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Abstract
Background: The indispensability of certain genes in an organism is important for studies of
microorganism physiology, antibiotic targeting, and the engineering of minimal genomes. Time and
resource intensive genome-wide experimental screens can be conducted to determine which genes
are likely essential. For metabolic genes, a reconstructed metabolic network can be used to predict
which genes are likely essential. The success rate of these predictions is less than desirable,
especially with regard to comprehensively locating essential genes.

Results: We show that genes that are falsely predicted to be non-essential (for growth) share
three characteristics across multiple organisms and growth media. First, these genes are on average
connected to fewer reactions in the network than correctly predicted essential genes, suggesting
incomplete knowledge of the functions of these genes. Second, they are more likely to be blocked
(their associated reactions are prohibited from carrying flux in the given condition) than other
genes, implying incomplete knowledge of metabolism surrounding these genes. Third, they are
connected to less overcoupled metabolites.

Conclusion: The results presented herein indicate genes that cannot be correctly predicted as
essential have commonalities in different organisms. These elucidated failure modes can be used to
better understand the biology of individual organisms and to improve future predictions.

Background
The dispensability and essentiality of genes in single-
celled organisms is an extensively studied field [1] with
multiple applications. Knowledge of which genes are
indispensible is needed for the construction of minimal
organisms, which are suggested as platforms for novel
bacteria with beneficial characteristics [2]. For pathogenic
organisms, lists of essential genes can be taken as lists of
potential targets for new antibiotics [3]. In the field of
metabolic engineering, non-essential gene deletions are
used to create bacterial strains with better production
characteristics [4].

Sizeable screens for essential genes have been undertaken
in a number of organisms [1,5], necessitating significant
time and resources. Alternatively, at least as far as meta-
bolic genes are concerned, in silico methods can be used to
predict gene essentiality. Such in silico studies have been
undertaken for a variety of organisms, including
Escherichia coli [6]Saccharomyces cerevisiae [5,7], Helico-
bacter pylori [8], Staphylococcus aureus [9], Bacillus subtilis
[10], and Mycobacterium tuberculosis [11]. These methods
are fast and require few resources. The rate-limiting step is
the mandatory reconstruction of the metabolic network,
which is a valuable resource to develop for a variety of
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other applications [12]. These reconstructions are cur-
rently available for a relatively small, but growing,
number of microorganisms. For organisms without a
reconstruction, methods to elucidate the context in which
essential genes occur across many organisms have been
described [1].

Multiple, simultaneous in silico gene deletions experi-
ments have also been described; see for example [8,13]. In
most organisms, any given individual metabolic gene is
likely dispensable under most conditions, due to robust-
ness properties that appear to be inherent to many biolog-
ical networks [14,15]. Experiments in which multiple
genes are removed from the organism are necessary to dig
deeper into its capabilities. Of course, not all individually
dispensable genes can be removed at once from an organ-
ism, meaning that a collection of single knock-out experi-
ments cannot itself provide instructions for constructing a
minimal organism. Double and higher simultaneous
knock-out experiments can be technically challenging in
the lab and complete coverage of the genome is virtually
impossible due to the combinatorial explosion. As cited
above, computational methods can easily predict the
results of such higher knock-outs. While the computer
time required for anything more than a comprehensive
double-deletion study may be prohibitive, a many more
knock-outs can be simulated in silico than can be per-
formed in vivo. Computational studies can be used as
screens to identify potentially interesting multiple knock-
outs to pursue in the lab, as has been demonstrated for
metabolic engineering applications [16,17].

Unfortunately, in silico methods for predicting gene essen-
tiality are not perfect. There are four possible outcomes
when comparing the results from in silico methods with
experiments: true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). True positives
occur when both the model and experiment indicate that
a gene is essential, and true negatives occur when the
model and experiment agree that a gene is nonessential.
False positives occur when the model says a gene is essen-
tial, but experiments suggest otherwise. False negatives
occur when the model says a gene is nonessential, but
experiments indicate that it is essential. The overall suc-
cess rate is given by the ratio of TP and TN to FP and FN.
The best large-scale studies cite overall success rates in the
vicinity of 90% [5,6,10], but nearly all cited success rates
are inflated by the large number of non-essential genes
that are correctly predicted. While these success rates are
not inaccurate, the correct prediction of nonessential
genes is less important than the correct prediction of
essential genes. In false positive cases, one experiment, the
deletion of that gene in the lab, can verify that a prediction
is wrong. However, in false negative cases, only a compre-
hensive set of experiments (one attempted deletion per

gene) can locate errors. When in silico studies are consid-
ered as screens for essential genes, perhaps for antibiotic
target discovery, false-negative errors limit the usefulness
of such screens. As detailed herein, when only experimen-
tally-determined essential genes are considered for statis-
tical purposes, success rates (or essential success rates) are
lower.

There are several reasons for incorrect essentiality predic-
tions, and incorrect predictions for a single organism are
frequently studied and described in the publications that
describe these predictions. Incorrect predictions are
believed to usually occur for several reasons. False nega-
tive errors can be caused by incomplete definition of the
biomass function, uncertainty in the growth medium
used for experiments, and toxic-intermediate buildup.
False positive errors can be caused by overly stringent def-
inition of the biomass function, uncertainty in the growth
medium, and the presence of unknown isozymes for a
given reaction. The biomass function is central to the sim-
ulation of gene deletions, because a gene is predicted to be
essential if its deletion results in the complete impairment
of flux through this special reaction. The growth medium
used for experiments is also very important because genes
essentiality is dependent on what substrates are available
for use. The buildup of toxic intermediates is difficult to
simulate accurately with constraint-based methods
because, in the absence of knowledge that the cell will
produce a metabolite even if it cannot be broken down,
there is no way to predict the production of toxic metabo-
lites. The presence of unknown isozymes suggests that the
organism is not understood as well as it could be.

While organism and gene specific explanations for incor-
rect predictions can be informative and lead to new dis-
coveries, we have elected to study and classify incorrect
predictions across organisms without trying to justify each
inaccuracy by itself. Herein we report that genes that are
incorrectly predicted as dispensable share common char-
acteristics in multiple organisms. In terms of computa-
tional predictions, these genes are less connected in the
network, more likely to be predicted inoperative, and con-
nect to less overcoupled metabolites. Taken together,
these characteristics suggest that incorrectly predicted
genes are connected beyond the boundaries of known
metabolism, both through limited knowledge of the reac-
tions they catalyze directly and through the limited under-
standing of metabolism surrounding those reactions.

Results and Discussion
in silico vs. experimental gene deletions
We used six genome-scale metabolic networks [3,6-
8,10,11] and a combined total of 13 experimental gene
essentiality data sets [5,18-25]. These networks are all ele-
mental and charge balanced, and they have been manu-
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ally curated. In terms of included genes, these are the most
complete networks for each organism that have been put
together by hand and carefully validated.

Gene deletions were simulated using flux balance analy-
sis, which is the most common method in use. In short,
reactions that absolutely rely on a particular gene for catal-
ysis were removed from the networks one at a time. If
growth (biomass production) was still possible, the gene
is predicted to be non-essential; otherwise, it is predicted
to be essential. Full details are presented in the methods
section. The gene essentiality experiments used herein
vary in methodology and coverage; interested readers
should consult the papers cited above for full details. It
must be noted that the experimental gene essentiality
results are almost certainly not perfect; for example, it is
possible that a gene is refractory to the attempted knock-
out methodology and yet is not absolutely essential for
growth of the organism. Figure 1 compares computation-
ally-predicted with experimentally-determined genes for
E. coli on glucose minimal medium. The green region rep-
resents true positives (TP), where both prediction and
experiment indicate a gene is essential. The orange region
represents false negatives (FN), where a gene is predicted
to be non-essential but in reality it is essential. The blue
and red regions indicate genes that are not essential, and
are predicted correctly and incorrectly, respectively.
Although genes in the red region are also predicted incor-
rectly by the model, these mistakes are easily found with
limited experimental screens. Genes in the orange region
cannot be deciphered as incorrect predictions without a

genome-wide experimental screen, because we cannot dis-
tinguish the orange region from the blue region without a
full set of experiments. Reducing the number of FN genes
is thus a worthwhile and important goal. Toward this end,
we focus on the green (TP) and orange (FN) regions to
elucidate the differences between the sets of genes of
which they are comprised.

The basic characteristics of the networks and the experi-
mental data sets are shown in Table 1. The final column
lists the percentage of essential genes, as determined by
the experimental studies, that the models correctly pre-
dict. This percentage is in all cases lower than the percent-
age cited in the papers detailing the reconstructions
because we only consider experimentally-determined
essential genes here. For statistical purposes, the papers
describing the results of single-organism gene deletion
studies also consider correctly predicted non-essential
genes, which significantly outnumber the essential genes
in most cases and generally are more often predicted cor-
rectly. As can be seen, if the in silico studies are used to
identify potentially essential genes to test experimentally,
even in the best cases, nearly a third of essential genes
would be missed. These genes share certain characteristics
that provide insight into cellular metabolism and the state
of knowledge we currently have.

Network Topology
Topological summary statistics (number of genes,
number of reactions, number of gene associated reactions,
number of metabolites) were noted for each metabolic
network studied. These statistics were tightly correlated
with each other; for example, a network with a larger
number of genes is likely to have a larger number of reac-
tions and metabolites (results not shown here). However,
these statistics showed no significant correlation with the
ability of a network to correctly predict the essentiality of
genes. Model performance, at least in terms of predicting
essential genes, does not appear to be related to model
size. This lack of correlation suggests that the number of
components (genes, reactions, etc.) in a network does not
impact our ability to reconstruct an accurate network.

Gene connectivity
A particular metabolic gene, either alone or in conjunc-
tion with other genes, encodes one or more enzymes
responsible for one or more biochemical reactions. The
associations between genes, enzymes, and reactions for
each metabolic network we analyzed are publically avail-
able and are termed gene-protein-reaction associations
(GPR's) [12]. Herein, we define the connectivity of a gene
as the number of reactions it affects, as characterized by
the GPR's. Depending on the organism, the mean connec-
tivity for a gene is between one and three. The connectivity
of a gene is a reflection of its understood prominence in

Essential genes in E. coliFigure 1
Essential genes in E. coli. This pie chart classifies all genes 
based on their essentiality on glucose minimal medium. The 
genes that are actually essential are in the green and orange 
regions, indicating correct and incorrect predictions, respec-
tively. The genes that are not essential are in the blue and 
red regions, again indicating correct and incorrect predic-
tions, respectively. The definitions for TP, FN, TN, FP are 
shown in a color-coded table for clarity.
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the metabolic network, as measured by the number of dis-
crete metabolic transformations it enables. Due to imper-
fect knowledge of the functions of genes, the connectivity
of a gene is an estimate, and probably a low estimate.
Because metabolic networks are reconstructed by only
assigning functions to genes when they are relatively cer-
tain, the actual connectivity of a gene could be higher than
the numbers given here.

The differences in gene connectivity across organisms/
media conditions and between TP and FN genes are
shown in Figure 2 and Table 2. With the notable exception
of E. coli and one S. aureus dataset (which practically
speaking, does not really have enough coverage to con-
sider statistically), across the organisms, TP genes are
more connected than are FN genes (p < 0.01). Within the
network of each organism, an arbitrary but identical
number of gene connectivities falling into the TP and FN
class were randomly selected and their means compared.
After repeating this procedure many times, S. cerevisiae, H.
pylori, and M. tuberculosis all consistently had mean FN
gene connectivities less than mean TP gene connectivities.
S. aureus had mean FN gene connectivities less than mean
TP gene connectivities approximately 94% of the time,
and for B. subtilis it occurred approximately 83% of the
time. As might be expected from Table 2, this trend does
not hold in E. coli. This indicates that when all networks
and experimental conditions are considered together, the
trend is clear, but not all networks can be proven to have
this trend with statistical significance.

The outwardly obvious reason for this trend is that we do
not have a comprehensive understanding of the function
of FN genes. The lesser connectivity of FN genes suggests
that they may be essential for reasons that are yet to be dis-
covered or fully understood. The connectivity of essential

genes may vary widely. However, we do not expect for it
to fall into two groups corresponding to TP and FN unless
the connectivity for FN genes is an artifact of an incom-
plete network E. coli, arguably the best understood micro-
organism, does not show this trend, supporting the
notion that incomplete knowledge of gene function leads
to the connectivity differences. We expect that as more is
learned about the FN genes in other organisms their con-
nectivity will increase and they will concurrently become
TP genes as the reasons for their essentiality are under-
stood.

Flux variability and blocked genes
Given a metabolic network and an objective function, the
allowable variability of the flux through each reaction can
be computed with a series of linear programming prob-

The mean connectivity of genes for each organism and media condition, plus the mean connectivity for TP and FN genes separatelyFigure 2
The mean connectivity of genes for each organism and media 
condition, plus the mean connectivity for TP and FN genes 
separately. On average, FN genes are less connected than TP 
genes, meaning that they are responsible for catalyzing fewer 
reactions.
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Table 1: The microorganisms and media conditions used in the study, together with the predicted gene essentiality results. The 
percentage of essential genes predicted correctly is a measure of how effective a screen the computational gene essentiality prediction 
really is.

Organism Total # of genes Experimental media # of TP 
genes

# of FN 
genes

% essential 
genes correct

E. coli 1261 glucose MM 157 81 66.0
glycerol MM 156 86 64.5

S. cerevisiae 750 glucose 63 95 39.9
glucose (anaerobic) 47 109 30.1

galactose 66 136 32.7
glycerol 66 132 33.3
ethanol 90 120 42.9

rich 28 90 23.7
H. pylori 339 rich 36 39 48.0
S. aureus 619 rich (Forsyth et al.) 7 27 20.6

rich (Ji et al.) 1 5 16.7
M. tuberculosis 661 Middlebrook 105 132 44.3

B. subtilis 844 rich 65 31 67.7
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lems [26]. In general, some fluxes can take a wide range of
values (they have a wide flux span), some a smaller range,
and some have no variability at all. Reactions that must
not operate in a steady state are termed blocked reactions;
they have no variability at all and are constrained by stoi-
chiometry to carry zero flux. From a modeling standpoint,
a reaction can be blocked for two reasons. First, the inputs
and outputs determined by given environmental condi-
tions (i.e. growth media) may not allow for a reaction to
operate, but it would not be blocked under some different
set of input and output constraints. This is called a condi-
tion-dependant gap. Second, the reaction may have one
or more metabolites that are unavailable for production
or consumption due to a network gap, which is basically
a dead-end, or a condition-independent gap. This gap
may be a modeling artifact due to incomplete knowledge
of an organism, or a remnant that used to be functional in
an ancestor of the organism. When gaps and blocked reac-
tions occur in metabolic models, they are often viewed as
an opportunity to discover something previously
unknown about the organism [27].

To identify a relationship between gene essentiality and
flux variability, we computed the maximum and mini-
mum allowable flux through each reaction in each meta-
bolic network, constraining the network to produce
biomass at no less than 90% of the optimal rate. Because
biomass production is permitted to take a range of values,
as would be the case amongst any experimental popula-
tion of cells, any reaction that has no flux span (meaning
that its flux can only take a single value) must also be a
blocked reaction. We found a widely variable number of
blocked reactions in the networks, ranging from 75 in H.
pylori to 888 in E. coli on glycerol minimal medium. We
then mapped these reactions to genes, defining a gene as
blocked if it is associated with at least one blocked reac-
tion, and completely blocked if all reactions with which it

is associated are blocked. Thus, a blocked gene may have
some functionality in the network, but a completely
blocked gene cannot.

We found that when all organisms and media conditions
are considered together, FN genes are more likely to be
both blocked and completely blocked than non-FN genes
(p < 0.02). However, this trend does not hold true on an
individual level for each organism and experimental
screen. The trend is largely driven by the highly uniform
and significant results for S. cerevisiae, where all media
conditions lead to the conclusion that with high certainty
(p < 0.01), FN genes are more likely to be blocked and
completely blocked than non-FN genes. M. tuberculosis (p
< 0.01) and S. aureus (p < 0.06) also have reasonably com-
pelling evidence for FN genes being preferentially
blocked, but not completely blocked. The results are
detailed in Figure 3 and Table 3.

The fraction of FN and non-FN genes blocked and com-pletely blockedFigure 3
The fraction of FN and non-FN genes blocked and com-
pletely blocked. In most cases here, FN genes are more likely 
to be blocked (at least one of their reactions cannot be used) 
and completely blocked (none of their reactions can be 
used).
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Table 2: The connectivity of genes in the organisms studied. The overarching trend is that the mean connectivity of FN genes is less 
than the mean connectivity of TP genes for nearly all organisms and data sets.

Organism Overall Mean Connectivity Experimental 
media

Mean connectivity 
of TP genes

Mean connectivity 
of FN genes

E. coli 2.97 glucose MM 2.13 2.15
glycerol MM 2.10 2.01

S. cerevisiae 1.80 glucose 2.38 1.36
glucose (anaerobic) 2.64 1.40

galactose 2.32 1.32
glycerol 2.36 1.31
ethanol 2.04 1.35

rich 3.39 1.44
H. pylori 1.36 rich 1.14 1.05
S. aureus 1.54 rich (Forsyth et al.) 1.29 1.04

rich (Ji et al.) 1.00 1.00
M. tuberculosis 1.72 Middlebrook 1.85 1.42

B. subtilis 1.96 rich 2.02 1.68
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Whereas the simplest explanation for the gene connectiv-
ity results above was incomplete knowledge about FN
genes themselves, a better rationale for the blocked reac-
tions here is incomplete knowledge of areas of metabo-
lism closely associated with these genes. The network
neighborhood of these genes is not completely under-
stood. E. coli is again a very well-studied organism and it
is not surprising that FN genes cannot be explained by
incomplete knowledge of the surrounding network. H.
pylori has a very compact metabolic network, with 45%
fewer genes than the next smallest network. It also has one
environment in which it is specialized, the human stom-
ach. Thus, it is reasonable to conclude that this organism
may have a reasonably comprehensively known metabo-
lism. On the other hand, S. cerevisiae has a variety of fac-
tors complicating its metabolism, including the
compartmentalization that is an essential feature of
eukaryotic organisms. With metabolic processes spanning
various organelles and intracellular transport mechanisms
incompletely understood, it is logical that FN genes would
result from a lack of knowledge of the surrounding metab-
olism.

Overcoupled metabolite pairs
In genome-scale metabolic networks, certain pairs of
metabolites occur in reactions together many times; for
example, ATP and ADP. Some of these metabolite pairs
can be classified as overcoupled based on statistical calcu-
lations that consider the individual connectivity of each
metabolite and the network structure [28]. These overcou-
pled metabolite pairs are often associated with important
cellular features such as energy transfer and charge balanc-
ing. Their functionality together is speculated to be impor-
tant enough to have evolved beyond the point at which
random connectivity would explain their co-occurrence.
Even without knowing that these pairs of metabolites are
overcoupled in a statistically significant manner, a casual

observer would note that many of the pairs are highly
important for cellular function.

We calculated overcoupled metabolites by the previously
published method [28], using p < 0.01. We define a gene
as associated with an overcoupled metabolite pair if it cat-
alyzes at least one reaction in which at least one member
of the overcoupled pair participates. The gene does not
have to be associated with both members of the pair
explicitly, but of course it is associated with both metabo-
lites through the actions of whichever metabolite it
directly influences. On average, 95% of genes in all mod-
els are associated with an overcoupled metabolite.

The overcoupling count for the ith gene is calculated as

count = p•Ŝ•Gi

where

Ŝ is the binary form of the stoichiometric matrix;

G is the gene-reaction association matrix (each row repre-
sents a reaction, each column a gene, and each binary
entry indicates whether that gene is associated with that
reaction); and

p is the overcoupled metabolite vector, with each entry
specifying the number of overcoupling interactions with
which a metabolite is associated.

This works out to the sum of the number of overcoupling
interactions in which the compounds that are associated
with a particular gene are involved, allowing compounds
to be counted multiple times if they participate in multi-
ple reactions. A simple example is presented in the meth-
ods section for clarity.

Table 3: The fraction of blocked and completely blocked genes, both FN and non-FN.

Organism Media Fraction of non-FN 
genes blocked

Fraction of FN 
genes blocked

Fraction of non-FN genes 
completely blocked

Fraction of FN genes 
completely blocked

E. coli glucose MM 0.36 0.37 0.09 0.10
glycerol MM 0.38 0.37 0.10 0.08

S. cerevisiae glucose 0.39 0.67 0.13 0.28
glucose (anaerobic) 0.45 0.74 0.18 0.31

galactose 0.37 0.64 0.14 0.21
glycerol 0.38 0.64 0.14 0.25
ethanol 0.37 0.71 0.13 0.28

rich 0.39 0.69 0.13 0.29
H. pylori rich 0.17 0.13 0.01 0
S. aureus rich (Forsyth et al.) 0.39 0.56 0.13 0.19

rich (Ji et al.) 0.39 1.00 0.13 0.6
M. tuberculosis Middlebrook 0.29 0.40 0.07 0.07

B. subtilis rich 0.43 0.19 0.12 0.17
Page 6 of 10
(page number not for citation purposes)



BMC Systems Biology 2008, 2:14 http://www.biomedcentral.com/1752-0509/2/14
As previously shown (figure 2), FN genes are associated
with fewer reactions on average than TP genes. Thus, we
corrected for this bias by computing the overcoupling
count for all gene-associated reactions multiplied by the
fractional increased connectivity of TP genes. This correc-
tion factor is added to the overcoupling count for FN
genes to get the corrected overcoupling count. The results
are shown in figure 4 and table 4. In most cases, the FN
genes, even after correction for unequal connectivity, are
much less associated with overcoupled metabolites than
the TP genes. Across all organisms, permutation testing
gives p < 0.01. On an individual organisms basis, arbitrary
numbers of genes were sampled from to provide some
indication of the significance of the differences seen in fig-
ure 4. This procedure shows that most organisms have sta-
tistically significant differences between TP and FN genes
(E. coli on glycerol and H. pylori are the key exceptions,
and the small number of experimentally verified S. aureus
essential genes stymies statistical tests).

Because FN genes, on average, interact less with overcou-
pled metabolites, they are less likely to be tied into impor-
tant, evolutionarily conserved metabolic processes, at
least in silico. It is possible that the FN genes are responsi-
ble for reactions beyond what is currently known, similar
to the proposed reason that FN genes have lower connec-
tivity. It is also possible that the reactions with which FN
genes are associated are not completely correct. For exam-
ple, some of these reactions may have alternative sub-
strate/product pairs that are highly important for the
network.

Conclusion
Herein we have demonstrated that incorrectly predicted
essential metabolic genes have network level differences

that are largely conserved across organisms. These differ-
ences are (1) a smaller mean number of reactions per
gene, (2) a larger percentage of blocked genes, and (3) a
smaller overcoupling count.

These three differences all rely on the interactions between
networks components. Fundamentally, gene essentiality
is a network-level property, so it is to be expected that
explanations will rely on the network as a whole. We did
not find any explanation for incorrect gene essentiality
predictions based on simple statistics such as rudimentary
network size metrics.

The results suggest that incomplete knowledge of the met-
abolic processes associated with essential genes and the
immediately surrounding metabolic processes are driving
forces in incorrect gene essentiality predictions. These fac-
tors in most cases cannot with statistical significance
explain incorrect gene essentiality predictions in E. coli,
the best characterized microorganism considered here.
One might expect, based on the numbers for E. coli shown
in Table 1, that roughly a third of FN genes cannot be
described with these explanations. Thus, further study of
this topic is warranted.

One potentially fruitful area may be a comparative analy-
sis of more precise network roles of FN genes vs. those of
TP genes. One could, for example, computationally pre-
dict the necessity of each gene in the network for a variety
of functions other than growth, such as redox balance or
energy production. This may allow the determination of
imperfectly understood areas of metabolism, even in well
studied organisms. We foresee increased comparative
analysis of microbial metabolism as more networks
become available, akin to the growth of genome sequence
comparisons from a curiosity to the essential tool that is
BLAST today.

Methods
Metabolic network setup and in silico gene deletions
Metabolic networks for all six organisms were obtained as
SimPheny (Genomatica, San Diego, CA) output files and
imported into the COBRA Toolbox [29] in Matlab (The
Mathworks, Inc., Natick, MA) using the readCbModel
command with the SimpheyPlus format. Media condi-
tions were set by using exchange fluxes to allow inputs to
the model that are consistent with each published experi-
mental gene deletion study.

Gene deletions were simulated using the singleGeneDele-
tion command in the COBRA Toolbox. The set of zero or
more reactions that cannot occur without the presence of
each gene were removed from the model, and we
attempted to simulate growth. If no growth was possible,
the gene was predicted to be essential. The results from the

The mean overcoupling count for TP and FN genes, plus the FN count corrected for unequal connectivity of TP and FN genesFigure 4
The mean overcoupling count for TP and FN genes, plus the 
FN count corrected for unequal connectivity of TP and FN 
genes. FN genes are on average connected to less overcou-
pled metabolites.
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in silico experiments were compared with previously pub-
lished experimental results to distinguish TP genes from
FN genes (and both from genes that are not essential
experimentally). Each gene in each organism under each
media condition was identified as TP, FN, or not essential.

Gene connectivity
Given the boolean gene-protein-reaction associations, the
COBRA Toolbox automatically produces a binary matrix
G describing the associations between genes and reac-
tions. The number of non-zero entries in each column
describe the connectivity of a single gene. The mean con-
nectivity of TP and FN genes was determined with simple
arithmetic. All graphs were made in Excel (Microsoft, Red-
mond WA).

Flux variability and blocked reactions
The flux variability of each reaction in each network under
each set of media conditions was determined using the
fluxVariability command in the COBRA Toolbox, con-
straining biomass production to be no less than 90% of
maximum. Reactions that cannot take any flux are found
this way and termed "blocked." These blocked reactions
are mapped back to genes through G, and genes associ-
ated with only blocked reactions are termed completely
blocked; those associated with one or more blocked reac-
tions are termed blocked.

Overcoupled metabolites and overcoupled count
Overcoupled metabolites are computed with the same
procedure as has been previously published [28]. The
metabolite coupling matrix M is calculated as

M = Ŝ•ŜT

where Ŝ is the binary form of S.

M is a symmetric matrix with off-diagonal elements indi-
cating the number of reactions in which two metabolites
(rows and columns of M) co-participate. The diagonal ele-
ments give the total number of reactions in which each
metabolite appears.

Overcoupled metabolites are determined by redistribut-
ing the elements of Ŝ such that the diagonal elements of
M remain the same but the off-diagonal elements vary, in
effect simulating the effects of random co-occurrence of
metabolites but maintaining the connectivity structure of
the network. After many redistributions, p values can be
determined by comparing the actual value of Mij to the
random distribution of values. We used only metabolites
that are overcoupled with p < 0.01.

The overcoupled count for each gene was calculated as
described above. As an example, consider a gene that cat-
alyzes two isomerization reactions:

A -> B

B -> C

A is a member of one overcoupled metabolite pair, B is a
member of 3 overcoupled metabolite pairs, and C is not
overcoupled with any other metabolite. The count is 1 + 3
+ 3 = 7 (1 for A, 3 for B in the first reaction, and 3 for B in
the second reaction).

Statistical testing
Except for determining which metabolite pairs are over-
coupled, the statistics of which are summarized above and
fully covered in [28], two statistical procedures were used
to find p values. Comparisons across multiple organisms,
for example, whether gene connectivity is less for FN
genes, were analyzed with permutation tests. The data

Table 4: The mean overcoupling counts for each organism and media condition.

Organism Experimental 
media

TP mean overcoupling 
count

FN mean overcoupling 
count

Corrected FN mean 
overcoupling count

E. coli glucose MM 65.96 45.79 45.55
glycerol MM 65.10 49.70 50.85

S. cerevisiae glucose 84.87 32.05 48.55
glucose (anaerobic) 99.74 33.93 53.19

galactose 81.65 31.13 47.80
glycerol 80.47 32.03 49.63
ethanol 70.73 29.62 40.88

rich 149.57 33.97 63.51
H. pylori rich 13.58 15.62 16.50
S. aureus rich (Forsyth et al.) 16.29 12.85 16.88

rich (Ji et al.) 26.00 13.60 13.60
M. tuberculosis Middlebrook 70.21 39.55 47.64

B. subtilis rich 99.35 35.16 40.74
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points were randomly assigned to two groups many times
and the number of times the actual difference of means
was greater (or less) than the random difference of means
was noted. This number was divided by the number of
randomizations to get a p value. In no case was the
number of randomizations less than 10,000.

Comparisons within a dataset, for example, whether FN
genes in S. cerevisiae are less connected than TP genes,
were assigned a confidence score by randomly picking the
same number of genes from each group and comparing
their means. The number of times that the sampled mean
for FN genes is less than the sampled mean for TP genes
divided by the number of random samplings gives a con-
fidence score or p value. No fewer than 10,000 randomi-
zations were used.
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