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Abstract
Background: Biochemical equilibria are usually modeled iteratively: given one or a few fitted
models, if there is a lack of fit or over fitting, a new model with additional or fewer parameters is
then fitted, and the process is repeated. The problem with this approach is that different analysts
can propose and select different models and thus extract different binding parameter estimates
from the same data. An alternative is to first generate a comprehensive standardized list of plausible
models, and to then fit them exhaustively, or semi-exhaustively.

Results: A framework is presented in which equilibriums are modeled as pairs (g, h) where g = 0
maps total reactant concentrations (system inputs) into free reactant concentrations (system
states) which h then maps into expected values of measurements (system outputs). By letting
dissociation constants Kd be either freely estimated, infinity, zero, or equal to other Kd, and by
letting undamaged protein fractions be either freely estimated or 1, many g models are formed. A
standard space of g models for ligand-induced protein dimerization equilibria is given. Coupled to
an h model, the resulting (g, h) were fitted to dTTP induced R1 dimerization data (R1 is the large
subunit of ribonucleotide reductase). Models with the fewest parameters were fitted first.
Thereafter, upon fitting a batch, the next batch of models (with one more parameter) was fitted
only if the current batch yielded a model that was better (based on the Akaike Information
Criterion) than the best model in the previous batch (with one less parameter). Within batches
models were fitted in parallel. This semi-exhaustive approach yielded the same best models as an
exhaustive model space fit, but in approximately one-fifth the time.

Conclusion: Comprehensive model space based biochemical equilibrium model selection
methods are realizable. Their significance to systems biology as mappings of data into mathematical
models warrants their development.

Background
Ribonucleotide reductase (RNR) has a small subunit R2
that exists almost exclusively as a dimer, and a large subu-
nit R1 that dimerizes when dTTP, dGTP, dATP, or ATP
binds to its specificity site, and hexamerizes when dATP or
ATP binds to its activity site [1-6]. Thus, R1 is the back-
bone of a biochemical equilibrium network that contains

a large number of R1 complexes. This network has more
dissociation constants (Kd) than can be estimated from

currently available data, so assumptions must be made to
reduce the number of independent Kd. These assumptions

come in two forms: those that state that for the data at
hand, a Kd is too large or small to be distinguished from

infinity or zero, respectively, and those that state that the
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data are too weak to rule out a null hypothesis of the form

Kd = . Model parameters such as the fraction of R1

capable of forming dimers and hexamers, and the enzy-
matic activities of these R1 states, also come with plausi-
ble null hypotheses. In general, different null hypotheses
define different models that yield different estimates of
the freely estimated parameters. Unfortunately, as model-
ers traverse a path of reasonable hypotheses until they
arrive at a model that provides both a good fit and Kd con-

fidence interval limits that are not too wide, they often
stop at different places, and thus report different Kd values.

Such Kd estimate extraction differences could be reduced,

if a systematic reproducible approach to biochemical
equilibria model building was established. Progress
toward this goal is described in this paper.

Results
Model
Consider a dataset comprised of N steady state non-cova-
lent binding equilibriums indexed by n in which J differ-
ent complexes can potentially form from a protein R of
known total concentration Tn1 through interactions with
itself and I - 1 other reactants (e.g. substrate, effectors and
other proteins) of known total concentrations Tni (1 <i ≤
I). Suppose Wij copies of the ith reactant exist in the jth
complex and that a particular R molecule is either undam-
aged with probability p, and thus capable of forming each
of the plausible complexes, or damaged with probability
1 - p, and thus incapable of forming any complexes.
Define Tn = (Tn1, Tn2, ...TnI), Fn = (Fn1, Fn2, ...FnI) as the cor-
responding free reactant concentrations, K = (K1, K2, ...KJ)
as the dissociation constants (of complexes to free reac-
tants), yn as the measurement(s) made at the nth steady
state, and Zn = (Zn1, Zn2, ...ZnJ) as the concentrations of
complexes predicted by W, K and Fn to be

The relationship between the system inputs (Tn), states
(Fn) and outputs (yn) is then modeled by I total concentra-
tion constraints

g(Fn, Tn, K, p) = 0

that must be solved for the I free reactant concentrations
Fn at each n (1 <n ≤ N) given the inputs Tn, and an output
measurement model h that connects Fn to expected values
of the outputs E(yn)

yn = h(Fn, K, p, L) + εn

where all of the h specific parameters (e.g. kcat's and pro-
tein masses) are contained in the vector L and, if the yn are
vectors of measurements, the en are vectors of zero mean
noise, potentially correlated within steady states, but
uncorrelated between steady states; only scalar yn are con-
sidered hereafter. The model parameters K, p and L are not
indexed by n because they are fitted jointly to the entire
dataset, i.e. one set of estimates of these parameters
describes all N steady states simultaneously as one (g, h)
model of one underlying biochemical equilibrium net-
work.

System models
The I equations of a system model g = 0 are

where pTn1 is the total concentration of undamaged R and
Fn1 is the concentration of free R that is undamaged and
thus capable of forming complexes. If all biologically
plausible candidate complexes are present in these equa-
tions, the model will have as many K parameters as possi-
ble, and it will therefore be called a full model. A space of
g = 0 models can then be generated from this full model
through combinations of null hypothesis constraints on
the parameters in (K, p).

Fitting a particular (g, h) to data (T, y) to estimate param-
eters in (K, p, L) demands many repeated solutions of g =
0. These equations must be solved efficiently to fit large
model spaces and models with large numbers of parame-
ters. The approach proposed here solves g = 0 by letting g
be the right hand side of a parent set of ordinary differen-
tial equations (ODEs) that achieves g = 0 at steady state.
Specifically, the following ODEs were simulated to large Τ
to solve the polynomial system in Eqs. (2):
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where 1 <i ≤ I, n = 1...N and Fni(0) = 0. Note that the initial
conditions guarantee that the system derivatives are ini-
tially positive and thus that the system always starts in an
acceptable direction; model parameters are constrained to
positive values, expressed internally as ec, where c is
unconstrained during optimization.

The system of polynomials in Eqs. (2) has been solved by
others using other approaches. In one approach, the Fni
terms are pulled to the left hand side and guesses are then
iteratively entered into the right hand side until the equa-
tions become self consistent [7]. This approach has more
recently been shown to fail in cases of oligomerization,
and modifications of the approach have been suggested
[8]. The difficulties of solving systems of arbitrary nonlin-
ear algebraic equations in general have been described [9]
and a common approach (e.g. used by fsolve in Matlab)
has been to minimize the sum of squares g2 using Leven-
berg-Marquadt or Gauss-Newton methods. Intuitively,
methods that exploit the fact that the equations are strictly
polynomials should outperform these general methods.
Continuation homotopy is one such method [10]. In this
method, polynomials are homogenized to a larger poly-
nomial system with known solutions, and these solutions
are then traced to the desired solutions as the homoge-
nized polynomials are continuously morphed back to the
original polynomial system. On a practical level, all com-
plex initial solutions must be tracked to find the desired
final solution that is strictly real and positive, and this
makes the approach slower than the R [11] implementa-
tion of Eqs. (3) provided here, which finds only the posi-
tive real root and does so rapidly because it automatically
generates and compiles C code (of Eqs. 3) that is then
used with the dll/so option of the ODE solver lsoda avail-
able in R [11]. To glean some insight into why Eq. (3)

works, note that the gi (i.e. right hand sides) are all ini-
tially positive, and all monotonically decreasing functions
of increasing free concentrations. Free concentration dif-
ferentials thus start positive and shrink toward zero as the
free concentrations move out of their initial values at the
origin and into the positive quadrant. When a component
Fni of the vector Fn crosses its steady state value, the corre-
sponding gi switches signs, since the gi continue to
decrease monotonically through zero, and Fni is then thus
driven back toward a smaller value, i.e. back toward the
steady state value that it just crossed. This explains why
the proposed algorithm is stable. Finally, an alternative
approach to the problem is to solve g = 0 using full-blown
kinetic equations with irrelevant time scales defined by kon
= 1 and koff = Kd, but the number of ODEs then equals the
number of complex species plus the number of reactants,
rather than just the number of reactants as in Eqs. 3, and
although each ODE is computationally simpler in this
case, the savings per ODE do not offset the added cost of
the additional ODEs. This added cost is expected to
become substantial if not prohibitive in combinatorially
complex scenarios wherein the number of complexes is
very large relative to the number of reactants.

K hypotheses
In the g = 0 model in Eqs. (2), the elements of K are
defined as

This definition can differ by stoichiometric factors from Kd
defined as koff/kon. For example, consider a system where R
can bind a ligand t and R can also form dimers. Figure 1

K
Fni

Wi j
i
I

Znj
j = ′

′
′=∏ 1 . (4)

Rt system state transition diagramFigure 1
Rt system state transition diagram. The next states of a unit volume reaction vessel that currently has (i, j, k, l, m, n) mol-
ecules of (R, t, Rt, RR, RRt, RRtt) are shown. The kon's in this diagram are the rates at which potential interactions successfully 
materialize, and the koff 's are the per-site rates at which ligands dissociate.
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shows the state transitions of this system from a state of i,
j, k, l, m and n molecules of R, t, Rt, RR, RRt and RRtt,
respectively, per unit volume, where the unit volume is
small enough that any reactant can react equally well with
any other reactant, yet large enough that these integers are
approximately equal to themselves plus or minus one or
two. If net fluxes between states are zero, the system is in
equilibrium and the following definitions of Kd ≡ koff/kon
arise

In Eqs. 5 and 7, x(x - 1)/2 is the number of unique binary
interactions of x molecules with themselves. The stoichio-
metric factor in Eq. (9) arises because RR has twice as
many ways to gain a t as RRt has ways to lose a t, and in
Eq. 10 it arises because RRtt has twice as many ways to
lose a t as RRt has ways to gain a t. Eqs. 9 and 10 assume
that RR and RRtt are symmetric dimers.

Regarding differences between the Kd in Eqs. (5–10) and

the Kj in Eq. (4), the Kd always have units of concentration

because they always correspond to two molecules binding
together at one time, and the Kj have units of concentra-

tions raised to integer powers  that can be

greater than 1 (in such cases the Kj represent several

sequential binding steps condensed into one, e.g. see
Table 1). In general, the Kd are associated with grid-shaped

equilibrium network graphs such as those shown in Fig-
ure 2 and the Kj are associated with spur-shaped equilib-

rium graphs such as those shown in Figure 3.
Notationally, subscripts of the Kj will be distinguishably

devoid of d's and underscores, e.g.  is the

Kj of graph M in Figure 3.

In the graphs shown in Figure 2, it is plausible to conjec-
ture a priori that any two or all three of Kd_R_R, Kd_Rt_R
and Kd_Rt_Rt are equal, i.e. that the binding of t to R has
no impact on R binding to itself. Similarly, it is plausible
that any two or all three of Kd_R_t, Kd_RR_t and Kd_RRt_t
are equal. These two sets of hypotheses are not independ-
ent, since Kd products of two paths between the same two
nodes must be equal. For example, in Figure 2A, starting
with free reactants, the two paths to RRt are

and the two paths to RRtt are
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Similarly, the two paths from the node [Rt R t] to RRtt
yield

though these could have been obtained from (11) and
(12). Based on Eqs. (11), either of Kd_R_t = Kd_RR_t and
Kd_R_R = Kd_Rt_R implies the other, and based on Eqs. (13),
either of Kd_R_t = Kd_RRt_t and Kd_Rt_R = Kd_Rt_Rt implies the
other. Such constraints yield the Kd equality hypotheses
shown in Fig. 2. This space of Kd equality models was gen-
erated from the fully constrained Model A by releasing
pairs of R binding equality constraints and counterpart t
binding constraints one at a time. When two R binding
constraints are released, all three R binding constants
become independent, and this leaves only one permissi-
ble t-binding constraint (Model E) or none (Model F).
Models with one node less (G to N) are then considered;
the two Rt nodes act as one. Models with two or more
nodes removed do not allow Kd equality constraints and
in these cases, Kj defined by Eq. 4 are adequate; such mod-
els are shown in Figure 3.

The Rt system full model special case of g = 0 in Eqs. (2),
with Tn = ([RT], [tT]), Fn = ([R], [t]), Zn = ([Rt], [RR], [RRt],
[RRtt]), and thus

is

These g = 0 equations correspond to graph A in Figure 3.
As Kj = ∞ assumptions are applied to these equations to
remove specific terms one at time, two at a time, and so
on, corresponding nodes are removed from graph A to
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Table 1: Kj assignment model definitions

graph KRt KRR KRRt KRRtt

2A Kd_R_t 2Kd_R_R Kd_R_tKd_R_R

2B Kd_R_t 2Kd_R_R Kd_R_tKd_R_R

2C Kd_R_t 2Kd_R_R Kd_R_tKd_Rt_Rt

2D Kd_R_t 2Kd_R_R Kd_R_tKd_Rt_R

2E Kd_R_t 2Kd_R_R Kd_R_RKd_RR_t

3A, 2F Kd_R_t 2Kd_R_R Kd_R_tKd_Rt_R

3A, 2F Kd_R_t 2Kd_R_R Kd_R_RKd_RR_t 2Kd_R_RKd_RR_tKd_RRt_t

2G Kd_R_t ∞ Kd_R_tKd_Rt_R

3B, 2H Kd_R_t ∞ Kd_R_tKd_Rt_R

2I Kd_R_t 2Kd_R_R ∞

3C, 2J Kd_R_t 2Kd_R_R ∞

2K Kd_R_t 2Kd_R_R Kd_R_tKd_R_R ∞
3D, 2L Kd_R_t 2Kd_R_R Kd_R_tKd_Rt_R ∞

2M ∞ 2Kd_R_R Kd_R_RKd_RR_t

3E, 2N ∞ 2Kd_R_R Kd_R_RKd_RR_t 2Kd_R_RKd_RR_tKd_RRt_t

3F Kd_R_t ∞ ∞

3G Kd_R_t ∞ Kd_R_tKd_Rt_R ∞
3H Kd_R_t 2Kd_R_R ∞ ∞

3I* ∞ ∞ Kd_R_tKd_Rt_R

3J* ∞ 2Kd_R_R ∞

3K* ∞ 2Kd_R_R Kd_R_tKd_Rt_R ∞
3L Kd_R_t ∞ ∞ ∞

3M* ∞ ∞ ∞

3N* ∞ ∞ Kd_R_tKd_Rt_R ∞
3O ∞ 2Kd_R_R ∞ ∞
3P ∞ ∞ ∞ ∞
3Q 0 ∞ ∞ ∞
3R ∞ ∞ ∞ 0
3S ∞ ∞ 0 ∞
3T ∞ 0 ∞ ∞

*Kd_R_t is too large to estimate in these cases, but its products with 
small numbers, viewed as single Kj parameters, might still be estimable.

2 2K Kd R t d R R_ _ _ _

2 2K Kd R t d Rt Rt_ _ _ _

2 2K Kd R t d Rt Rt_ _ _ _

2 2K Kd R t d R R_ _ _ _

2 2K Kd R R d RR t_ _ _ _

2 2K Kd R t d Rt Rt_ _ _ _

2 2K Kd R t d Rt R_ _ _ _

2 2K Kd R t d Rt Rt_ _ _ _

2 2K Kd R t d R R_ _ _ _

2 2K Kd R t d Rt Rt_ _ _ _

2 2K Kd R R d RR t_ _ _ _

2 2K Kd R t d Rt Rt_ _ _ _

2 2K Kd R t d Rt Rt_ _ _ _

2 2K Kd R t d Rt Rt_ _ _ _

2 2K Kd R t d Rt Rt_ _ _ _
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Space of Kd equivalence grid graph modelsFigure 2
Space of Kd equivalence grid graph models. In these Kd =  grid graphs t dimension edges marked = are equal and R 

dimension edges marked | are equal, i.e. Model A is fully constrained. Models F, H, J, L and N have zero Kd equivalence con-
straints and are thus equal to Models A-E in Figure 3.

′K d
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create graphs B to P and thus models that conjecture that
the deleted nodes/complexes are not detectable above
noise. Of these models, the J single edge models (L to O)
can have additional Kj = 0 assumptions applied to them to
generate J additional g models (Q to T), each alleging that
the free concentration of the reactant that is not in excess
(i.e. ligand or R) is indistinguishable from zero (i.e. at a
level too low to be detected using the data at hand). In
such models, Kj = 0 is handled either by approximating 0
by a small number (e.g. .0001; this option is readily auto-
mated, but pushing it too far causes numerical problems)
or by replacing the equations with rules (e.g. if KRRtt = 0 as
in Model 3R, the rule would be: if [RT] <[tT], [R] = 0 and

[RRtt] = [RT]/2, else [RT] ≥ [tT] and thus [R] = [RT] - [tT] and
[RRtt] = [tT]/2; this option remains to be automated). In
the end, a spur graph (e.g. 3A) with J edges generates 2J

models via Kj = ∞ assumptions and an additional J models
via Kj = 0 assumptions, e.g. the 24 + 4 = 20 models in Fig.
3. Considering that J is the number of complex species,
which can be large, the number of g models generated can
be huge.

The models in Figs. 2 and 3 are characterized by their
assignments to the four Kj parameters in Eq. 15 as shown

in Table 1. This table defines a standard space of K
hypothesis g models for ligand induced protein dimeriza-

Space of Kj = ∞ or 0 spur graph modelsFigure 3
Space of Kj = ∞ or 0 spur graph models. The full spur graph in A spawns this g space of system models. Models Q to T 
correspond to infinitely tight binding. Models I, J, M, N, R and S cannot be represented by grid graphs.
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tion equilibria. As Models F, H, J, L and N in Fig. 2 do not
have any Kd equality constraints, their data fitting capabil-

ities are equal to those of Models A through E in Fig. 3,
respectively. To see this, consider the first of the two rows
labeled 3A,2F in Table 1. Eqs. (5) and (8) give KRR =

2Kd_R_R and KRt = Kd_R_t, Eq. (11) gives KRRt = Kd_R_tKd_Rt_R,

which can be adjusted independently by the factor Kd_Rt_R,

and Eq. (12) gives KRRtt = Kd_Rt_Rt, which

can be adjusted independently by Kd_Rt_Rt. Thus, all four of

the Kj parameters of 3A can be independently manipu-

lated to arbitrary values by the four Kd parameters of 2F,

and in this sense, the two models are equivalent. A major
difference, however, is that 2F can be represented in more
than one way. Indeed, two choices are given by the two
3A,2F rows in Table 1, and all of the graphs in Figure 2 can
be parameterized as subsets of either the E-shaped or -
shaped parameterization topologies given in these two
full model rows.

The nine grid graphs in Fig. 2 that contain at least one Kd

=  constraint have |Kj| > |Kd| where |Kx| is the number

of freely estimated Kx parameters. Meanwhile, models that

are equally well represented by both grid and spur graphs
are characterized by |Kj| = |Kd|, which, in Fig. 3, is all of the

graphs except I, J, M, N, R and S. These exceptions must
use spur graphs to avoid non-identifiability problems,
have |Kj| < |Kd|, include complexes without including

required intermediates, and have Kd = ∞ in product expres-

sions that remain finite (see Table 1 footnote). Such mod-
els are palatable only because they represent statistical
null hypotheses rather than physical null hypotheses, i.e.

Kd = ∞ is a claim that the true value of Kd is too large to esti-

mate based on the data at hand, and not a claim that bind-
ing never occurs.

p hypotheses
The probability that an R molecule is undamaged can be
hypothesized to be close enough to 1 that the data cannot
discriminate it from being 1. If B different protein prepa-
ration batches (indexed by b) are used in the experiments,
2B hypotheses exist. pb = pb' hypotheses that two batches
are equivalent can also be formulated. In the equations
given above and in the data analysis given below, B=1 is
assumed.

Measurement models h
In pairs (g, h) the system of interest g is separated from the
methods used to study it in h. h maps steady states Fn of g

into expected values of measurements E(yn). The first step
in this, common to all h models, is to convert the Fn into
complex concentration predictions Zn using Eq. (1), i.e.
using W and K. The second step is to form E(yn) from Fn
and Zn and any other available information (e.g. L and p;
note that Tn can be reconstructed from Fn and Zn). This sec-
ond step is different for different measurement types, as
illustrated below for average protein mass, fraction of pro-
tein bound to a particular ligand, and average enzymatic
activity of a distribution of enzyme states.

average mass
Suppose R is the only protein in the system, that ligand
masses are too small to be detected relative to protein
masses, and that average protein mass measurements are
mass-weighted, e.g. as in dynamic light scattering data [1-
3]. The second step of h for this type of measurement is
then

where M1 is the mass of R monomer.

fraction bound
For fraction of protein bound to ligand data, suppose the
ligand of interest is the ith reactant. The fraction of R
bound to ligand is then

enzyme activity
If kcatj is the per-active-site enzymatic activity of the jth
complex, the measured average activity of an ensemble of
complexes is

It is assumed here that R provides all of the enzymatic
activity and that it has only one active site.

h space
Enzyme activity differs from the other two measurement
types in that its parameters can have many plausible null
hypotheses: the kcatj can be equal to zero or to each other
within groups defined in various ways. Thus, Eq. (18) can
generate a space of h models. When such a space is multi-
plied into a g space, not all h models can be paired with
any g, since, for example, if a Kj is infinity in a g model, the
corresponding product complex concentration is zero, so

2 2K Kd R t d Rt Rt_ _ _ _

′K d

E y M
R RT pb ZnjW jj

J

RT
n( )

[ ] [ ]( )

[ ]
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a corresponding kcat cannot be estimated. Thus, although
to first order |(g, h)| = |g||h| where |x| is the number of x
models, this is actually an upper bound.

dTTP induced R1 dimerization data analysis
Let R be the R1 subunit of ribonucleotide reductase and
let t be dTTP. Using h in Eq. (16), Scott et al [1] fitted
Model 2E with p = 1 to their dynamic light scattering data
shown in Figure 4. Their final parameter estimates are
shown as the initial parameter estimates in Table 2. That
these estimates did not converge properly (the authors
used a method similar to that of Storer and Cornish-Bow-
den [7] to solve their g = 0 equations) is evidenced by the
poor fit of the solid curve in Figure 4 relative to its fully
converged counterpart computed here using the g = 0

solver described above (Eq. 3; dotted curve). The conse-
quences of this poor fit are seen to be substantial in Table
2, where many of the Kd estimates have initial values that
differ from their final converged counterparts by an order
of magnitude. The final Kd estimates are, however, very
uncertain, with upper-to-lower 95% confidence interval
(CI, see Methods) limit ratios of ~106, i.e. Model 2E is
overparameterized.

Given knowledge that R has a binding site for t and that R
can dimerize [12], the model space in Table 1 doubled by
p free or fixed to 1 and coupled to h in Eq. 16 creates 58
(g, h) candidate models that were fitted to these data. The
fitted models were ranked by the Akaike Information Cri-
terion (AIC, see Methods) and the best model was 3Rp (p

Table 2: Parameter estimates corresponding to Figure 4

Model Parameter Initial Value Optimal Value Confidence Interval

3Rp pRT 1.000 0.767 (0.662,0.890)
Rt Inf Inf absent
RR Inf Inf absent
RRt Inf Inf absent
RRtt 0.000 0.000 fixed
SSE 0.100 0.027
AIC -26.948 -36.058
cpu 0.000 0.057 fit succeeded

3M RRtt 1.000 17.231 (3.190,93.691)
Rt Inf Inf absent
RR Inf Inf absent
RRt Inf Inf absent
pRT 1.000 1.000 fixed
SSE 0.059 0.032
AIC -30.657 -34.969
cpu 0.000 0.291 fit succeeded

3Mp RRtt 1.000 1.838 (0.010,347.234)
pRT 1.000 0.837 (0.656,1.067)
Rt Inf Inf absent
RR Inf Inf absent
RRt Inf Inf absent
SSE 0.059 0.023
AIC -26.457 -32.981
cpu 0.000 0.109 fit succeeded

3N RRt 1.000 16.699 (6.821,40.854)
Rt Inf Inf absent
RR Inf Inf absent

RRtt Inf Inf absent
pRT 1.000 1.000 fixed
SSE 0.176 0.045
AIC -22.987 -32.602
cpu 0.000 0.125 fit succeeded

2E R_t 25.000 2.265 (0.004,1164.445)
R_R 75.000 1451.803 (0.089,24154952.754)
RR_t 0.550 0.024 (0.000,22.421)
RRt_t 0.550 0.024 constrained
pRT 1.000 1.000 fixed
SSE 0.042 0.027
AIC -21.806 -24.990
cpu 0.000 0.264 fit succeeded
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freely estimated) with KRRtt = .0001 μM3 essentially fixed
to zero (dashed straight lines in Figure 4; Table 2). This
model represents a tight binding titration limit wherein
free molecule annihilation (the initial linear ramp in Fig.
4) continues in a one-to-one fashion with increasing
[dTTPT] until [dTTPT] equals [R1T] = 7.6 μM, the plateau
point beyond which all dimerizable R has dimerized. The
second best model (dashed-dotted in Figure 4) was 3M (p
fixed to 1) with KRRtt freely estimated as 17 μM3. This sec-
ond best model is the best model when recent gel filtra-
tion data [4] shown in Table 3 are also included in the
analysis, see Table 4 (2E ranked 20th and 13th in Tables 2
and 4 in exhaustive model space fits and was not even fit-
ted by the semi-exhaustive method described next).

Semi-exhaustive model selection
The semi-exhaustive model selection algorithm is: (1) cre-
ate a list of all of the candidate models; (2) sort it accord-
ing to the number of freely estimated parameters in each
model; (3) fit all of the models with the fewest number of
parameters; (4) fit all models with one additional param-
eter; and (5), repeat step 4 as long as the current batch of
models has an improved AIC relative to the previous
batch of models. In the case of the Rt system, compared to
exhaustive fits to the entire space of 58 (g, h) models, this
algorithm stops before fitting the most time consuming
over-parameterized models (those with three parameters
or higher) though it identifies the exact same top 13
(Table 2) and top 7 (Table 4) models. CPU times to com-
pute Tables 2 and 4, expressed as exhaustive to semi-
exhaustive ratios, averaged 4.7 (4.3/.89, 5.8/1.25, in min-
utes/minutes) when using 4 CPUs and 5.9 (14.8/2.5,
20.3/3.5) when using 1 CPU, or, rewritten, quad proces-
sor gains averaged 3.5 (14.8/4.3, 20.3/5.8) for exhaustive
fits and 2.8 (2.5/.89, 3.5/1.25) for semi-exhaustive fits, i.e.
there are semi-exhaustive approach losses in parallel
processing efficiency as some CPUs become idle while the
last models in a batch are fitted.

Implementation
R codes are provided to insure reproducibility of the
results. They are also provided because they may be useful
in other ligand induced protein dimerization data analy-
ses. The following script illustrates their use.

setwd("/home/radivot/case/active/rnr/Rt/
R")

load("RNR.RData") # load RNR adata

source("fRt.r") # function definitions

# the next line generates and compiles C
code

g=mkgObj("Rt", c("Rt","RR","RRt","RRtt"))

RtData=adata [c("f1a01")] # Scott et al
2001 Rt data

# these map Kd into Kj as shown in Table 1

Eshape<-function(x)

c(x[1], 2*x[2], x[1]*x[3],
2*x[1]^2*x[4])

nshape<-function(x)

Scott et al. dataFigure 4
Scott et al. data. The parameter values of Scott et al. 
(Table 2, initial values of Model 2E) do not fit the data well 
(solid curve). The same model with fully converged parame-
ter values does fit the data well (dotted). With p freely esti-
mated, the infinitely tight binding Model 3Rp (dashed) has the 
lowest AIC. The second lowest AIC was achieved by Model 
3M (dashed-dotted), see Table 2.
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Table 3: Rofougaran et al.'s R1 dimerization data

RT tT Dimer Monomer Average Mass

2.700 100 18100 910 175.692
0.135 100 693 98 168.850
2.700 0 935 19766 94.065
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c(x[1], 2*x[2], x[2]*x[3],
2*x[2]*x[3]*x[4])

models=list(

mkModelObj(RtData, g, "2E",

Kdparams=c(R_t=30, R_R=85, RR_t=.55,
RRt_t=.55),

Keq=c(RRt_t="RR_t"), Kd2Kj=nshape),

mkModelObj(RtData, g, "3Rp",

Kjparams=c(Rt=Inf, RR=Inf, RRt=Inf,
RRtt=0),

pparams=c(pRT=1)),

mkModelObj(RtData, g, "3M",

Kjparams=c(Rt=Inf, RR=Inf, RRt=Inf,
RRtt=1))

)

fitMS(models,"MS2")

Table 4: Joint Data Analysis

Model Parameter Initial Value Optimal Value Confidence Interval

3M RRtt 1.000 18.697 (4.807,72.966)
Rt Inf Inf absent
RR Inf Inf absent
RRt Inf Inf absent
pRT 1.000 1.000 fixed
SSE 0.064 0.034
AIC -48.066 -54.448
cpu 0.000 0.445 fit succeeded

3Mp RRtt 1.000 5.558 (0.370,83.931)
pRT 1.000 0.907 (0.787,1.044)
Rt Inf Inf absent
RR Inf Inf absent
RRt Inf Inf absent
SSE 0.064 0.027
AIC -44.852 -53.308
cpu 0.000 0.199 fit succeeded

3Rp pRT 1.000 0.822 (0.736,0.918)
Rt Inf Inf absent
RR Inf Inf absent
RRt Inf Inf absent
RRtt 0.000 0.000 fixed
SSE 0.106 0.041
AIC -42.954 -52.590
cpu 0.000 0.104 fit succeeded

3I RRt 1.000 49.568 (5.755,428.375)
RRtt 1.000 37.930 (5.003,290.035)
Rt Inf Inf absent
RR Inf Inf absent
pRT 1.000 1.000 fixed
SSE 0.165 0.030
AIC -35.303 -52.218
cpu 0.000 0.223 fit succeeded

2E R_t 25.000 143.621 (0.477,44355.855)
R_R 75.000 956.076 (0.790,1202604.284)
RR_t 0.550 0.106 (0.001,8.085)
RRt_t 0.550 0.106 constrained
pRT 1.000 1.000 fixed
SSE 0.079 0.031
AIC -38.357 -47.750
cpu 0.000 0.344 fit succeeded
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In this script, load loads the RNR data provided in Addi-
tional File 1 and source reads in the function definitions
provided in Additional File 2. The main function, fitMS,
fits the model space (2E, 3Rp, 3M) and writes the results
to html and LaTeX files. It can be passed options to specify
the number of CPUs and the choice of semi-exhaustive or
exhaustive fitting. A script that fits all 58 (g, h) models is
provided as Additional File 3.

Discussion
The most common approach to modeling is to manually
identify several plausible models, fit them all, and accept
the best in the lot, e.g. [13,14]. This approach works
because human intuition carries external information that
guides the choice of the initial lot. If the best model does
not provide a good fit, or if it has parameters with very
large confidence intervals, the lot can be augmented to
include additional models with more or fewer parameters,
respectively. The advantage of this approach is that only a
handful of models needs to be fitted. The disadvantage is
that different analysts can yield different results. In gen-
eral, a model/hypothesis (e.g. that the experimental data

cannot discriminate some Kj from ∞ or zero, or that some

Kd equal others) is rejected if it is not among the best mod-

els selected, and supported if it is. Although inferences
made from any model, including the best models, are
always conditional on the truth of the model's assump-
tions, the likelihood of this truth increases as the model
withstands elimination. This statement is valid only to the
extent that alternative hypotheses are represented in the

model space. For example, if a Kd =  model assumes

symmetric oligomers (e.g. as in Eqs. 9 and 10) and the
model space does not include counterpart models that
assume asymmetric forms, the selection process can lend
no additional support to the symmetry assumptions. On
the other hand, if independent data support such symme-
try assumptions, the use of a restricted model space may
be acceptable. It is anticipated that large model spaces will
generate many models that are roughly equally best. Over-
all inferences should then reflect an average of the infer-
ences of the best models, perhaps weighted by some
metric of closeness to the optimum. Methods of accom-
plishing this for (g, h) models is an important area of
future work. Another important area is automated model
space enumeration: although this can be readily achieved

for Kd = ∞ or 0 spur graphs, it remains a challenge to

achieve this for Kd =  grid graphs.

Conclusion
The process of extracting K estimates from data is insepa-
rable from the process of (g, f) model selection. This proc-
ess requires clear statements of the model space explored,
the criterion used to rank models, and the method used to
search the space. If standards can be developed for these
entities, analyst-to-analyst variations in inferences made
from identical datasets could be reduced.

Methods
Data procurement
Plot Digitizer [15] was used to digitize the data of Scot et
al. shown in Fig. 4. These data were originally given with
model-dependent free concentrations on the x-axis. Such
x values were converted to total concentrations using the
model and parameter values given by Scot et al. [1]. The
data in Table 3 is from Fig. 1 of [4]. It was kindly provided
by Dr. Anders Hofer.

Model selection

With P equal to the number of freely estimated model
parameters, N equal to the number of steady state data
points, and SSE equal to the sum of squared errors of the
fitted model, the Akaike Information Criterion [16] used

here has the form AIC = 2P + N log(SSE/N) + [17].

This explicit metric states how much goodness of fit (SSE)
one is willing to sacrifice to gain the benefit of one less
parameter. For a given model, P and N are fixed, so AIC
minimization reduces to SSE minimization by least
squares.

Parameter estimation
Best fitting SSEs were found by nonlinear least squares
using the optim function in R [11] with the Nelder-Mead
[18] option for P > 1, the BFGS option for P = 1, and the
Hessian option set to TRUE (see Additional Files). Hes-
sians of the SSEs evaluated at the optimum were divided
by 2, inverted, and multiplied by the mean squared error,
MSE = SSE/(N - P), to compute parameter estimate covar-
iance matrices. From these, parameter estimate standard
deviations were taken as the square roots of the main diag-
onal, and these were then multiplied by 1.96 to approxi-
mate 95% CIs. All parameters were estimated as ec to
constrain point estimates and CIs to positive values.
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