoring genes returned by the MSGR could also be
similarly tested using a DNA microarray in conjunction
with the chromatin-immunoprecipitation assay.

The higher performance of the combined searches than of
single-species searches may reflect the MSGR's ability to
focus on gene activity that is functionally relevant. Coreg-
ulation of a pair of genes conserved across large evolution-
ary distances implies that the coregulation confers a
selective advantage. The meta-search strategy imple-
mented by the MSGR may be making use of the presence
of biologically relevant couplings between such genes.

While the MSGR has shown initial promise as a predictive
tool, we anticipate future improvements that address sev-
eral of the MSGR's current limitations. The MSGR has a
limited view of gene function because it uses gene expres-
sion data exclusively. Researchers can now access other
kinds of genome-scale datasets such as protein - protein
interaction maps [35] and genome-wide RNAi screens
[36]. However, since the MSGR uses only the ranks from
different searches, the results of a search engine for a new
data type can be incorporated into the MSGR. We plan to
investigate which combinations of data sources improve
the performance for specific pathways.

The MSGR is also limited because it attempts to use the
entire input pathway without modification. To circum-
vent this limitation, an algorithm that iteratively adds to
and subtracts from the current query set could be imple-
mented. High-scoring genes from one round could be
included as query genes in the next round, in an approach
analogous to that used by the Signature Algorithm [6]. A
given query could also be split into functionally distinct
subgroups of genes in a pathway. Genes in each subpath-
way may be more tightly coregulated with each other than
with other genes in the pathway. In such cases, the query
set could be partitioned by running cross-validation to
score each held-out query gene. High-scoring query genes
could then be retained as the new set of query genes.
Repeating this procedure on the remaining unselected
queries might identify tightly coupled subqueries for
which separate recommendations could be provided.

Finally, the MSGR uses an orthology prediction based on
reciprocal BLAST comparisons of peptide sequences to
link gene expression data across species. The MSGR takes
a conservative approach by using only BTPs where no con-
flicts are present. Because some protein families are large,
this approach cannot resolve the orthology assignments
for many human genes, significantly reducing the number
of genes that can be used as queries. Adding organisms
that are more closely related to human, such as mouse,
will help to increase this number for human pathway
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searches. A future direction is to test alternative orthology
prediction sets with the MSGR such as INPARANOID [37]
and OrthoMCL [38].

Conclusion

The molecular biology community continues to amass
data about complex genetic pathways by using high-
throughput technologies. It is critical to the progress of
both science and medicine that, in addition to the organ-
ization and dissemination of this information, methods
for searching the data be developed to further improve
our understanding of genetic pathways. Our approach
aims to help biologists broaden their understanding of
molecular mechanisms by enabling them to quickly scan
for new genes that are coregulated with a query list of
genes. The MSGR search engine should allow functional
genomics data to be tapped for investigations of a broad
range of genetic mechanisms. A user interface and the
source code for the MSGR are available from our website
[39].

Materials and methods

Given a set of genes that are functionally related, called
the query, the MSGR scans gene expression data across
multiple organisms to identify genes of related function.
The MSGR combines search orderings from searches in
multiple organisms into a single search ordering. The
MSGR merges the search orderings using a probabilistic
scoring method based on order statistics and outputs a
ranked list of genes sorted by their scores. Genes that rank
toward the top of independent GeneRecommender
searches in different organisms receive smaller P values
(more significant scores) than genes with lower ranks
across the organisms.

Gene expression datasets

For this study, we incorporated data from six organisms:
Homo sapiens, Drosophila melanogaster, Caenorhabditis ele-
gans, Saccharomyces cerevisiae, Arabidopsis thaliana, and
Helicobacter pylori (henceforth be referred to as human, fly,
worm, yeast, plant, and bacterium, respectively). Gene
expression data from Gene Expression Omnibus was col-
lected on July 17, 2004, and were combined with the data
from our previous study [40]. The combined data reflect
5692 microarray hybridization measurements (referred to
as experiments) in humans, 334 in flies, 1209 in worms,
753 in yeast, 649 in plants, and 293 in bacteria. The
number of genes probed was 22,080 in humans, 13,403
in flies, 21,925 in worms, 6330 in yeast, 9169 in plants,
and 1590 in bacteria.

All single- and dual-channel hybridization results were
compiled into a single compendium for each organism. A
log-ratio for the single channel results was calculated
before merging with the dual-channel results. We first col-
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lected all of the single channel data and computed a vir-
tual reference for every gene as the median expression
value of the gene across all of the collected single channel
arrays. We then divided each absolute single channel
value by the gene's virtual reference and took the loga-
rithm base-two. The dataset for each organism is available
from our website [39].

Gene pathway datasets

We collected a total of 553 human genetic pathways from
several pathway databases on August 16, 2004. These
included 106 human pathways from KEGG [14], 51 from
the GenMAPP collection [12], 257 from BioCarta [34],
and 139 from Gene Ontology [13] (GO). To define a non-
redundant set of pathways from the GO database, we
restricted the list of the total 5399 categories to those that
occur at level three in the GO hierarchy and that con-
tained between five and 300 genes (see Supplemental
Table 1 for a complete list of all of the pathways used in
this study). Some of the pathways are very similar. For
example, three categories represented the cytosolic ribos-
ome: the Ribosome KEGG category, the Cytoplasmic Ribos-
omal Proteins GenMAPP category, and the cytosolic ribosome
(sensu Eukarya) GO category. We kept this redundancy in
our pathway lists because the lists in the different data-
bases often differed, even for well-documented pathways.
For example, the proteasome category in the KEGG data-
base Proteasome had 30 genes, while the GO category pro-
teasome complex (sensu Eukarya) had 35 genes. Because
such differences could be important for predicting gene
function, we chose to be inclusive and investigate all path-
ways. Each gene in a pathway was associated with data in
our expression database by using each gene's correspond-

Table 4: The number of genes and pathways available for use
with the MSGR search engine for the six organisms and five
ancestral combinations.

Genes Genes with Data Genes Pathwaysd
w/Ortho? and Orthob with Datac
H.sap 17366¢ 17366 22080 539
D.mel 5834 5697 13403 492
Cele 5070 4174 21925 490
S.cer 2470 2451 6630 428
Athal 4346 1893 9169 405
H.pyl 325 324 1590 105
Ecdy - - 3024 235
Anim - - 6847 406
Opis - - 2451 199
Euk - - 1893 130
Cell - - 324 33

aNumber of genes with BTPs to a human gene.

bNumber of genes that have BTPs and have expression data.
<Total number of genes with available expression data.

dTotal number of pathways with at least five genes.

eNumber of human genes with protein sequences available for
constructing the BTP table.
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ing EntrezGene identifier [41]. A summary of the number
of genes and the number of pathways is listed in Table 4.

Search procedure

The MSGR takes as input a set of genes, the query, and calls
the GeneRecommender [7] to find genes that are highly
coregulated with the query genes. The expression data for
species s is normalized so that each gene's expression lev-
els are ranked and uniformly arranged on the interval (-
1,+1). The GeneRecommender uses the normalized
matrix of expression levels to identify informative experi-
ments and then rank genes according to their correlation
with the query in those experiments.

Identifying informative experiments

A set of query genes may be coactivated in only a subset of
the experiments in a database. We expect these experi-
ments to be informative in the sense that they are likely to
be the most useful experiments for identifying additional
genes with shared function. To identify informative exper-
iments, the GeneRecommender scans for microarray
experiments in which the given query genes are either
coordinately up- or down-regulated. It scores the eth exper-
iment in species s using the following score:

E(e, s) = \[Res %
Oles +
Qes 3m52

where k, is the number of query genes with valid data in
experiment e, /i, is the mean, oy, is the standard error of
the normalized expression levels of the query genes, and
m,is the number of total experiments in species s. Extreme
values of E(e, s) indicate that an experiment may help pre-
dict new genes because several of the query genes obtain
either highly positive or highly negative expression levels
relative to the rest of the experiments in the database. The
GeneRecommender selects a set of experiments, I, with
absolute scores exceeding an optimized cutoff, c. To opti-
mize the cutoff, the GeneRecommender tries several dif-
ferent values and chooses the threshold that gives the
highest precision at the 50% recall rate.

Ranking genes by relevance

The GeneRecommender scores every gene g based on the
extent to which its expression profile correlates with the
query over the informative experiments identified in the
previous step. The GeneRecommender's score for gene g
is:

z :uQesX ges
G(g, S) — ecl

[1 5
*Z.UQes
3ee[
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where X, is the normalized expression level of g in the eth
experiment of species 5. G(g, s) is a dot-product between
gene g's expression profile and the centroid of the query
genes scaled by an estimate of the standard deviation of g's
expression levels. The MSGR sorts all of the genes in
decreasing order by G(g, s) and assigns a rank, v, corre-
sponding to g's rank in the search ordering of species s. To
compute a combined score for the gene, the MSGR uses
the ranks obtained for a gene and its orthologs across the

SIX Species, (Vgy, Voo, -os Vgg)-

Predicting orthologous genes

The query set may contain genes from any one of the six
organisms, which is referred to as the source organism. To
scan gene expression datasets from additional organisms
other than the source organism, the MSGR translates the
query genes from the source organism to a target organism
by using a sequence-similarity look-up table.

The look-up table containing putative orthologous rela-
tions is constructed by finding all best protein matches
(BPMs) for every gene in each of the six organisms. A BPM
for each gene from a source organism is found by using
the BLASTP algorithm [42] to compare the gene product's
amino acid sequence to that of each gene product in a tar-
get organism. A BPM is an ordered pair (g h) recording
which gene h in the target organism has the best matching
peptide sequence to gene g from the source organism.
Gene h is found by identifying the gene with the mini-
mum E-value among all of the genes in the target organ-
ism's protein sequence database. Matches with E-values
greater than 1E-5 are excluded from consideration.

In many cases, multiple genes from the source organism
match the same gene in the target organism. These situa-
tions may be the product of gene duplication events, giv-
ing rise to one gene that retained the ancestral function
and another gene that diverged in function. To avoid
matching paralogous genes from a source organism, we
include only the highest-scoring gene from a source
organism. Define the best target protein (BTP) for the
source query gene g as the gene h in the target organism
where (g, h) either is the only BPM for gene h or has the
highest BLASTP score of all BPMs in the source organism
that include gene h. BTPs for all genes in the query are
identified and used as the query for the target organism.
Genes that lack a BTP in a species are excluded from the
search ordering in that species. The table of all ortholo-
gous assignments can be found on our website (see Addi-
tional file 15 Supplemental Table 10). Note that the BTP
defined here is not strictly reciprocal since gene g may not
be the BTP of gene h .

http://www.biomedcentral.com/1752-0509/1/20

Combining search orderings across organisms

Given a query, the MSGR scores each gene in the genome
based on how similar its expression levels are to the
expression levels of the query genes. The MSGR is run on
the six organisms individually, yielding independent
search orderings for each organism having at least the
minimum number of genes orthologous to those genes in
the query (five by default). To construct a query set in fly
from a query set in human, orthologous protein
sequences in fly are identified by looking for fly proteins
associated with the given human proteins in the BTP table
that translates human proteins to fly proteins. The
GeneRecommender is used to rank all of the genes in a
single organism's genome in decreasing order of expres-
sion similarity to the query set. The expression similarity
is computed over a set of informative conditions identi-
fied by the GeneRecommender algorithm.

As illustrated in Figure 3, there are five branches in the
phylogenetic merge tree (PMT), corresponding to the five
common ancestors shared by the six organisms: the cellu-
lar ancestor common to all of the organisms, the eukary-
otic ancestor common to all of the organisms except the
bacterium H. pylori, the opisthokont ancestor common to
the non-plantlike eukaryotes, the animal ancestor of the
multicellular eukaryotes, and the ecdysozoan ancestor of
the molting organisms from which flies and worms
descended. Nodes in the PMT are referred to using labels
containing an initial uppercase letter: Human, Fly, Worm,
Yeast, Plant, Bacterium, Cellular, Eukaryote, Opisthokont,
Animal, and Ecdysozoa. For any given query, 11 different
search orderings are returned corresponding to the six
searches run on the individual organisms plus the five
combined search orderings at the ancestral nodes of the
tree.

The MSGR combines the organism-specific search order-
ings to produce a new search ordering for each ancestral
node in the PMT. Fly and Worm orderings are merged into
a new search ordering at the Ecdysozoa node. Human,
Worm, and Fly orderings are merged into a single ordering
at the Animal node. The search orderings of all six organ-
isms are combined to produce a new search ordering at
the Cellular node. A gene is included in the search order-
ing of an ancestral node if a BTP exists in the search order-
ing of at least one organism in both the left and right sub-
trees beneath the node. For example, a gene will be used
at the Cellular node if its orthologs appear in search order-
ings in either Human, Fly, Worm, Yeast, or Plant nodes
and a search ordering in the Bacterium node.

The result of an MSGR search at a particular node ¢ in the
PMT associates a set of ranks to a particular candidate
gene. Recall that v, is the rank of candidate gene g in the
search ordering of species s. Each rank is converted to a
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rank-ratio, 7= (v, - 1)/(N,- 1), where N;is the maximum
rank possible for species s. The rank-ratios range between
0, indicating g is coregulated with the query, and 1, indi-
cating g is not coregulated with the query. The rank-ratios
for g at node ¢ are recorded in increasing order in the list

denoted R,,. For example, at the Animal node, g's ranks

mlght be RgAnimal = (rgHuman/TgFly/TgWorm) if rgHuman < rgFly <

Toworm and g had orthologs with expression data in these

three organisms.

The rank-ratios assigned to g at node ¢ are scored to reflect
their degree of non-randomness. The P value for the prob-
ability of observing a set of n rank-ratios or smaller by
chance is computed. Small P values correspond to candi-
dates that are more likely to be related to the query path-
way. For a gene that is unrelated to the original query set,
its rank-ratios are expected to be uniformly and independ-
ently distributed between 0 and 1. Thus, the P value can
be computed from the joint cumulative distribution of a
set of uniformly distributed order statistics. The following
recursive formula gives this quantity:

‘Rgt|

P(Rgt) = Y (Ret[j1= Rge[j ~ 1NP(Ree 1),
j=1

where R, is the set of ordered rank-ratios, P(R) is the prob-
ability of getting rank-ratios equal to or smaller than the
ordered rank-ratios in R, R[j] is the jt largest rank-ratio in
R, and R [-j] is the set of rank-ratios remaining after
removing the j largest rank-ratio (a proof demonstrating
the correctness of the formula is included in the Appen-
dix). This is an approximation because the rank-ratios are
discrete rather than continuous. However, because the
expression datasets contain many genes, the continuous
approximation to the discrete distribution is expected to
be sufficiently accurate.

Measuring the precision and recall of a search

The accuracy of a search is assessed with a cross-validation
test in which a measure of precision and recall is com-
puted based on the MSGR's ability to rank withheld mem-
bers of the pathway toward the top of the returned search
ordering. Given a query Q of n genes, we randomly parti-
tion the set of genes into five folds. Each fold f holds out
a set of genes H; from the query and reconstructs a new
query set, Q; which has 4n/5 genes, Q;= Q - H. The rank
percentiles for each left-out gene in H;are collected from
all of the folds to obtain ranks for all of the original query
genes.

The number of pathway genes a and nonpathway genes b
that receive a rank of ¢ or better when withheld in a par-
ticular cross-validation fold are counted. By varying the
cutoff ¢, we obtain different values for a and b. The preci-

http://www.biomedcentral.com/1752-0509/1/20

sion is then computed as a/(a+b) which reflects the degree
to which the query genes rank toward the top of the list in
a particular cross-validation fold. The recall is computed
as a/k, where k is the total number of pathway genes that
were scored by the MSGR. The average of the precision
and recall is taken across the cross-validation folds to
obtain an average precision and an average recall for a sin-
gle pathway. Note that the value of k changes depending
on which PMT node is being searched. For example, some
genes may not have a BTP or may not have any data col-
lected in any one of the organisms beneath a particular
node in the PMT. A range of average precisions as a func-
tion of the average recall is obtained by sweeping through
different values of c.

Identifying overrepresented transcription factor binding
sites in a hit list

Putative binding sites that are significantly overrepre-
sented in the upstream regions of the genes returned in a
hit list returned by the MSGR are identified by scanning
matrices representing 341 human binding site models
taken from release 7.2 of the TRANSFAC database [43].
Upstream 1000 base-pair regions of 14,368 genes were
downloaded from the UCSC Genome Browser [44] for the
human genome (May 2004 build) [45].

A binding site score between a gene g and matrix m, B,
is computed with tffind [46], a program that assigns a
score, ranging from 0 (very different from m) to 1 (perfect
match to m), for each position in g's upstream region. B,,,
is defined as the highest position-specific score. Because
different transcription factors may have different binding
specificities, it is unknown what cutoff for B,, to use,
above which m is considered a match to gene g. We there-
fore try a series of cutoffs to identify which cutoff gives the
optimal separation between the genes in the hit list and all
of the genes in the genome. For each m, the cutoff is varied
between ¢, and 1, where ¢, is the mean of the best score
attained by the matrix across all upstream regions in the
genome. For each cutoff, the percentage of background
genes that have a best score at least as high as the cutoff is
recorded. This value is then used to estimate the P value
for the match between m and the hit list using the hyper-
geometric distribution. The cutoff that achieves the best P
value is chosen as c,, and used to determine which genes
in the hit list have a hit to the matrix. All matrices with a
Pvalue of 0.01 or lower and with at least 25% coverage of
the genes in the hit list are reported. We also report an
enrichment score, defined as the ratio h/e, where h is the
percent of genes in the hit list that have a match to m and
e is the percent of genes in the background distribution
that have a hit to m.

The significance of the number of genes in a hit list with

matches to binding site matrix m is estimated by using a
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simulation to construct a null distribution for m. k genes
are drawn randomly from the genome, where k is the
same size as the number of genes in the hit list. Each
gene's upstream region is scored with matrix m by count-
ing the number of randomly drawn genes that achieve
scores equal to or greater than c,,. A distribution is con-
structed from 1000 random simulations. To obtain the
corresponding P value for that matrix, the number of
matches to matrix m in the hit list is compared to the
mean and standard deviation of this distribution.

Determining the conservation of binding site predictions
The degree of conservation of a predicted binding site was
determined with the PhastOdds program [33] and the con-
servation track of the UCSC Genome Browser [33] (May
2004 build) [33]. This build contains multiple alignments
of 17 vertebrates, including mammals, amphibians, birds,
and fish. A log-odds conservation score for each binding
site prediction was determined with PhastOdds. The Phas-
tOdds score is a ratio of the likelihood of two phylogenetic
models: a positive model to detect conserved sequences
and a background model representing nonconserved
sequences. Regions with scores greater than 0 are consid-
ered conserved because the observed conservation pat-
terns fit the conserved model better than the
nonconserved model. The nonconserved model was esti-
mated from fourfold degenerate sites in coding regions
using the PhyloFit [33] program. The positive model was
derived from the nonconserved model except that the
model's substitution rate parameter was estimated using
PhastCons [33] run on multiple alignments of the 17 ver-
tebrates produced by the ENCODE Consortium [47].
Before running the conservation analysis, overlapping
predictions are merged to avoid over-estimating the
number of conserved binding sites.
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