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Abstract
Background: Comparative analysis of metabolic networks in multiple species yields important
information on their evolution, and has great practical value in metabolic engineering, human
disease analysis, drug design etc. In this work, we aim to systematically search for conserved
pathways in two species, quantify their similarities, and focus on the variations between them.

Results: We present an efficient framework, Metabolic Pathway Alignment and Scoring (M-PAS),
for identifying and ranking conserved metabolic pathways. M-PAS aligns all reactions in entire
metabolic networks of two species and assembles them into pathways, taking mismatches, gaps and
crossovers into account. It uses a comprehensive scoring function, which quantifies pathway
similarity such that we can focus on different pathways given different biological motivations. Using
M-PAS, we detected 1198 length-four pathways fully conserved between Saccharomyces cerevisiae
and Escherichia coli, and also revealed 1399 cases of a species using a unique route in otherwise
highly conserved pathways.

Conclusion: Our method efficiently automates the process of exploring reaction arrangement
possibilities, both between species and within species, to find conserved pathways. We not only
reconstruct conventional pathways such as those found in KEGG, but also discover new pathway
possibilities. Our results can help to generate hypotheses on missing reactions and manifest
differences in highly conserved pathways, which is useful for biology and life science applications.

Background
Comparative analysis of metabolic networks in different
species yields information important for both biology
(understanding evolution/speciation, annotating new
genomes etc.) and life science applications (e.g. in bio-

technology, pharmacology). Therefore, it has been an
active research field for the last decade. For example, Dan-
dekar et al. [1] combined biochemical data analysis, ele-
mentary flux mode analysis and comparative genome
analysis to compare glycolytic pathways in 17 species.
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Jeong et al. [2] and Ravasz et al. [3] studied the global top-
ological properties of the metabolic networks in 43 spe-
cies. In addition, Küffner et al. [4] used Petri nets to
compare database contents and define differential meta-
bolic displays (DMDs), which allow to compare meta-
bolic networks by identifying intersection and difference
sets of reactions. As one of the applications, Heymans et
al. [5] derived phylogenetic trees based on metabolic
pathway comparison. Guimerà et al. [6] analyzed the
modularity of the metabolic networks of 18 organisms,
and classified metabolites and enzymes based on their
roles in connecting different functional modules. Díaz-
Mejía et al. [7] investigated the relation of network modu-
larity and distance between reactions with the retention of
gene duplicates in various species and databases. More
generally, a review on biological network comparison
problems, techniques and applications is given by Sharan
et al. [8].

In studies up till now, however, only little work focused
explicitly on the variations between species in conserved
pathways, and to our knowledge no alignment of entire
networks, exploiting all reaction arrangement possibili-
ties, has been carried out yet. Moreover, the similarity
measures used to align metabolic pathways is often not
comprehensive, as compounds or network structure are
neglected. For example, Tohsato et al. [9] align pathways
based on enzyme EC number similarity only, discarding
information on the compounds involved. Yang et al. [10]
perform path matching and graph matching to query cer-
tain metabolic pathways or subgraphs in a predefined
graph, but also use a similarity measure based on EC
numbers only. Although Forst et al. [11] define the dis-
tance between pathways as a combination of distances
between compounds and distances between enzymes,
they only consider sequence similarity, and the com-
pounds are limited to amino acids. In [12], sets of reac-
tions in multiple pathways are compared, omitting the
connectivity between the reactions. Finally, the pathway
similarity score in [5,13,14] combines EC number similar-
ity and network topology, but does not include com-
pounds, and alignments are between predefined sub-
networks only. Therefore, the comparison is limited to
conventional pathways, and different parts of the cellular
metabolism are not associated with each other.

In this work, we align entire metabolic networks of two
species and quantify their similarities comprehensively, to
identify highly conserved pathways. We particularly focus
on the variations in these pathways, as illustrated in Figure
1. In this paper, a pathway is defined as a series of chemi-
cal reactions of metabolism within a cell. Therefore they
are not necessarily routes through the network from
uptake to secretion, as represented by many conventional
pathway representations.

A naive approach to find conservation and variations
between metabolic networks would be to search for com-
mon reactions and reaction pairs, using different cofactors
or enzymes in the two species. Besides being inefficient,
this approach isolates reactions from their upstream and
downstream processes. Instead, we search for conserved
pathways, rather than single reactions. In this way, we place
the reactions in their metabolic functional context, which
helps to 1) filter out isolated reactions not involved in
pathways, 2) provide more evidence to claim part of a
pathway is conserved, given that neighboring reactions
are conserved, 3) interpret the resulting pathways.

Our method is designed to conduct this process efficiently
and comprehensively. More specifically, our pairwise
pathway alignment is based on a mechanism we proposed
earlier [15], which is inspired by the alignment concept of
[16]. It first aligns two to four similar reactions in two spe-
cies into building blocks, and then assembles these into
pathways of a desired length (Figure 2). In each building
block, a specific substrate is transformed into a specific
product via similar but not necessarily identical reactions
in two species. That is, they may have different co-sub-
strates or co-products, be catalyzed by different enzymes,
need different numbers of reactions to complete the trans-
formation, or reactions may occur in a different order. In
other words, our method enables to explore topological
arrangement possibilities of reactions both between spe-
cies (by building block assembly) and within species (by
pathway assembly).

Further, we rank the aligned pathways according to their
similarities (i.e. level of conservation), which prioritizes
them for further investigation. To this end, a novel scoring
function is proposed, which forms the core contribution
of this paper. It compares all components of two path-
ways by measuring similarities between substrate sets,
product sets, enzyme functions, enzyme sequences, and
alignment topology. The resulting individual similarity
measures are then integrated into a single score. This scor-

Illustration of our searching targetFigure 1
Illustration of our searching target. The pathways in 
two species share common reactions (A and D), but also 
have variations (B and C).
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ing function has a generic form and is flexible enough to
address various biological questions, by selecting different
parameter settings.

Results
Algorithm
We align the pathways from two species in a strict way, in
order to investigate highly conserved metabolic pathways,
i.e. pathways with very similar structure and limited vari-
ation between species. More specifically, two metabolic
pathways can be aligned into a conserved pathway only if
their individual reactions transform common substrates
into common products in each step. We call such a pair of
matching reactions a building block (BB). Next, these
building blocks are assembled into pathways of a speci-
fied length, taking reaction directions into account.
Finally, we compute the similarity score for each aligned
pathway, and obtain interesting pathways as those path-
ways that have high similarity scores.

Reaction representation
In M-PAS, reactions are represented at three levels of gen-
eralization: nodes, supernodes and hypernodes, respec-
tively (see Figure 2). The low-level representation gives the
finest details of reactions, in which each compound and
each enzyme constitutes a node (Figure 2a). The medium-
level representation generalizes reactions, so that all sub-
strates and products of a reaction compose two com-
pound supernodes, and all enzymes in that reaction form
an enzyme supernode (Figure 2b). Such a generalized rep-
resentation is useful due to the multiple-to-multiple prop-
erty of metabolic reactions, i.e. multiple substrates can be

catalyzed by multiple enzymes into multiple products
[8,17]. Finally, at the high-level representation, the corre-
sponding compound supernodes and enzyme supernodes
from two aligned reactions are combined into compound
hypernodes and enzyme hypernodes, respectively (Figure
2c–d).

These different levels of representation enable the com-
parison of reactions in a detailed yet flexible manner.
Thus, a particular compound node can be part of various
compound supernodes given different co-factors in differ-
ent reactions, and further can be part of various com-
pound hypernodes due to different alignments with other
compound supernodes. The same holds for enzyme
nodes. This flexible representation not only reflects the
versatility of the metabolic network conveniently, but is
also necessary in order to express and quantify the similar-
ity of reactions, which will be explained in the section
Scoring function.

Reaction alignment
The reaction alignment part is proposed in our previous
work [15] and is briefly explained here for comprehensi-
bility and completeness of our methodology. Two reac-
tions can be aligned to form a building block when they
have at least one common substrate node and one com-
mon product node (Figure 2d). To allow for some varia-
tion, we introduce six types of building blocks (see Figure
3). If the same reaction is present in both species, the
resulting building block is called "identical" (i). If the two
reactions are different, but the first two digits of the EC
numbers of their enzymes are the same, they form a
"direct" building block (d).

We allow for up to one mismatch or one gap in a building
block, in order to incorporate alternative pathways, evolu-
tionary diversity and annotation errors. That is, in an
"enzyme mismatch" building block (em), the first two dig-
its of the EC numbers of their enzymes are not the same.
Gaps occur when a single reaction and a series of reactions
connected in tandem share common substrates and prod-
ucts, indicating that the number of reactions to transform
the specific substrates into the specific products differs
between species. The building blocks containing one gap
are "direct-gap" (dg) and "enzyme mismatch-gap" (eg).
Finally, we include "enzyme crossover match" building
blocks (ec) to accommodate possible variations in the
order of the catalysis. That is, apart from sharing common
substrates and end products in two reactions in each spe-
cies, the first two EC number digits of the first and second
reaction in one species are the same as those of the second
and first reaction in the other species, respectively.

To enhance the informativeness of these resulting path-
ways, we add a constraint to avoid redundant building

Overview of the methodFigure 2
Overview of the method. First, compound nodes and 
enzyme nodes (a) are generalized into compound super-
nodes and enzyme supernodes (b). Two reactions of species 
1 are aligned with two reactions of species 2 (c), by pairing 
the supernodes into compound hypernodes and enzyme 
hypernodes (d). Each pair of aligned reaction forms a building 
block, from which an aligned pathway can be assembled. The 
reaction directions are omitted in the figure for simplicity.
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blocks. That is, a non-identical building block can be con-
structed only if it contains at least one unique reaction in
one of the species, which is absent in the other species.
This is because if two reactions converting the same sub-
strate into the same product (e.g. A and B) are present in
both species, two "identical" building blocks A1-A2 and
B1-B2 are constructed already. Therefore, any other combi-
nations of these reactions (i.e. A1-B2 and B1-A2) are just
worse matches.

Scoring function
We set out by specifying a number of criteria for the design
of the scoring function. First, similarities of all reaction
components should be considered: substrate sets, product
sets, enzyme functions and enzyme sequences, respec-
tively. Second, the scoring function should be flexible and
adaptable according to the user's biological interests. For
example, the user might want to find pathways containing
a particular structure (e.g. with a gap); or focus on
enzymes only, but not on compounds; or seek to find a
completely alternative pathway in which the enzymes are
very dissimilar between two species. Third, since we aim
to investigate many aspects of an aligned pathway and
obtain multiple similarity scores, a reasonable way of
integrating these is required. Finally, we should consider

specificity in computing similarities, since both distribu-
tions of compound connectivity and enzyme EC number
hierarchy show large variation [9,18], i.e. some com-
pounds and EC subclasses appear more often than the
others in the background.

1) Total score
According to the criteria above, we first compute similar-
ity scores independently for all compound hypernodes
and enzyme hypernodes in an aligned pathway, taking all
aspects into account. These are then converted into z-
scores before integration to account for their diverse dis-
tributions.

Let Z(x) denote the z-score of x. Then Z(P) is the total z-
score for an aligned pathway P, a weighted sum of the
scores of N building blocks B in P:

Z(B) is the z-score for a building block B. Let c and e
denote a compound hypernode and an enzyme hyper-
node respectively, and denote the set of all c's and e's in a
building block B by CB and EB, respectively. Users can
define a preferred building block structure by assigning
different biases (Z0(B)) to different building block types.
For example, if building blocks with gaps are preferred in
a query, then these types of building block can be assigned
a large positive bias. Weights c, e  [0, 1] can be used to
assign different relative importance to compound similar-
ity and enzyme similarity (resembling the  parameter in
[12]).

Note that the z-scores are hierarchically combined using
Liptak-Stouffer's method [19,20]. In the following we
explain how to compute Z(CB) and Z(EB) in detail.

2) Compound similarity
Z(CB) is composed of compound similarities Z(c) of the
two compound hypernodes in the building block (i.e. the
substrate hypernode and product hypernode). We express
Z(c) in two terms:

The agreement ZA(c) is the extent of the overlap in number
of compounds between the two aligned compound super-
nodes. This is computed as the probability of observing
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Illustration of the six types of building blocksFigure 3
Illustration of the six types of building blocks. The 
reaction directions are omitted in the figure for simplicity. 
The color legends are the same as in Figure 2. Two com-
pound supernodes are considered similar if they share at 
least one common compound node. Two enzyme super-
nodes are considered similar if there exists a pair of enzymes 
which share the same first two digits in their EC numbers.
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the amount of overlap between the two compound super-
nodes by chance, according to a hypergeometric distribu-
tion [21]:

where c1 and c2 denote the compound supernodes that
form c, and |x| denotes the number of compound nodes
in x.

Next, this probability is transformed to a z-score:

where AC and AC are the mean and standard-deviation of
PA(c) over all possible compound supernode pairs, which
represent the expected amount of overlap when the pair-
ing would be random.

The other term is ZS(c), the specificity of the overlap when
compared to all possible supernode pairs. That is, if two
compound supernodes have overlapping compounds, we
take into account the frequency of obtaining this particu-
lar overlap at random. We consider two sets of substances
to be more similar if the overlapping part is more specific,
i.e. not observed frequently by chance. Moreover, consid-
ering specificity of compounds may result in more biolog-
ically meaningful pathways, since metabolic pathways
seem to represent paths through the least "promiscuous"
compounds [18].

Suppose there are in total m compound supernodes in
species 1 and n in species 2. Then we have:

where SC and SC are the mean and standard-deviation of
PS(c) computed over all mn compound supernode pairs.
The numerator in (5) is the number of times the specific
overlap in compound node in c, i.e. (c1  c2), is observed
in the intersections of all possible compound supernode
pairs.

3) Enzyme similarity
The enzyme hypernode similarity score, Z(EB), is defined
by a functional similarity score ZF(e) and a sequence sim-
ilarity score ZQ(e). In addition, users can specify weights
f, q  [-1, 1] for the functional and sequence similarity
scores to indicate their relative importance. Setting these
weights to negative values actually enables us to search for
dissimilar enzymes, which associates reactions with differ-
ent mechanisms and provides more possibilities to anno-
tate new species. For generality, suppose there are k
enzyme hypernodes in building block B (k = 2 for
"enzyme crossover match" building blocks, k = 1 for oth-
ers). The enzyme similarity is then given by:

ZF(e) is computed similar to (2)–(6), containing agree-
ment and specificity of the EC number overlap:

The enzyme functional agreement score ZA(e) is derived

from PA(e), the probability of obtaining by chance the

number of common subclasses between the EC numbers
of e1 and e2, the two enzyme supernodes that form hyper-

node e. Let  denote the set of all subclasses, and  be
the overlapping subclasses. For instance, for e1 = 1.2.3.4

and e2 = 1.2.4.4,  = {1, 1.2, 1.2.3, 1.2.4, 1.2.3.4,

1.2.4.4}, and  = {1, 1.2}. These sets are then used to
assess the extent of overlap between two EC numbers,
analogous to (3):

where AE and AE are computed from PA(e) over all possi-
ble enzyme supernode pairs.
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To address the specificity of the observed , we also
count the number of times the common EC number sub-
classes of two enzyme supernodes contains this , and

compute PS(e), SE, SE and ZS(e), analogous to (5)–(6):

with u and v the total numbers of enzyme supernodes in
the two species.

Finally, the sequence similarity score ZQ(e) is derived
from the BLAST E -value L(e):

where q and q are the mean and standard-deviation of
Q(e) over all possible enzyme supernode pairs.

Note that there might exist multiple EC numbers and
multiple sequences in each enzyme supernode, as illus-
trated in Figure 2. So we first compute all Z(e) given all
possible combinations of EC numbers and corresponding
sequences in enzyme hypernode e. Since we aim to find
the conserved part between pathways, the highest Z(e) is
taken to be the enzyme similarity score for this pair of
supernodes, indicating the similarity of the most con-
served part between them.

Moreover, when gaps are present, we align two enzyme
supernodes in one species with one enzyme supernode in
another species separately, obtaining two Z(e). Again, the
higher one is selected for this building block to represent
the similarity of the most conserved part.

Pathway construction
Reaction definitions were obtained from Release 42.0 of
the KEGG LIGAND composite database [22], updated on

May 14, 2007. The species-specific reactions and enzyme
lists were retrieved from KEGG/XML and KEGG/PATH-
WAY. Protein sequences were downloaded from Uni-
ProtKB/Swiss-Prot [23]. Discrepancies and missing
information (e.g. gene names and EC numbers) were
resolved manually. Twenty-six currency metabolites (see
Appendix) are excluded from consideration during path-
way construction to avoid finding large numbers of path-
way shortcuts [3,24,25]. Note that the reactions
containing these metabolites are still included in the algo-
rithm. Currency metabolites are only excluded in aligning
reactions into building blocks and assembling pathways,
i.e. we do not match or connect two reactions if they only
share the same currency metabolites.

Based on 881 enzymatic reactions in S. cerevisiae (with
1762 compound supernodes and 881 enzyme super-
nodes) and 1106 enzymatic reactions in E. coli (with 2212
compound supernodes and 1106 enzyme supernodes),
640 building blocks are constructed. These are further
concatenated into pathways using a backtracking search,
starting from a certain substrate. Each pathway contains
four different building blocks, and is constrained so that
one reaction cannot appear more than once in one spe-
cies, and one compound (excluding the currency metabo-
lites) cannot be traversed more than once in one species,
e.g. a compound can not be both the substrate and prod-
uct of a reaction, or be the products of two reactions in the
pathway. Using 69% of all available building blocks,
2597 length-four pathways are assembled, starting from
245 substrates. These substrates are not restricted to exter-
nal metabolites, since our pathways are not necessarily
routes from uptake to secretion.

Discussion
We conducted five queries using different settings for the
parameters as described in section Scoring function, corre-
sponding to five different interests. Table 1 summarizes
the parameters used.

In each query, the similarity scores of all 2597 length-four
pathways found are computed using (1) and the highest-
scoring pathway(s) of a certain substrate is referred as the
best pathway for that substrate.
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Table 1: The parameter settings and biological emphases in the five queries

c e f q Z0 Emphasis

Query 1 0.5 0.5 0.5 0.5 0 for all overall
Query 2 0 1 0.5 0.5 0 for all enzyme
Query 3 1 0 0 0 0 for all compound
Query 4 0.5 0.5 0.5 0.5 100 for "dg"and "eg",

0 otherwise
gap

Query 5 0 1 1 0 0 for all enzyme function
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It is useful to investigate the building block types as they
reflect the differences between species in terms of reac-
tions use, which is not reflected in the scores. Therefore,
we categorize the pathways w.r.t. their configurations of
building blocks, in order to gain insight in the impact of
the parameter settings on the resulting pathway proper-
ties. Abbreviations are used to denote the six categories: "i-
i-i-i" indicates a pathway consists of four "identical"
building blocks; "d" indicates that the pathway has at least
one "direct" building block; "em", "dg", "eg" and "ec" are
defined likewise.

Of all 2597 length-four pathways, 1198 have "i-i-i-i" con-
figuration, and 1399 differ between the species, starting
from 160 substrates. Among these 426 contain "d", 192
"em", 199 "dg", 709 "eg" and 194 "ec". For each type of
configuration, Figure 4a gives the percentage of best path-
ways found in all pathways with a particular configura-
tion. Figure 4b corrects the percentages shown in Figure 4a
by comparing the number of best pathways with the base-
line number of best pathways, which is the maximum
possible number of best pathways with that configura-

tion. Therefore Figure 4b actually presents the extent to
which a query succeeds in finding a certain type of path-
way when only best pathways are concerned.

The scoring function can address different biological 
questions
Using our scoring function, different parameter settings
result in different best pathways, highlighting different
aspects of the pathway features.

Table 1 and Figure 4 can be used as a guide to design a
query for a specific purpose. For example, Query 1 finds
generally similar pathways in two species. Query 2 only
considers enzyme similarity, therefore more best path-
ways containing "dg" and "ec" are found (Figure 4). Query
5 is a special case of Query 2, looking for conserved path-
ways with similar enzyme functions. Compound and
enzyme sequence similarities are neglected, thus provid-
ing more possibilities for predicting the functions of
unannotated genes.

The percentages of found best pathways in the five queries, with particular pathway configurationsFigure 4
The percentages of found best pathways in the five queries, with particular pathway configurations. a. Percent-
age in all pathways with this configuration. b. Percentage in all possible best pathways with this configuration. See text for 
details.
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Query 3, on the other hand, considers compound similar-
ity only. If two reactions have the same compounds, they
are identical reactions. So all best pathways with "i-i-i-i"
configuration are found in Query 3 (Figure 4). Identical
reactions are highly conserved in the metabolism of differ-
ent species, and can be used as a measure of phylogenetic
distance. Furthermore, those very specific processes con-
taining the most unique compounds will score the highest
(see equation 2). Figure 5a shows an example, in which
the non-currency compounds are only present in the
shown pathway, which is specific to biotin metabolism.

Gaps are preferred in Query 4. Indeed, we can see a large
increase in best pathways with "dg" and "eg" in Figure 4.
Moreover, in-depth analysis shows that the numbers of
"dg" and "eg" building blocks in the pathways have also
increased four to seven times, demonstrating that the
increase of found best pathways with "dg" and "eg" is not
because a limited number of building blocks are used
repeatedly. The results may hint at additional intriguing
evolutionary phenomena: if one enzyme in species 1 is
comparable to the combined functionality of two
enzymes in species 2, it may be caused by gene fusion in
species 1, or gene duplication in species 2 [13].

Comparing results of different queries can help infer 
additional details
It can be instructive to investigate the differences in the
results between various queries. For instance, the best
pathways of a certain substrate in Query 2 and not found
in the best pathways of the same substrate in Query 1 have
similar enzymes but use different cofactors or less specific
substrates. They are well-conserved, a-specific enzymes.
Many pathways containing "dg" are found in Query 2 for
this reason, as we can see from Figure 4. Figure 5b shows
an example, which is found in Query 2 due to its high
enzyme similarity, but not in Query 1 or Query 4 for the
same substrate due to its low compound similarity. In
another example (not shown), a best pathway in Query 2
producing pyruvate is filtered out in Query 1 because
pyruvate is less specific, as it is present in 147 reactions
[18].

In addition, the best pathways of a certain substrate in
Query 5 and not found in the best pathways of the same
substrate in Query 2 have similar enzyme functions but
dissimilar enzyme sequences. These enzymes might be
non-homologous but evolved into the same function, or
the functions have been maintained although their
sequences have been changed. An example is given in Fig-
ure 5c. The enzymes in the fourth building block, spe1
from S. cerevisiae and speC, speF from E. coli, have very
dissimilar sequences (E-value > 100). Although spe1,
speC and speF are non-homologous, lysA (EC: 4.1.1.20)
in E. coli has a sequence similar to that of spe1 (E-value =
2.5 × 10-7). According to Sandmeier et al. [26], speC and
speF belong to group III decarboxylases, and spe1 and
lysA belong to group IV decarboxylases. Although the
homology among the enzymes within each group is estab-
lished, no evidence has been obtained that the sequences
of these two groups are related. Therefore, they seem to
have different evolutionary origin. This result demon-
strates that enzyme function and sequence do not always
correlate with each other. In addition, more "ec" are found
in Query 5 (see Figure 4) exactly because on average "ec"
has high enzyme functional similarity but low sequence
similarity, as shown in Figure 6.

Combining the component scores makes sense
Figure 6 presents the component scores of each type of
building block and shows that the various information
sources are not correlated (see also [9]), making it worth-
while to combine them. In addition, Figure 6 reveals the
diverse similarity fingerprint of each type of building
block, which calls for further research. For example, the
variance of the sequence similarity score in "i" is large,
which might arise because of different specificity, hori-
zontal gene transfer, gene fusions, or the fact that only
subunits of the enzymes are the same. As to "ec", their
sequences are very dissimilar in spite of their similar func-

Examples of the highest-scoring pathwaysFigure 5
Examples of the highest-scoring pathways. a. One of 
the highest-scoring pathways in Query 3, which is involved in 
biotin metabolism. b. One of the highest-scoring pathways in 
Query 2, but not in Query 1 or Query 4. The last building 
block is a "dg", which contains one unique reaction in E. coli, 
and constitutes an alternative pathway (see text). Involved 
KEGG maps include: phenylalanine, tyrosine and tryptophan 
biosynthesis; benzoxazinone biosynthesis; tryptophan metab-
olism; nitrogen metabolism. c. One of the highest-scoring 
pathways in Query 5, but not in Query 2. Involved KEGG 
maps include: urea cycle and metabolism of amino groups; 
alanine and aspartate metabolism; arginine and proline 
metabolism.
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tions. Possible reasons could be that the enzymes have
different substrate specificities, or that intermediate sub-
strates are very different. They could also have been isoen-
zymes in parallel pathways, having become specialized to
one species during evolution.

The conserved part of two aligned networks is scale-free
We inspected the connectivity of each building block in
Query 1, i.e. the number of best pathways in which a
building block is involved. Figure 7a shows that building
block connectivity follows a power-law distribution. It has
already been pointed out that metabolic networks as a
whole are scale-free networks [2]; but our finding pro-
vides evidence from a new perspective, indicating that the
conserved part of aligned networks, composed of the
building blocks in the best pathways, is also scale-free.
Figures 7b–d shows the three building blocks with the
highest connectivity to be involved in primary metabo-
lism glycolysis/gluconeogenesis, which is known to be
highly conserved and plays a role in many processes.

Short pathways lead to interpretable results
Our methodology has no inherent limit on the pathway
lengths. That is, it can construct and score pathways con-
sisting of any number of building blocks. To find longer
pathways, one can simply extend the pathway length in
the search step. Actually, we conducted experiments with-
out a length limit, which resulted in aligned pathways up
to a length of 42 building blocks. Another solution would
be to assemble the current length-four short pathways
into longer pathways.

However, not all pathway lengths give meaningful results.
When the length becomes too short, the method starts to
compare individual reactions and loses the power of met-
abolic functional context, as stated in the background. As

a result, some isolated reactions are also included in the
results. For example, 31% of building blocks (i.e. length-
one pathways) contain isolated reactions, which are not
included in any length-four pathway.

When the pathway length becomes too large, the method
produces many highly overlapping results. For example,
when running M-PAS with the pathway length set to ten,
the number of found pathways increases to 15939 (as
compared to the 2597 found pathways when this length
is set to four). However, Figure 8 shows that the average
overlap between any two pathways also increases signifi-
cantly. This makes it more difficult to interpret the results.
Moreover, longer pathway lengths stress pathway conser-
vation more, and will inevitably miss some interesting
short pathways. For example, 128 building blocks (20%)
which are present in the results of length-four are not
found in the set of length-ten pathways. Therefore,
although limiting the pathway length to four might not be
the optimal choice, it is within a reasonable range which
produces meaningful results.

M-PAS reveals pathway diversity and alternatives
As mentioned above, we found that 54% of the length-
four pathways are not "i-i-i-i", which occur in 65% of the
substrates. Interestingly, 17 start substrates do not have
any "i-i-i-i" pathways, which means the length-four path-
ways starting with these substrates always differ in these
two species. When only best pathways are concerned, we
found 16% of these are not "i-i-i-i", starting from 13% of
the substrates. Figure 9 displays two best pathways in
Query 1, which contain unique reactions in both species.

These pathways are highly conserved, yet exhibit differ-
ences between the two species. Note that M-PAS goes
beyond simple reaction comparison and always places
these differences in metabolic functional context. In this
way, our method sheds light on variations between spe-
cies in the use of non-identical but similar reactions in
pathways, revealing between-species diversity and within-
species alternatives. When both species have their own
unique reactions to transform a particular substrate into a
particular product, we call this diversity. If only one of the
species has a unique reaction, which performs the same
transformation as another common reaction does in both
species, then this unique transformation forms part of an
alternative pathway. Figure 10 gives a schematic explana-
tion of these two terms, in which different types of arrows
are used to indicate unique reactions of one species.

Recall the constraint in section Reaction alignment which
enforces uniqueness in constructing a non-identical
building block. Consequently, these non-identical build-
ing blocks contain unique reactions in either one or both
species, introducing diversity or alternatives in the assem-

The distributions of the four component scores for each type of building blockFigure 6
The distributions of the four component scores for 
each type of building block. ZF and ZQ are computed as in 
(8) and (13). Z(CB), Z(EB) are computed as in (2) and (7) with 
the parameter settings of Query 1 (see Table 1).
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The building block connectivityFigure 7
The building block connectivity. a. Histogram of the number of best pathways in which a building block is involved in 
Query 1. b. – d. Three building blocks which are involved in 27, 27 and 25 best pathways in Query 1, respectively. Scores and 
involved KEGG maps are given underneath the building blocks.
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bled pathways. In other words, all resulting pathways
which do not have an "i-i-i-i" configuration contain diver-
sity or alternatives. For example, the fourth building block
in Figure 5b contains a reaction unique to E. coli, consti-
tuting a unique alternative pathway. On the other hand,
the second building block in Figure 9a and the third
building block in Figure 9b contain unique reactions in
both species, therefore they show diversity in the path-
ways. More examples are given in Figure 11, which dis-
plays the most similar building blocks of each type in
Query 1.

These results demonstrate the value of including non-
identical building blocks, as otherwise these strongly con-
served pathways would have been overlooked. In particu-
lar, building blocks with gaps or crossovers would be hard

to detect manually, e.g. Figure 9a and Figures 11d–f. Take
Figure 11d as an example. By comparing reactions in two
species, normally we can only find a reversible reaction
present in both species which catalyzes indoleglycerol
phosphate into L-tryptophan. However, considering gaps
allows us to find two consecutive reactions in one of the
species which perform the same transformation in two
steps. In the end, our algorithm found a unique alterna-
tive pathway in E. coli which transforms indoleglycerol
phosphate to indole first by an irreversible reaction, fol-
lowed by a unique reaction transforming indole to L-tryp-
tophan.

New links between different parts of metabolism are found
Our method is global, starting from constructing building
blocks to the assembly of pathways. Therefore, the result-

The impact of pathway length on the resulting overlapFigure 8
The impact of pathway length on the resulting overlap. A frequency graph of the number of consecutive overlapping 
building blocks in all pairs of pathways of the same length found in Query 1. When pathway length is increased, the overlap 
between resulting pathways increases significantly, hampering interpretation.
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ing pathways have a reasonable coverage of the network,
and explicitly include links between different parts of
metabolism, which are displayed in 202 pathway maps of
metabolism in KEGG [22]. For example, Figure 9 shows
four to seven such maps are linked together in each
aligned pathway (see caption).

Since our alignment method operates on individual reac-
tions, independent of the existing pathways as given in
current databases, we not only reconstruct known path-
ways (as presented by KEGG, e.g. Figure 5, 9a, 12b–c), but
also discover new pathway possibilities with the compo-

nent reactions annotated in different maps and not linked
with each other in the original database, e.g. Figure 9b and
12a. These pathways will not be found if we only look at
the pathways shown in the maps and the links between
maps.

Moreover, M-PAS not only links different parts of metab-
olism within one species, but also associates diverse parts
in two species with each other, offering potential interest-
ing targets for bioengineering. For instance, in Figure 11e,
the unique reaction of S. cerevisiae is found in glycine, ser-
ine and threonine metabolism, while the unique reaction

Two examples of non-"i-i-i-i" best pathways in Query 1Figure 9
Two examples of non-"i-i-i-i" best pathways in Query 1. The non-identical building blocks are highlighted, which exhibit 
diversities. Scores of all building blocks are shown at the bottom right. The involved KEGG maps are: a. galactose metabolism; 
fructose and mannose metabolism; glycolysis/gluconeogenesis; pentose phosphate pathway. b. citrate cycle (TCA cycle); glyox-
ylate and dicarboxylate metabolism; urea cycle and metabolism of amino groups; alanine and aspartate metabolism; arginine and 
proline metabolism; butanoate metabolism (only for E. coli); reductive carboxylate cycle (CO2 fixation) (only for E. coli).
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of E. coli is found in cysteine metabolism. Therefore it will
not be found if we only look at one map or one species at
a time.

Primary metabolism is highly conserved
Three pathways with the highest scores in Query 1 are
shown in Figure 12. They represent the most conserved
part of the metabolic network in the two species and are
therefore expected to be important. Not surprisingly, the

three pathways are all involved in primary metabolism.
Moreover, they all have "i-i-i-i" configuration, meaning all
reactions in the pathways are conserved across species.
Clement et al. [27] also pointed out that "vital biological
processes in a group of related species should be con-
served and expressed by a significant number of reactions
in all the organisms of the group".

We can also observe this in Figure 11, where the involved
parts of metabolism in the highest-scoring building
blocks are rather central processes, e.g. starch and sucrose
metabolism, citrate cycle (TCA cycle), CO2 fixation and
other important amino acid metabolisms.

Conclusion
In this work, we extend our former alignment framework
and propose a novel scoring method to identify conserved
metabolic pathways and quantify the level of conserva-
tion in an efficient and comprehensive manner. Based on
the six types of building blocks, a systematic search is con-
ducted in the network. We find and rank conserved path-
ways given certain substrates, and shed light on the
variations between species within a metabolic functional

Illustration of diversity and alternative pathwayFigure 10
Illustration of diversity and alternative pathway. In 
each case, the reactions in both species are combined into a 
unified representation for conciseness.

High-scoring building blocks in Query 1Figure 11
High-scoring building blocks in Query 1. a. One of the 
highest-scoring "identical" building blocks (Z(B) = 34). b. One 
of the highest-scoring "direct" building blocks (Z(B) = 27). c. 
The highest-scoring "enzyme mismatch" building block (Z(B) 
= 16). d. The highest-scoring "direct-gap" building block (Z(B) 
= 23). e. The highest-scoring "enzyme mismatch-gap" building 
block (Z(B) = 9). f. The highest-scoring "enzyme crossover 
match" building block (Z(B) = 18).

Three pathways with the highest scores in Query 1Figure 12
Three pathways with the highest scores in Query 1. 
For conciseness, a common reaction in S. cerevisiae and E. coli 
is drawn only once in each building block. The solid-headed 
arrow indicates the reactions exist in both species, constitut-
ing an "i-i-i-i" pathway. a. Z(P) = 41. Involved KEGG maps 
include: glycolysis/gluconeogenesis; pentose phosphate path-
way; starch and sucrose metabolism; phenylalanine, tyrosine 
and tryptophan biosynthesis. b. Z(P) = 40. Involved KEGG 
maps include: pentose phosphate pathway; glycolysis/gluco-
neogenesis; starch and sucrose metabolism; glutathione 
metabolism. c. Z(P) = 39. Involved KEGG maps include: 
starch and sucrose metabolism; glycolysis/gluconeogenesis; 
galactose metabolism; streptomycin biosynthesis; pentose 
phosphate pathway.
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context. This is not possible by simple comparison of reac-
tion lists or enzyme lists.

Our method combines individual reactions, so that we
can find conserved pathways that are not represented in
conventional databases. Since the alignment and search
are conducted in the whole network, M-PAS unites reac-
tions in different KEGG maps, revealing links and relating
reactions with common upstream substrates and down-
stream products which might be elusive if we only look at
subsets of the network.

Our similarity measure combines uncorrelated informa-
tion sources, including similarities of substrate sets, prod-
uct sets, enzyme functions, enzyme sequences and
alignment configurations. The function has a generic form
and is capable of measuring pathway similarity given dif-
ferent biological emphases. Due to its hierarchical integra-
tion structure, it is readily extensible to include other
relevant similarity measures if available (e.g. enzyme
affinities), or to modify a component score (e.g. using
compound molecular similarity scores). Moreover, the
proposed function is plausible since parts of primary
metabolism, which are known to be well conserved, are
found to be abundant in our top-scoring pathways and
building blocks.

M-PAS reveals highly conserved pathways containing
diversity or alternatives, which yields important informa-
tion for biology and life sciences. First, the results give
insight into the evolutionary differences between species.
For instance, the two species apparently diverged to proc-
ess 17 substrates differently, so that no "i-i-i-i" pathways
are found starting from them. This divergence calls for
special treatment of these substrates per species in analysis
and applications. Second, the diversity and alternatives in
conserved pathways also provide additional ways to con-
struct metabolic networks for currently unannotated spe-
cies. Third, our analysis lists potential candidate enzymes
for bioengineering, i.e. certain natural enzymes can be
removed, introduced, or changed so that we can select a
favorable pathway to enforce production of a metabolite
of interest, or block pathways leading to certain unfavora-
ble products. In particular, alternative pathways have to
be considered in drug design, because blocking central
enzymes might not be effective when alternative pathways
provide other routes, and cause drug resistance in the
pathogen population [1].

M-PAS is currently constrained to finding linear pathways
which are strictly similar. Although further processing
these linear pathways, e.g. combining them, could recon-
struct some tree-like subnets and cycles, not all network
structures can be captured. M-PAS could be extended to
construct and score more complex pathway topologies

that capture more variation. First, to capture more varia-
tion, one may extend the building block definition to
include larger differences, e.g. a 'dg' with two gaps, or to
allow compound mismatch. But care needs to be taken to
keep the computational load acceptable and to avoid link-
ing unrelated pathways. Alternatively, one may reduce the
pathway length, e.g. to assemble two building blocks into
a pathway to capture diverse pathways with short over-
laps. However, as discussed earlier, when the pathway
length becomes too short, the method starts to compare
individual reactions. To find more complex pathway
topologies, a more complex search algorithm is required.
An alternative would be to expand our building block def-
inition to incorporate more types of network motifs. But
again, the computational load will increase significantly.

The complementary reaction information of multiple
well-studied model species provides more confidence and
more possibilities to transfer this information to a new
species. Although M-PAS currently only performs pairwise
alignment on two species, we expect even more informa-
tive results when it is applied on multiple species, and
larger differences will be found as the phylogenetic dis-
tance increases. Finally, by relating different sets of
enzymes in different species to a common metabolic func-
tion, this work provides an infrastructure in which regula-
tory factors can be incorporated, and functional
hypotheses can be generated.
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Appendix
The twenty-six currency metabolites are ATP, ADP, UTP,
UDP, GTP, GDP, AMP, UMP, GMP, NAD, NADH, NADP,
NADPH, acetyl-CoA, CoA, propanoyl-CoA, L-glutamine,
L-glutamate, 2-oxoglutarate, CTP, CDP, CMP, H2O, CO2,
NH2, and phosphate.
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