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Abstract
Background: As computational performance steadily increases, so does interest in extending one-particle-per-
molecule models to larger physiological problems. Such models however require elementary rate constants to
calculate time-dependent rate coefficients under physiological conditions. Unfortunately, even when in vivo kinetic
data is available, it is often in the form of aggregated rate laws (ARL) that do not specify the required elementary
rate constants corresponding to mass-action rate laws (MRL). There is therefore a need to develop a method
which is capable of automatically transforming ARL kinetic information into more detailed MRL rate constants.

Results: By incorporating proteomic data related to enzyme abundance into an MRL modelling framework, here
we present an efficient method operating at a global network level for extracting elementary rate constants from
experiment-based aggregated rate law (ARL) models. The method combines two techniques that can be used to
overcome the difficult properties in parameterization. The first, a hybrid MRL/ARL modelling technique, is used
to divide the parameter estimation problem into sub-problems, so that the parameters of the mass action rate
laws for each enzyme are estimated in separate steps. This reduces the number of parameters that have to be
optimized simultaneously. The second, a hybrid algebraic-numerical simulation and optimization approach, is used
to render some rate constants identifiable, as well as to greatly narrow the bounds of the other rate constants
that remain unidentifiable. This is done by incorporating equality constraints derived from the King-Altman and
Cleland method into the simulated annealing algorithm. We apply these two techniques to estimate the rate
constants of a model of E. coli glycolytic pathways. The simulation and statistical results show that our innovative
method performs well in dealing with the issues of high computation cost, stiffness, local minima and uncertainty
inherent with large-scale non-convex nonlinear MRL models.

Conclusion: In short, this new hybrid method can ensure the proper solution of a challenging parameter
estimation problem of nonlinear dynamic MRL systems, while keeping the computational effort reasonable.
Moreover, the work provides us with some optimism that physiological models at the particle scale can be rooted
on a firm foundation of parameters generated in the macroscopic regime on an experimental basis. Thus, the
proposed method should have applications to multi-scale modelling of the real biological systems allowing for
enzyme intermediates, stochastic and spatial effects inside a cell.
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Background
As systems biology matures, it is moving away from static
representations of network interactions based on nodes
and edges to dynamic representations that describe cellu-
lar processes in space and time. Dynamic metabolic proc-
esses are quantitatively modelled with ordinary
differential equations (ODEs) in two principle ways: the
aggregated rate law [1] and mass action rate law [2]
approaches. These two models differ from one another in
the level of detail at which they operate and hence the
contexts in which they can be validly applied.

Dynamic metabolic networks are predominately mod-
elled using aggregated rate laws (ARL). An ARL simplifies
the description of a single enzymatic step by aggregating
the elementary steps associated with a specific mechanism
into a single reaction, where the rate becomes a non-linear
function of substrate, product and regulator concentra-
tions and a typically linear function of enzyme concentra-
tion. The classical example of an ARL treatment is the
Michaelis-Menten equation for the simplest irreversible
reaction, the Uni-Uni mechanism. ARL models are not
always derived from an underlying mechanism, and in
some cases, more phenomenological formulas are
adopted to empirically fit experimental data. While the
simplified treatment of enzyme kinetics using an ARL-
based approach has obvious appeal when attempting to
model large metabolic networks, such a reduction of the
underlying mechanism inevitably leads to a loss of some
useful information about the reaction mechanism, e.g. the
sequence of elementary reactions, dynamics of all enzyme
intermediates, and so on. ARL models are therefore
equipped to capture biological processes on long time
scales wherein dynamics of enzyme intermediates can be
ignored. To date most experimentally determined kinetic
parameters are at this level.

An alternative to the ARL approach is the direct use of
mass action rate laws (MRL), each of which states that the
rate of an elementary reaction is directly proportional to
the product of the effective concentrations of each partic-
ipating molecule. By definition, MRL models involve the
sequence of elementary reactions as well as track dynam-
ics of all of the elements by describing the formation and
degradation of all species in an enzymatic reaction. It is
particularly suitable for modeling molecular events that
happen on the microsecond to millisecond time-scale
[3,4].

Regardless of the approach taken, good models of cellular
systems are often guided by a pragmatic principle: a
model should be as simple as possible, but as complex as
necessary. The growing necessity of dealing with complex-
ity is however highlighted by the apparent behavioural
differences exhibited by biomolecules within an intracel-

lular environment versus the test tube [5]. These differ-
ences can be largely attributed to a range of spatial
phenomena including macromolecular crowding, caging,
spatial segregation of reactants, and the unpredictable
nature associated with the reaction of rare and non-uni-
formly distributed biomolecules [6]. Significantly, a com-
prehensive quantitative understanding of most of these
phenomena is lacking. Meanwhile, the steady increase in
computational capability, coupled with improved tech-
nology for making quantitative measurements of single
molecules within single living cells, is fuelling interest in
an alternative modelling approach in which individual
molecules are represented as particles that are imbued
with the dynamic properties of movement and reaction as
a function of space and time [7-9]. This approach, referred
to as Particle Based Simulation (PBS), has the advantage
that it can seamlessly link stochastic and continuous proc-
esses in a modelling environment where the spatial and
physicochemical complications referred to above are rep-
resented explicitly. These explicit simulations require
however the direct elementary rate constants and enzyme
intermediates that distinguish MRL modelling from ARL
modelling. If a system has been parameterized as an ARL
model, it must first be converted into MRL form in order
to set up a PBS simulation. Thus the MRL model becomes
the bridge between the ARL format and the PBS format.

As a consequence of its higher level of detail, the MRL
approach is starting to receive special attention for the elu-
cidation of complex biological systems [10-14]. To date
the biggest limitation associated with the MRL approach
is the lack of detailed quantitative biochemical data to
fuel the models [12]. This dearth of data has prompted the
development of several estimation methods for the mass-
action rate constants of enzymatic reactions.

The classic approach combines the Schematic Method of
King and Altman [15] with the General Rule of Cleland
[16] (SMKA/GRC). SMKA/GRC relates unknown elemen-
tary rate constants to known ARL kinetic constants. Indi-
vidual rate constants are then calculated by solving linear
or non-linear algebraic equations. One limitation of
SMKA/GRC is that most of the experimentally determined
ARL constants are derived from isolated enzymes in vitro
over a range of conditions. This lack of biological context
calls into question the relevance of network models based
on these parameters in describing complex cellular behav-
iour under physiological conditions. One other limitation
is that it is not always possible to uniquely determine the
rate constants from existing ARL rate constants, when: 1)
the number of MRL parameters is large, 2) there is a
redundancy of values among ARL kinetic constants or 3)
there are technical difficulties in solving nonlinear equa-
tions. Moreover, use of SMKA/GRC method alone is not
able to deal with empirical ARL equations where some
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kinetic constants are missing or reduced to empirical con-
stants.

Recently, Yang et al. [11] have proposed a simpler alterna-
tive to SMKA/GRC termed the Lambda and Omega
approximation method. Estimating rate constants from
available in vitro kinetic data (Km, Kcat and Ki) involves a
rapid equilibrium approximation that assumes that reac-
tants, free enzymes and enzyme-bound intermediates
reach equilibrium quickly relative to the rate of catalysis.
The approach to steady-state can be controlled in the
model by using large, time-invariant constant numbers (Λ
and Ω) that are associated with enzyme-substrate and
enzyme-inhibitor binding reactions, respectively. When
compared with SMKA/GRC, this approximation method
is based on fewer kinetic constants and simpler algebraic
relations, leading to easier mathematical manipulations.
It does however suffer from limitations such as the exist-
ence of trimolecular association reactions that are physio-
logically improbable (e.g. the enzyme can interact
simultaneously with two substrates in a Bi Bi mechanism)
and the inherent ambiguity imposed by the dependence
of the rate constants on arbitrary values of Λ and Ω.

The final method is numerical simulation and optimiza-
tion (NSO) [17] for network models, where non-linear
least squares regression is used in combination with sim-
ulation to optimize parameters from time-course varia-
bles. In principle, this method could be used to find
optimal MRL rate constants provided that enough time-
course data and constraints are available. However, this
strategy often meets with difficulties because even rela-
tively simple metabolic pathways modelled by MRL
expand to large and stiff systems of ODEs. Unsurprisingly
then, the use of NSO in MRL modelling is not prevalent
and is often constrained to the analysis of small systems
[17]. Furthermore, the complexity of the parameter space
coupled with poor knowledge of the in vivo rate constants
means that the optimization algorithm is easily trapped
by local minima [18] or returns a family of solutions [19].
By comparison, for ARL models, NSO has been success-
fully applied to globally optimize the parameters for more
complex metabolic networks [20,21]. If a method could
be developed that deals with the issues of network scale,
stiffness, local minima and parameter identifiability, then
NSO could play an important role in the development of
detailed, complex and therefore useful MRL models.

In this work, we present a novel methodology for extract-
ing MRL elementary rate constants from ARL network
models, which combines the advantages of two tech-
niques with respect to model structure. Our ultimate goal
is to generate an automatic transformation from ARL
kinetic information into the elementary MRL rate con-
stants required for our PBS modelling effort. When it is

applied to a challenging parameterization problem in
regards to central metabolism of E. coli, our method
proved efficient and robust, thereby enabling systemic
investigation of the mass action rate laws of a large-scale
cellular network.

Results
Method evaluation
In parameter estimation, the principle issues are the preci-
sion of the estimates and the practical reality of the com-
putational burden. This paper presents and assesses the
new method, in terms of computational cost, parameter
identifiability and the effect of relative uncertainty in
measured data. Evaluation was conducted by setting the
glycolytic pathways of E. coli to mass action kinetics and
adjusting rate constants to result in same flux and concen-
tration dynamics as the original ARL model [21]. The MRL
network is approximately three times larger than its ARL
analogue, owing to the expansion of individual ARL steps
into their mechanistic sub-steps. Because of this added
level of complexity, only a single set of MRL steps (pgi) is
shown within its ARL context (Figure 1) for illustrative
purposes, with the full MRL decomposition presented in
Table 1. The optimized parameters and the statistical anal-
ysis of the results are summarized in Table 2.

Computational cost
Given an optimization algorithm, one of the challenges
for a large-scale nonlinear model is the computational
economy of that method. This includes how to deal with
large numbers of parameters and how to circumvent bot-
tlenecks that limit algorithm performance. These issues
must be addressed to make parameter estimation a practi-
cal reality; otherwise the computational effort may go
beyond a reasonable amount of time for MRL models
[22].

The principle technique applied here is a hybrid ARL/MRL
strategy, which reduces the number of parameters that
need to be estimated simultaneously. This technique
allows us to estimate parameters of the mass action rate
laws for each enzyme in separate steps. In addition, the
number of free parameters is further reduced by adding
equality constraints derived from algebraic SMKA/GRC
method. However, the global optimization still consumes
substantial computational time, since it requires vast
numerical integrations of ODEs in order to evaluate the
cost function at each iteration step. Particularly, the com-
putational cost increases further when the target model
has the significant stiffness that often appears in mass
action equations for enzymatic reaction systems. In such
systems, each solution requires small integration steps to
accommodate the introduction of fast-varying enzyme
intermediates. By converting Matlab M-files for differen-
tial equations into MEX-files (MEX stands for MATLAB
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Executable files, which are dynamically linked subrou-
tines produced from C source code), as well as by opting
for the stiff ode15s solver, up to 10-fold faster optimiza-
tion can be achieved. Each optimization run was able to
quickly obtain optimal solutions within several minutes
with the computer environment as follows: Intel Core™ 2
Duo Processor 1.73 GHz CPU with memory size of 2.5

GB, thereby facilitating the repetition of the optimization
many times for statistical purposes.

Identifiability
Other challenges for optimizing a large-scale nonlinear
model include local minima and non-convex regions over
the objective function space. In this work, we adopted the

Table 1: Reaction mechanism and protein abundance for glycolytic pathways of E. coli

Enzyme Abundance a 

(molecules/cell)
Concentration b 

(μM)
Kinetic mechanism Elementary reactions

Phosphogluco -isomerase (pgi) 1099 2.7 Reversible Uni Uni [51] G6P + EPGI → EPGI-G6P
EPGI-G6P → G6P + EPGI
EPGI-G6P → F6P +EPGI
F6P + EPGI → EPGI-G6P

Phosphofructo -kinase (pfkA) 3287 8.2 Allosteric regulation and ordered 
sequential mechanism [39] [52]

ATP + EPFKATR → EPFKAR-ATP

EPFKAR-ATP → ATP + EPFKATR

F6P + EPFKAR-ATP → EPFKAR-ATP-F6P
EPFKAR-ATP-F6P → F6P + EPFKAR-ATP
EPFKAR-ATP-F6P → FDP + EPFKAR-ADP
EPFKAR-ADP → ADP + EPFKATR

Fructose-bisphosphate aldolase (fba) 16326 40.5 Ordered Uni Bi [51] FDP + EFBA → EFBA-FDP
EFBA-FDP → FDP + EFBA
EFBA-FDP → GAP + EFBA-DHAP
GAP + EFBA-DHAP → EFBA-FDP
EFBA-DHAP → DHAP + EFBA
DHAP + EFBA → EFBA-DHAP

Triosephosphate isomerase (tpiA) 9106 22.6 Reversible Uni Uni [51] DHAP + ETPIA → ETPIA-DHAP
ETPIA-DHAP → DHAP + ETPIA
ETPIA-DHAP → GAP + ETPIA
GAP + ETPIA → ETPIA-DHAP

Glyceraldehyde 3-phosphate dehydrogenase 
(gapA)

49091 121.7 Ordered sequential mechanism [37] NAD + EGAP → EGAP-NAD

EGAP-NAD → NAD + EGAP
GAP + EGAP-NAD → EGAP-NAD-GAP
EGAP-NAD-GAP → GAP + EGAP-NAD
EGAP-NAD-GAP → PGP + EGAP-NADH
PGP + EGAP-NADH → EGAP-NAD-GAP
EGAP-NADH → NADH + EGAP
NADH + EGAP → EGAP-NADH

Phosphoglycerate kinase (pgk) 14682 36.4 Ordered sequential mechanism [53] PGP + EPGK → EPGK-PGP
EPGK-PGP → PGP + EPGK
ADP + EPGK-PGP → EPGK-PGP-ADP
EPGK-PGP-ADP → ADP + EPGK-PGP
EPGK-PGP-ADP → ATP + EPGK-PG3
ATP + EPGK-PG3 → EPGK-PGP-ADP
EPGK-PG3 → PG3 + EPGK
PG3 + EPGK → EPGK-PG3

Phosphoglycerate mutase (pgm) 966 2.4 Reversible Uni Uni [21] PG3 + EPGM → EPGM-PG3
EPGM-PG3 → PG3 + EPGM
EPGM-PG3 → PG2 + EPGM
PG2 + EPGM → EPGM-PG3

Enolase (eno) 11283 28.0 Reversible Uni Uni [21] PG2 + EENO → EENO-PG2
EENO-PG2 → PG2 + EENO
EENO-PG2 → PEP + EENO
PEP + EENO → EENO-PG2

Pyruvate kinase (pykF) b 500 1.2 Allosteric regulation and ordered 
sequential mechanism [24, 39]

PEP + EPYKFTR → EPYKFR-PEP

EPYKFR-PEP → PEP + EPYKFTR

EPYKFR-PEP + ADP → EPYKFR-PEP-ADP
EPYKFR-PEP-ADP → EPYKFR-PEP + ADP
EPYKFR-PEP-ADP → PYR + EPYKFR-ATP
EPYKFR-ATP → ATP + EPYKFTR

a Protein abundances are taken from mass spectrometry data [34], with the exception of the abundance for pykF which is taken from 2-D gel data [35]
b Volume concentration is calculated based on E. coli cytoplasm volume equivalent to 6.7 × 10-16 L [54]
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simulated annealing algorithm, which combines the
advantages of our two proposed techniques (i.e. hybrid
MRL/ARL modeling and hybrid algebraic-numerical opti-

mization), for globally minimizing multivariate func-
tions.

Table 2: Summary statistics about rate constants estimated from the proposed hybrid method a,b

Enzyme Ordinary differential 
equations

K-values c (Mean ± SD) CV (%) CI (95%) fval-values (Mean ± SD)

Phosphogluco -isomerase (pgi) K1f,PGI*[G6P]*[EPGI] (1.27 ± 0.00) × 105 0.0 (1.27, 1.27) × 105 (9.2 ± 2.4) × 10-3

K1r,PGI*[EPGI-G6P] (1.28 ± 0.00) × 105 0.0 (1.28, 1.28) × 105

K2f,PGI*[EPGI-G6P] (2.41 ± 0.00) × 105 0.0 (2.41, 2.41) × 105

K2r,PGI*[F6P]*[EPGI] (1.39 ± 0.01) × 106 0.0 (1.39, 1.39) × 106

Phosphofructo -kinase (pfkA)d K1f,PFKA*f*[EPFKATR]*[ATP]m (4.21 ± 0.63) × 101 15.0 (3.83, 4.59) × 101 (5.4 ± 1.2) × 10-2

K1r,PFKA*[EPFKAR-ATP] (1.73 ± 1.94) × 100 112.7 (0.55, 2.90) × 100

K2f,PFKA*[EPFKAR-ATP]*[F6P]n (4.70 ± 0.50) × 103 10.7 (4.39, 5.00) × 103

K2r,PFKA*[EPFKAR-ATP-F6P] (6.52 ± 7.93) × 101 121.6 (1.73, 11.31)×101

K3f,PFKA*[EPFKAR-ATP-F6P] (3.50 ± 0.76) × 102 21.8 (3.05, 3.96) × 102

K4f,PFKA*[EPFKAR-ADP] (3.67 ± 3.01) × 105 82.2 (1.85, 5.49) × 105

Fructose- bisphosphate aldolase 
(fba)

K1f,FBA*[FDP]*[EFBA] (4.98 ± 0.01) × 103 0.2 (4.98, 4.98) × 103 (4.8 ± 0.1) × 10-3

K1r,FBA*[EFBA-FDP] (9.14 ± 0.02) × 102 0.2 (9.13, 9.14) × 102

K2f,FBA*[EFBA-FDP] (4.33 ± 0.00) × 102 0.0 (4.33, 4.33) × 102

K2r,FBA*[GAP]*[EFBA-DHAP] (9.98 ± 0.02) × 104 0.2 (9.98, 9.99) × 104

K3f,FBA*[EFBA-DHAP] (5.95 ± 0.01) × 104 0.2 (5.94, 5.95) × 104

K3r,FBA*[DHAP]*[EFBA] (1.04 ± 0.00) × 104 0.0 (1.04, 1.04) × 104

Triosephosphate isomerase 
(tpiA)

K1f,TPIA*[DHAP]*[ETPIA] (1.17 ± 0.00) × 103 0.0 (1.17, 1.17) × 103 (1.5 ± 0.6) × 10-4

K1r,TPIA*[ETPIA-DHAP] (2.34 ± 0.00) × 102 0.0 (2.34, 2.34) × 102

K2f,TPIA*[ETPIA-DHAP] (3.04 ± 0.00) × 103 0.0 (3.04, 3.04) × 103

K2r,TPIA*[GAP]*[ETPIA] (1.09 ± 0.00) × 104 0.0 (1.09, 1.09) × 104

Glyceraldehyde 3- phosphate 
dehydrogenase (gapA)

K1f,GAP*[NAD]*[EGAP] (3.01 ± 0.00) × 104 0.0 (3.01, 3.01) × 104 (7.8 ± 0.4) × 10-2

K1r,GAP*[EGAP-NAD] (7.57 ± 0.00) × 103 0.0 (7.57, 7.57) × 103

K2f,GAP*[GAP]*[EGAP-NAD] (1.85 ± 0.25) × 104 13.5 (1.75, 1.95) × 104

K2r,GAP*[EGAP-NAD-GAP] (9.61 ± 0.90) × 105 9.4 (9.25, 9.96) × 105

K3f,GAP*[EGAP-NAD-GAP] (1.67 ± 0.83) × 106 50.0 (1.34, 2.00) × 106

K3r,GAP*[PGP]*[EGAP-NADH] (1.99 ± 0.64) × 109 32.3 (1.74, 2.24) × 109

K4f,GAP*[EGAP-NADH] (7.61 ± 0.01) × 103 0.2 (7.61, 7.62) × 103

K4r,GAP*[NADH]*[EGAP] (7.36 ± 0.13) × 10-1 0.2 (7.35, 7.37) × 10-1

Phosphoglycerate kinase (pgk) K1f,PGK*[PGP]*[EPGK] (1.77 ± 0.00) × 106 0.0 (1.77, 1.77) × 106 (3.4 ± 1.4) × 10-3

K1r,PGK*[EPGK-PGP] (8.30 ± 0.00) × 104 0.0 (8.30, 8.30) × 104

K2f,PGK*[ADP]*[EPGK-PGP] (4.58 ± 0.05) × 105 0.0 (4.57, 4.60) × 105

K2r,PGK*[EPGK-PGP-ADP] (4.52 ± 0.35) × 103 7.8 (4.41, 4.63) × 103

K3f,PGK*[EPGK-PGP-ADP] (3.47 ± 3.45) × 105 99.5 (2.36, 4.57) × 105

K3r,PGK*[ATP]*[EPGK-PG3] (5.10 ± 4.99) × 105 97.9 (3.50, 6.69) × 105

K4f,PGK*[EPGK-PG3] (1.64 ± 0.88) × 105 53.6 (1.36, 1.92) × 105

K4r,PGK*[PG3]*[EPGK] (1.24 ± 0.68) × 105 54.7 (1.03, 1.46) × 105

Phosphoglycerate Mutase (pgm) K1f,PGM*[PG3]*[EPGM] (2.01 ± 0.00) × 106 0.0 (2.01, 2.01) × 106 (2.8 ± 1.3) × 10-2

K1r,PGM*[EPGM-PG3] (3.64 ± 0.00) × 105 0.0 (3.64, 3.64) × 105

K2f,PGM*[EPGM-PG3] (3.71 ± 0.00) × 104 0.0 (3.71, 3.71) × 104

K2r,PGM*[PG2]*[EPGM] (1.08 ± 0.01) × 106 1.3 (1.07, 1.09) × 106

Enolase (eno) K1f,ENO*[PG2]*[EENO] (1.42 ± 0.00) × 105 0.0 (1.42, 1.42) × 105 (2.6 ± 1.2) × 10-2

K1r,ENO*[EENO-PG2] (2.37 ± 0.00) × 103 0.0 (2.37, 2.37) × 103

K2f,ENO*[EENO-PG2] (1.18 ± 0.00) × 104 0.0 (1.18, 1.18) × 104

K2r,ENO*[PEP]*EENO] (1.05 ± 0.02) × 105 1.9 (1.05, 1.06) × 105

Pyruvate kinase (pykF) e K1f,PYKF*f*[EPYKFTR]*[PEP] (1.59 ± 0.00) × 102 0.0 (1.59, 1.59) × 102 (6.0 ± 2.0) × 10-4

K1r,PYKF*[EPYKFR-PEP] (4.96 ± 0.17) × 101 3.4 (4.89, 5.03) × 101

K2f,PYKF*[EPYKFR-PEP]*[ADP] (4.58 ± 2.92) × 102 63.9 (3.37, 5.78) × 102

K2r,PYKF*[EPYKFR-PEP-ADP] (2.43 ± 1.85) × 102 76.2 (1.67, 3.19) × 102

K3f,PYKF*[EPYKFR-PEP-ADP] (2.71 ± 1.71) × 102 63.2 (2.00, 3.41) × 102

K4f,PYKF*[EPYKFR-ATP] (7.89 ± 3.09) × 101 39.2 (6.61, 9.16) × 101

a Rate constants are the statistical solutions from 25 optimization runs which were performed with different random initial guesses for parameters of an individual enzyme. 
Through hybrid MRL/ARL model, MRL parameters for each enzyme are estimated in separate steps. Units are mM-1 s-1 and s-1 for second and first-order rate constants, 
respectively.
b SD: Standard deviation; CV: Coefficient of variation; CI: Confidence interval; fval: cost function value.
c Due to uncertainty in the source data [21], we have truncated to three digits, regarding of SD.
d Reaction orders for allosteric enzyme pfkA are non-integer with respect to ATP and F6P, allowing for fractal properties [43] due to enzyme conformational changes. Values 
of m and n are 5.19 ± 0.28 and 9.80 ± 0.41, respectively, after optimization.
e Reaction for allosteric enzyme pyruvate kinase is first order with respect to PEP and ADP, according to Tormonia's paper [39]
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To ensure that the algorithm is not trapped in sub-optimal
local minima within a large search space, a suitable
number of optimizations (25 runs) were done with differ-
ent random initial guesses over the entire range of the rate
constants. Our cost function values (fval) show that the
method is able to consistently return parameters from
which the MRL model dynamics closely matched those
observed for the original ARL model, thereby avoiding the
local minima problem leading to a badness of fit between
ARL and MRL dynamics.

It has been found that the candidate values of the rate con-
stants may be highly correlated [12] and the search surface
may consist of a very flat valley floor [23], resulting in
unreliable or unreproducible estimates although the fit of
model to data may be very good. Such ill-posed/non-con-
vex optimization problems must be taken into account
while assessing the quality of MRL model fit to ARL data.
The coefficient of variation (CV), defined as the standard
deviation divided by the mean, was used as a measure of
the reproducibility of the results from 25 optimization
runs. Distributions with a CV < 10% are considered high-
precision and low-variance, while those with a CV varying

Reactions and topology of the E. coli central metabolism as used in the ARL modelFigure 1
Reactions and topology of the E. coli central metabolism as used in the ARL model. As an example, the pgi pathway 
described as aggregated rate law (ARL) was replaced by mass-action rate law (MRL) for estimation of the elementary rate con-
stants. The same procedure can be used to estimate rate constants involved in other pathways.
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between 10% and 50% are considered moderate precision
and variance. Table 2 shows that CV for 80% of parame-
ters was below 50%, with 66% of parameters with CV <
10% and with 14% of parameters with CV in the range of
10 – 50%, indicating that agreement between the optimi-
zation runs varied from moderate to very good for most
parameters. Estimates of 20% of parameters are associated
with CV ranging from 54% to 122%, which suggests that
these parameters are not highly identifiable from the
existing kinetic information. Nevertheless, the confidence
interval shows that with 95 percent certainty the actual
values for these unidentifiable rate constants fall within a
much narrower range than that for the original biological
bounds. Apparently, these unidentifiable parameters are
interval-identifiable, being bounded within a finite inter-
val from the existing ARL dynamics, algebraic equality and
inequality constraints.

Note that in particular cases, some biological restrictions
applied to k values during optimization enable the pro-
posed method to constrain the range of values permitted
for some unknown parameters which are otherwise not
determinable. The pykF pathway is an example in which
the ARL kinetic information is not adequate to fully spec-
ify the underlying rate constants, leaving up to three unde-
termined rate constants for the proposed mechanism
coupling allosteric regulation with sequential Bi Bi reac-
tions (Figure 2A). Experimental results have already
shown that direct phosphoryl transfer takes place in the
ternary complex [24], thereby excluding the Theorell-
Chance Bi-Bi mechanism, where only binary complexes
are formed. This experimental evidence provides strong
inequality constraints on the rate constants k-2 and k3: they
cannot be very large compared to k-1 and k4, respectively;
otherwise no stable ternary complex can be formed. Con-
sequently, we include a constraint on k-2 to ensure that it
is less than 10*k-1. The value of k-1, on the other hand,
always converges to a solution around 50 s-1 after optimi-
zation regardless of boundary condition. So we set an
upper bound of 500 s-1 for k-2. Similarly, the value of the
other adjustable parameter, k3, is constrained to be less
than 10*k4. This constraint enables k3 to fall within the
region of 50 to 500 s-1 after optimization. Apparently,
these biological inequality restrictions can assistant our
method to narrow the bounds of some rate constants that
remain unidentifiable.

Experimental uncertainty
Another important issue in the parameter estimation
process is the existence of uncertainty in the experimental
data, including both the concentration time courses and
the enzyme abundances used in our method. These uncer-
tainties can affect the parameter estimates, especially since
the enzyme concentration for pykF has been obtained
through analysis of 2-D gels. Such gel-based proteome

technique is frequently subject to gel-to-gel variations
[25], so it is more susceptible to noise as compared with
other measurement techniques. Because of potential high
noise levels in analysis of 2-D gels, we use pykF as a repre-
sentative best case to investigate the bias and variation of
parameter estimation caused by uncertainty in experi-
mental measurements. We added Gaussian distributed
random variates to the experimentally determined value
for pykF (1.2 μM, which is taken as the 'noise-free' value in
this work). 25 such noisy enzyme concentrations were
generated for each of two noise levels (10% and 20%). A
95% confidence interval (CI) for the fitted parameters and
the relative errors (RE) between noise and noise-free solu-
tions were used to evaluate the precision and bias due to
experimental uncertainty of enzyme level.

Table 3 shows that the order-of-magnitudes of rate con-
stants are not affected by adding noise to the experimental
measured data. Moreover, the 95% confidence intervals
fall within a relatively narrow range almost independently
of the test noise. As far as RE is concerned, the system
response is different when comparing between 10% and
20% noise level. It appears that RE increases with the
noise level, with the exception of k2r and k3f. Despite an
increase, most RE can be kept at low level. With 10%
noise, RE for 4 out of 6 parameters was below 10%, while
with 20% noise RE for 5 out of 6 parameters falls within
10%. These results suggest that the parameter estimates
are relatively insensitive to noise below a certain level.
However, the parameter certainty deteriorated when the
level of noise was raised to 30%. RE for some rate con-
stants were over 50% and the 95% confidence interval
was significantly expanded (data not shown).

In short, our results indicate that the proposed method
can be applied to moderately noisy data. In particular, we
have shown for the pykF example the modest impact on
parameter estimation for an underlying MRL model at a
20% uncertainty in enzyme level. For proteins with a dra-
matically high uncertainty from 2-D gel analysis, several
techniques, such as prefractionation, parallel and
repeated run of gels, are available to reduce the noise level
before these proteomic data are incorporated in our
method.

Model evaluation
Parameter sensitivity
We then investigated how these optimal parameters influ-
enced the systemic response, which are normally quanti-
fied through sensitivity analysis using the methods of
Metabolic Control Analysis (MCA) at steady state. Our
interest, however, was to examine the effect of changing
these parameters on the MRL system's temporal response,
where the behaviour of interest is often found. We have
therefore focused on time-dependent sensitivity analysis.
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We performed time-dependent sensitivity analysis of the
flux of glucose through glycolysis (JPGI) with respect to
rate constants along the glycolytic chain. The results are
large time-varying matrices, which needs to be properly
visualized. We present here the visualization results of
sample analyses using time-dependent sensitivities for

gapA pathway (Figure 3). The large sensitivity of the glyc-
olytic response with respect to gapA parameters is found in
the late portion of the transition window. The sensitivity
analysis indicates, however, that a balance exists before 13
s where small increases or decreases in parameters have
little effect on the glycolytic rate. The sensitivity with

Table 3: Effect of uncertainty in pykF enzyme concentration measurement on rate constants estimation a

Parameters 0% noise b 10% noise c 20% noise c

Mean ± SD × 102 95% CI × 102 RE % Mean ± SD × 102 95% CI × 102 RE % Mean ± SD × 102 95% CI × 102 RE %

K1f 1.59 ± 0.00 [1.59, 1.59] 0 1.61 ± 0.17 [1.54, 1.68] 1.3 1.51 ± 0.21 [1.42, 1.60] 5.0
K1r 0.50 ± 0.02 [0.49, 0.50] 0 0.50 ± 0.06 [0.47, 0.52] 0 0.47 ± 0.07 [0.44, 0.50] 6.0
K2f 4.58 ± 2.92 [3.37, 5.78] 0 4.61 ± 3.76 [3.05, 6.16] 0.7 4.52 ± 2.47 [3.50, 5.54] 1.3
K2r 2.43 ± 1.85 [1.67, 3.19] 0 1.96 ± 1.76 [1.24, 2.69] 19.3 2.62 ± 1.71 [1.90, 3.32] 7.8
K3f 2.71 ± 1.71 [2.00, 3.41] 0 2.69 ± 1.63 [2.02, 3.36] 0.7 2.70 ± 1.51 [2.08, 3.32] 0.4
K4f 0.79 ± 0.31 [0.66, 0.92] 0 0.89 ± 0.56 [0.66, 1.12] 12.7 0.66 ± 0.19 [0.58, 0.74] 16.5

a SD: Standard deviation; CI: Confidence interval; RE: Relative errors compared to 0% noise case.
b Rate constants are the statistical solutions from 25 optimization runs which were performed with random initial guesses for parameters of pykF.
c Rate constants are the statistical solutions from 25 optimization runs which were performed with random initial guesses for parameters and with Gaussian noise added to 
the experimentally determined pykF concentration.

Allosteric enzymes consisting of an allosteric segment (dark shaded area) and an enzymatic reaction segmentFigure 2
Allosteric enzymes consisting of an allosteric segment (dark shaded area) and an enzymatic reaction segment. 
(A): Pyruvate kinase, where the number of allosteric sites and catalytic sites are 4 and 1, respectively [39]. (B): Phosphofruc-
tokinase, where the number of allosteric sites is 2 according to [39]. Non-integral reaction orders are assumed for two sub-
strates due to fractal properties caused by enzyme conformational changes [43].
Page 8 of 18
(page number not for citation purposes)



BMC Systems Biology 2008, 2:41 http://www.biomedcentral.com/1752-0509/2/41
respect to the formation and breakdown of E-NAD-GAP
(k2, k-3 and k3, see mechanism in Figure 4A) becomes sig-
nificant after 15 s, indicating that the time-course of the
system is highly dependent on the ternary complex. These
results are very interesting, because they further empha-
size the importance of the ternary complex for gapA rather
than mere binary complexes. Also of interest is the disso-
ciation step involving the last release of NAD+ from the
enzyme, resulting in a high sensitivity to the parameter k4.

Model performance
Since the rate constants for each enzyme are estimated in
separate steps, the next question of interest would be what
happens when these individual MRL parts are assembled
together to form a coupled enzymatic reaction system. We
therefore assembled these MRL parts into Chassagnole's
central metabolism model to check functioning of the
new assembly under actual operating conditions.

The time-courses of some typical metabolites representing
links between the pentose phosphate cycle and glycolysis
are shown in Figure 5. The dynamic behaviour observed
from the coupled MRL reaction system matched its ARL
counterpart well in response to a glucose impulse, indicat-
ing that the MRL system can successfully replace the ARL
system to represent the time-course data in the macro-
scopic regime. More importantly, the MRL system
presents an opportunity to understand how an enzymatic
reaction works by probing the elementary steps.

To compare the relative stabilities of the ARL and MRL
networks, we first computed the Jacobian matrix to deter-

mine eigenvalues for both systems at steady-state. The
largest MRL eigenvalue observed was -0.00079 s-1, and the
spectrum of ARL values indicated a maximum of -0.00092
s-1. The fact that all eigenvalues prove to be negative for
both models indicates that the ARL and MRL models are
able to return to equilibrium following small perturba-
tions. Since the MRL form essentially introduces fast vari-
ables that have been eliminated in the ARL form, it is not
surprising that the MRL model greatly increases the eigen-
value spread, changing the smallest eigenvalue from -3.4
× 103 s-1 to -1.9 × 107 s-1and the smallest time constant
from 2.9 × 10-1 ms to 5.3 × 10-5 ms.

As a result of the ensuing introduction of enzyme forms to
the model, the time scale range of reaction is greatly
expanded by many orders of magnitude, rendering the
MRL model considerably stiffer than its ARL counterpart
(ARL stiffness- 3.7 × 106, MRL stiffness- 2.4 × 1010). These
widely differing time scales means that the usual numeri-
cal methods require small time step sizes to achieve stable
solutions. For the metabolic network described here, we
initially opted for Matlab's built-in forward differencing
integrator, ode45, which failed to achieve solutions
through its selection of inordinately small time steps for
the model with both fast and slow changing variables.
Therefore, we used the backward differencing solver
ode15s to accommodate the inherent stiffness of the MRL
model. Using this approach, the computational cost of an
MRL simulation was still 33% larger than an ARL simula-
tion. However, by compiling the MRL model into MEX
binaries, the CPU time was reduced 87%.

Sensitivity analysis of the flux through glycolysis with respect to rate constants along gapA pathwayFigure 3
Sensitivity analysis of the flux through glycolysis with respect to rate constants along gapA pathway. See Figure 
4A for the reaction mechanism of gapA pathway.
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Discussion
The immediate motivation for our MRL modelling is to
provide association and dissociation rate constants for the
particle-based (PB) modelling aimed at building biophys-
ical realism through four-dimensional simulations of in
vivo elemental reactions. The incorporation of rate con-
stants into PB modelling can be implemented by using the
standard Smoluchowski theory [26] for computing time-
dependent reaction coefficients and survival probability
[27-29]. Due to the lack of high-quality experimentally
determined rate constants, researchers have to make
many, often arbitrary, assumptions on the values of these
parameters, making this type of model less appealing to

biologists. To the best of our knowledge, the method we
present in this paper is the first step which allows passing
in vivo data on an experimental basis to the dynamic mul-
tidimensional modelling at a finer scale. The work pre-
sented here provides us with some optimism that models
operating at different scales can in fact be linked in a
meaningful way.

In a more general sense, it is clear that increasingly sophis-
ticated and reliable models of system dynamics will
depend upon a sufficient underlying layer of biophysical
detail so that they can respond and adapt realistically to
changes in the physiological environment. Notably the
ARL approach is capable of dealing with large networks by
ignoring the details of enzyme intermediates and the rate
constants that underpin biophysical reality. By compari-
son, MRL models provide the detailed framework
required for a foundation for building biophysical real-
ism. Thus, there is a distinct need for developing mecha-
nistic MRL models which can provide more realistic
predictions of cellular components and dynamics in a
model organism.

MRL models belong to the class of non-convex nonlinear
models wherein a number of difficulties may arise when
estimating parameters of a realistic dynamical system, like
e.g. convergence to local solutions, flat objective function
in the neighbourhood of the solution and unreasonable
computational effort for a problem with a large number of
parameters. While previously most research work in this
area has focused on the search algorithms (e.g. the hybrid
stochastic-deterministic search [30], scatter search [23]
and modern evolution search [17]), our work, however,
focuses on the other side of the problem of parameter esti-
mation, i.e. the model structure. We exploit the model
structure to improve the efficiency and robustness of
parameterizing a large-scale MRL model. It is based upon
a strategy that identifiable structures or submodels can be
generated by systematically eliminating parameters of the
original model until it becomes identifiable [19]. We
present a novel methodology with respect to parameter
elimination without changing the original dynamics,
which combines the advantages of two hybrid techniques.
By replacing a single ARL pathway with its MRL equiva-
lent, and installing this module to the same place as
before while keeping other original ARL pathways
unchanged, each set of MRL reactions can be independ-
ently and efficiently optimized. The alternative is an
extremely cumbersome optimization process involving
the simultaneous adjustment of an unreasonably large
number of parameters. The model structure can be further
manipulated by applying equality constraints to the rate
constants associated to each enzyme. The resulting tech-
nique for incorporating parameter equality constraints
into numerical simulation and optimization consistently

Alternative reaction mechanisms of the Glyceraldehyde 3-phosphate dehydrogenase (gapA)Figure 4
Alternative reaction mechanisms of the Glyceralde-
hyde 3-phosphate dehydrogenase (gapA). A: Ordered 
Bi-Bi system with stable central ternary complex. B: Theo-
rell-Chance Bi-Bi system with only the formation of stable 
binary complex.
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reduces the number of parameters for a single enzyme,
thereby ensuring maximum efficiency and robustness of
the parameterization method. Consequently, our method
may pave the way towards future systemic investigation of
the mass action rate laws of large-scale cell network from
widely accessible ARL models.

A problem that attracts continuing interest is that not all
parameters in a large-scale non-convex nonlinear model
are uniquely identifiable. DiStefano [31] introduced the
notion of interval identifiabilty to describe finite bounds
on the unidentifiable rate constants of general mammil-
lary models. Vicini et al. [19] used additional parameter
knowledge to narrow the bounds of rate constants that
remain unidentifiable in mammillary and catenary com-
partmental models. In MRL models with respect to glyco-
lysis of E. coli, we also found that 20% of parameters are
not highly identifiable from the existing dynamics data.
We incorporate several levels of coupling, including
equality and inequality constraints and global optimiza-
tion algorithm, to successfully reduce the range of com-
putable bounds for highly unidentifiable parameters.
Comparing with a wide-varying range applicable to mass-
action rate constants, the range shrinking applied here is
the best way so far to acquire reasonable approximations
of the parameters.

In addition to their immediate motivational value for the
particle-based modelling, our novel methodology and the
resulting MRL models have some other interesting appli-
cations. For example, starting from the steady state before

glucose impulse, the initial concentration for every
enzyme form can be derived from the Schematic Method
of King and Altman (SMKA). Then all enzyme forms freely
evolve to comply with systemic dynamics under the con-
straint of fixed total concentration, thereby releasing the
constraint of the widely-used quasi-steady state assump-
tion (QSSA). This avoidance of QSSA will greatly extend
the application area of the proposed method, since QSSA
can be problematic for some in vivo pathways at high
enzyme levels [32] and also for fast transient change reac-
tions such as signalling and transduction pathways [14].
Parameter sensitivity is another important aspect that may
be applicable to experiments regarding parameter identi-
fiability. Through the time-dependent sensitivity analysis,
parameters within a certain period of time demonstrate
little impact on the simulator results (Figure 3). It is there-
fore not worthwhile focusing experiments on this period
to tune the parameters. Moreover, sensitivity analysis
reveals key elementary reaction steps that would affect the
overall dynamics of the metabolic network. One potential
approach to accelerate optimization convergence would
be to focus much of the computational effort on these cru-
cial parameters. The prioritization of parameters and time
interval to calibrate them is expected to evolve as an area
of importance, providing a direction to future Omics
efforts in this area to provide systems-level measurements
for virtually all types of cellular components and parame-
ters in a model organism [33].

Simulated dynamics of metabolites interacting between glycolysis and pentose phosphate pathway (PPP)Figure 5
Simulated dynamics of metabolites interacting between glycolysis and pentose phosphate pathway (PPP). A: 
glycolytic metabolites. B: PPP metabolites. MRL simulation: dotted line; ARL simulation: solid line. The time period over which 
we run the simulation is consistent with real experiments wherein all the intracellular metabolites could be sampled and meas-
ured within 20 seconds after glucose impulse [21].
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Conclusion
In this investigation we incorporated the protein abun-
dance information into our MRL framework to globally
optimize elementary rate constants through a novel
hybrid method. We effectively deal with the issues of net-
work scale, stiffness, local minima, computational burden
and parameter unidentifiability inherent within a large
MRL model. Since the proposed method makes full use of
the available experimental data, it addresses the problem
of the computer simulations of biological systems which
have high resolution regimes but lack experimental sup-
port at such a finer scale. The work presented here pro-
vides us with optimism that models in the mesoscopic
regime (e.g. particle-based methods) can be rooted on a
firm foundation of parameters generated in the macro-
scopic regime on an experimental basis.

Moreover, the resulting MRL models are as close as possi-
ble to the biological experiments. Therefore, they can be
used to steer further biological experiments aimed at sup-
porting computer simulation. For example, specific direc-
tion and guidance for sampling procedures can be issued
after a time-dependent sensitivity analysis, through which
the most sensitive parameters and time intervals are iden-
tified.

Methods
The protocol for the extraction of MRL rate constants from
ARL models follows a series of steps as shown in Figure 6,
which are described in detail below.

Hybrid model development
ARL and MRL
Before initiating the parameter optimization process, a
kinetic model which will be the subject of the optimiza-
tion has to be specified. This implies defining the ARL
reactions, setting their MRL kinetic types, and identifying
all of the variables and parameters. The ARL model, which
is adapted from Chassagnole's dynamical model of E. coli
central metabolism [21], consists of mass balance equa-
tions for extracellular glucose and for the intracellular
metabolites as shown in Figure 1. The time course of
unbalanced cometabolite (NAD+, NADH, NADP+,
NADPH, AMP, ADP and ATP) concentrations were fitted
with analytical functions [21]. Kinetic rate equations
define the metabolic pathways through a coupled system
of aggregated rate laws in the form of mechanistic or
empirical rate expressions. The first step in transforming
individual ARL reactions into mass-action form is to
define the elementary steps of a reaction mechanism from
a literature search on the individual enzymes; what
remains is to find an appropriate set of parameters for the
MRL model.

Hybrid MRL/ARL modelling
Direct replacement of every reaction step with its MRL
mechanism leads to an unreasonably large number of
parameters for simultaneous optimization. Therefore we
have developed a hybrid modelling approach to optimize
parameters for the MRL model. In this approach, the net-
work is partitioned into modules, one for each enzymatic
reaction. Then, a series of hybrid ARL/MRL models can be
constructed, one for each ARL reaction, with that single
individual ARL reaction replaced by its MRL version.
Parameter optimization is done on the hybrid models,

A flow chart illustrating the process of extracting MRL con-stants from ARL modelsFigure 6
A flow chart illustrating the process of extracting 
MRL constants from ARL models. SMKA: Schematic 
Method of King and Altman; GRC: General Rule of Cleland; 
SA: simulated annealing algorithm.
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optimizing the parameters for that single set of MRL reac-
tions alone in the context of the remaining ARL network.
In this way, the number of simultaneous parameters
requiring optimization is substantially reduced. An exam-
ple is shown in Figure 1, illustrating the replacement of
the phosphoglucoisomerase (pgi) pathway with the two
individual reversible elementary reaction steps in the MRL
form.

Algebraic-numerical simulation and optimization
Once all the necessary information has been defined, it is
then passed to the optimization module that combines
SMKA/GRC with NSO.

Initial conditions
Initial concentrations of metabolites and cometabolites
upon a glucose impulse are the same as for Chassagnole's
ARL model [21] of E. coli growing on minimal medium.
Initial enzyme concentrations shown in Table 1, except
pyruvate kinase, are adapted from Lu et al. [34], where
mass spectrometry-based absolute protein expression
(APEX) profiling was developed for precise measurement
of E. coli protein abundances. Protein abundance for pyru-
vate kinase is taken from 2-D gel data [35], since so far
only abundance data from gel-based proteome technique
is available. The adjustable parameters that are the subject
of optimization need to be given an initial value as the
optimization methods must start at some point of param-
eter space. For our proposed hybrid method, the adjusta-
ble parameters can take any initial value within boundary
constraints that are detailed below. Adjustable parameters
are selected based on one or more of the following crite-
ria: (1) choose a parameter which can be classified as
more sensitive than others through sensitivity analysis;
(2) choose a parameter which has relatively small accept-
able range; or (3) choose a parameter through which
other rate constants can be determined. The selected
adjustable parameters for each mechanism are defined in
Additional File 1.

Algebraic manipulation
With given guesses for the adjustable MRL parameters, all
MRL rate constants for an individual ARL reaction are esti-
mated by applying SMKA/GRC, where combinations of
MRL rate constants are algebraically related to known ARL
kinetic constants. Then, given the enzyme concentration
listed in Table 1, the initial steady-state concentration of
all enzyme forms are determined from the SMKA distribu-
tion equations consisting of metabolite concentrations
and estimated rate constants.

Numerical simulation and optimization
With algebra-derived MRL parameters from ARL con-
stants, using the initial distribution of enzyme species, the
dynamics of all of the elements and reaction rates upon

glucose impulse were simulated in the hybrid ARL/MRL
models using a stiff ODE solver (ode15s in Matlab). The
resulting metabolite concentration and reaction rate
curves were compared with the same curves generated
using the ARL model alone, allowing the optimization
process to find parameter values for the MRL steps which
correspond as closely as possible to the ARL model.

The parameter optimization requires the automated com-
parison of multiple time-dependent curves for metabolite
concentrations and reaction rates between the ARL and
the MRL version. A mean-square error is a natural choice
to measure the degree of similarity of hybrid model simu-
lations to the original ARL model, but there is a certain
degree of arbitrariness in the relative weightings of error
terms in the cost function. We resolve this by weighting
each error term by the peak value in the reference ARL
time series, which effectively demands equal performance
for all metabolites and reaction rates on their own scale
[36]. The cost function is then

where NEC is the Number of the Experimental Condi-
tions for the data, NTS is the total Number of Time Series
for metabolites and sub-step rates specific to an individual
ARL reaction, NSP is the Number of Sampling Points in
time series c, Xpredicted(n,c,t) is the Time Course Data from

the hybrid model simulation, Xreference(n,c,t) is the Time

Course Data from the reference ARL simulation, and the

weighting w(n,c) is  for reference

time series c at condition n.

Generation of new guess
If the maximum iteration number for simulated anneal-
ing (i.e. the termination criterion) is not reached, a new
guess for the adjustable parameters is generated. All MRL
rate constants are then re-estimated by SMKA/GRC step
and the cost function value is re-evaluated by numerical
simulation. This cycle is repeated until satisfactory results
are achieved. The evaluation is considered satisfactory if
the evaluation criterion fval is less than 0.08. We have
found that if fval is larger than 0.08, the MRL simulation
results are unable to provide a reasonable match to the
ARL simulation results.

Simulated annealing procedure [18]
The rate constants are globally optimized via the follow-
ing simulated annealing procedure: the starting annealing
temperature (T0) was set around the order of magnitude
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of the cost function at the initial estimates, and the
annealing temperature was linearly decreased by a reduc-
tion factor (RF) of 0.1 until the temperature reached zero.
In order to verify that the annealing schedule was able to
explore the entire parameter space of the underlying MRL
mechanism, multiple testing calculations were performed
with varying RF around the preset value. The annealing
schedule with the best cost function value is regarded as
an optimal one for the global optimization process.

Statistical analysis
Optimized parameters
A suitable number of optimizations (25 runs) were done
with different random initial guesses distributed over the
entire acceptable range of the rate constants. Mean and
standard deviation (SD) of parameters were calculated
from these 25 optimization runs. A 95% confidence inter-
val (CI) for the fitted parameters and the coefficient of var-
iation (CV = SD/Mean) were used to evaluate the
precision and variation of the parameters.

Effect of experimental uncertainty in enzyme level
The noise was computer generated with random numbers
based on Gaussian distribution and added to the experi-
mentally determined value for pykF (1.2 μM, which was
measured by 2-D gel with some uncertainty). Twenty-five
noisy enzyme concentrations were randomly generated
for each noise level (10% and 20%) and the optimization
was repeated. A 95% confidence interval (CI) for the fitted
parameters and the relative errors (RE) between noise and
'noise-free' solutions were used to evaluate the parameter
precision and bias due to experimental uncertainty.

Example of a multisubstrate kinetic mechanism
Glyceraldehyde 3-phosphate dehydrogenase (gapA),
which obeys a multisubstrate kinetic mechanism, is used
as an example to illustrate and explain the basic steps of
the hybrid algebraic-numerical method.

Chassagnole's model for gapA is a simplified ARL equa-
tion, since neither the sequence of subreactions nor the
enzyme forms can be deduced from the model. The first
binding of NAD+ to the enzyme and the last release of
NADH from the enzyme have been found for NAD+-
linked dehydrogenases [37]. So an ordered sequential
mechanism would be expected with gapA; what remains is
to identify if the binding mechanism proceeds through a
ternary complex (Figure 4A) or through a binary complex
(Figure 4B). There is experimental evidence that a kineti-
cally significant ternary complex exists for NAD+-linked
dehydrogenases [37], so the optimization process pre-
sented here starts with an ordered Bi Bi mechanism with a
ternary central complex. Treating k-2 and k4 as adjustable
parameters leads to a set of equality constraints for rate
constants and enzyme forms (See Additional file 1 for

details). By varying k-2 and k4, the optimization process
automatically tries to arrive at the best solution for MRL
parameters, so that the resulting concentration and rate
curves correspond as closely as possible to the same curves
generated using the ARL model alone. In the cost function
(Eqn. 1), NEC is 1, relating to a glucose impulse to extra-
cellular concentration of 2 mM. NTS is 6, consisting of 2
time-series for metabolites and 4 time-series for net rates
of four sub-steps. NSP is 21, relating to a sampling time
interval of 0–20 s with a sampling point every 1 s. The
time period over which we run the simulation and opti-
mization is consistent with the original experiment, where
all the intracellular metabolites could be sampled and
measured within 20 seconds after the glucose impulse
[21].

Example for allosteric regulation
Pyruvate kinase (pykF) is an allosteric enzyme whose
kinetic behaviour is usually described by the concerted
allosteric transition mode of the Monod, Wyman, and
Changeux (MWC) model [38]. According to the MWC
model, pykF can exist in an active state (ER) or an inactive
state (ET). The fraction of active enzyme in the ER or ET
states is determined by the concentrations and relative
affinities of the inhibitor (ATP) and the activator (FDP)
for the ER and ET states [39]. In addition to this allosteric
regulation, the enzyme normally follows the substrates
binding rule in the order PEP and ADP and the products
releasing rule in the order PYR and ATP [24]. Since the
equilibrium constant of the pykF reaction is much larger,
of the order of 105 [40], this reaction is always regarded as
irreversible with the back reaction being ignored com-
pletely.

Assuming that the reaction within the allosteric segment
(dark shaded area as shown in Figure 2A) reaches near
equilibrium, the Cha method [41] can be used for the der-
ivation of the complete King-Altman equations by consid-
ering all the enzyme forms within the allosteric segment
as a single entity, i.e. as a single corner of the basic King-
Altman figure. We can call the allosteric segment 'ETER',
which consists of active and inactive states of the enzyme.
The symbol f, representing fractional concentrations [41], is
introduced in the sequential multisubstrate reactions to
stand for the relative proportion of the equilibrium seg-
ment, ETER, that actually is involved in the given sequen-
tial multisubstrate reactions. For example, considering the
species constituting ETER in Figure 2A, it is ER that reacts
with PEP (with a rate coefficient k1) to yield ER-PEP. The
symbol f represents the proportion of ETER that is ER,
which is obtained by the usual rules for equilibrium sys-
tems [41]
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where Keq is the equilibrium constant and the power of 4
is the number of the allosteric sites for pykF [39]. Thus,
k1·f in Figure 2A represents an effective rate constant for
the first step of the sequential multisubstrate reactions,
and the SMKA/GRC treatments yields all the enzyme
forms and rate constants as shown in Additional file 1.

MRL model evaluation
Parameter sensitivity
We performed a time-dependent sensitivity analysis in
order to determine the effects of rate constants on time
series of glycolytic rates. We define the scaled sensitivities
for time-dependent fluxes of reactions by

where Ji(t) are the time course of glycolytic rates and pj are
rate constants. Eqn. (3) is evaluated by numerical differ-
entiation of the network model using finite differences.

Coupled-enzyme system
To evaluate the performance of the MRL model for the
coupled-enzyme system, we simultaneously replaced ARL
pathways corresponding to glycolysis (9 separate ARL
reactions) with their MRL versions in the context of the
remaining ARL model. For each enzyme, we picked the set
of the rate constants with the best cost function values.

The validity of the MRL assembly was tested by comparing
transient dynamic responses after a glucose impulse with
those of the original ARL network. The stability of the
model was evaluated by the eigenvalues of the Jacobian
matrix (A). While A is a complete 18 × 18 matrix for the
ARL network of 18 species, a reduced 36 × 36 Jacobian
matrix can be implemented for the MRL network of 45
species, due to the removal of 9 dependent species as a
result of the conservation relations for enzyme forms. The
Jacobian matrix (A) at the steady state can be calculated
for an n-dimensional dynamical system, where x is a vec-

tor of species [x1, x2, ... xn] and , as

The eigenvalues u satisfy the characteristic equation of the
matrix A

det(A - ul) = 0 (5)

Eqn. (5) is a polynomial equation in u of degree n, and I
is the identity matrix. By the Fundamental Theorem of
Algebra, this equation has n solutions. If all the eigenval-
ues of A have negative real part then the steady states of all
species are stable. The time constant, which indicates how
fast a deviation from a given steady state will decline, is
defined as the reciprocal absolute values of the real parts
of the eigenvalues [42]. In addition, the stiffness or eigen-
value spread of the model can be calculated as the ratio of
the largest over the smallest eigenvalue.

Simplications, Boundary constraints, and Tools
Simplications for Phosphofructokinase
Allosterism can cause fractal properties [43] and kinetic
changes due to enzyme conformational changes. To avoid
the vast expansion of parameters to be optimized, in this
situation we model the particularly complicated allosteric
regulation for phosphofructokinase (pfkA) via non-inte-
gral reaction orders, thereby breaking from the pure ele-
mentary reaction schema, but maintaining the type of
bimolecular reactions (Figure 2B). This treatment for its
simplicity greatly increased the ability to characterize reac-
tion parameters. Since the original ARL model is almost
an empirical expression for pfkA dynamics, it is impossi-
ble to establish a relationship between kinetic constants
and rate constants through SMKA/GRC. For this reason,
we treat all rate constants and non-integral reaction orders
as adjustable parameters that vary freely within the accept-
able ranges that are detailed below. These parameters were
used to calculate the initial concentrations of enzyme
forms through SMKA (see Additional file 1) and then esti-
mated by numerical simulation and optimization to
reproduce the original time-course data for the ARL
model.

Boundary constraints
When two reactants for bimolecular reactions are approx-
imately equal in size, the maximum diffusion-limited
association rate constant for molecular interactions corre-
sponds to ka ≈ 106-107 mM-1 s-1. Since the association
could be even faster for enzymatic reactions where one
molecule is small and diffuses rapidly while the other is
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large and provides a large target [44], the order of magni-
tude for association rate constants are constrained to be
not over 109 mM-1 s-1. The dissociation rate constants are
required to not be in excess of 106 s-1 [45].

Parameters for phosphofructokinase (pfkA) are confined
within a relatively small parameter space, which is based
on mechanistic analysis and time-consuming trial-and-
error testing. Bacterial pfkA enzyme has been found to be
inhibited by PEP as a result of interaction at an allosteric
site [46] and also by a high concentration of ATP due to
substrate antagonism [47]. Considering the high levels of
PEP and ATP in this study, it is reasonable to assume that
the involved elementary steps have low rate constants,
except for the last release of ADP where a higher rate con-
stant is necessary for ensuring the fast breakdown of ER-
ADP in order to provide as much as possible of the
enzyme in the active state (Figure 2B). For these reasons,
the upper boundaries of the forward rate constants are set
at 1000 mM-1 s-1, 5000 mM-1 s-1, 1000 s-1 and 1000000 s-1

for k1, k2, k3 and k4, respectively, and the backward rate
constants are confined within 100 s-1 and 2000 s-1 for k-1
and k-2, respectively. The upper boundaries were further
verified by random testing, where parameters out of the
preset ranges appeared unable to reach a satisfactory cost
function value.

Tools
Matlab (Mathworks, Nattick MA) toolboxes [48] were
used for model simulation and optimization, with mod-
els compiled into MEX binaries for performance [49]. The
simulated annealing (SA) code was partly based on the C
code of Press and Teukolsky [50].

Abbreviations
The following abbreviations are used for individual
enzymes: aroH – DAHP synthase (EC 2.5.1.54), eno –
Enolase (EC 4.2.1.11), fba – Fructose-bisphosphate aldo-
lase (EC 4.1.2.13), gapA – Glyceraldehyde 3-phosphate
dehydrogenase (EC 1.2.1.12), glgC – Glucose-1-phos-
phate adenylyltransferase (EC 2.7.7.27), gnd - 6-phos-
phogluconate dehydrogenase (EC 1.1.1.44), gpsA –
Glycerol 3-phosphate dehydrogenase (EC 1.1.1.94), pdhA
– Pyruvate dehydrogenase (EC 1.2.4.1), pfkA – Phosphof-
ructokinase (EC 2.7.1.11), pgi – Phosphoglucoisomerase
(EC 5.3.1.9), pgk – Phosphoglycerate kinase (EC 2.7.2.3),
pgm – Phosphoglycerate mutase (EC 5.4.2.1), pgm1 –
Phosphoglucomutase (EC 5.4.2.2), ppc – Phosphoe-
nolpyruvate carboxylase (EC 4.1.1.31), prs – Ribose phos-
phate pyrophosphokinase (EC 2.7.6.1), pykF – Pyruvate
kinase (EC 2.7.1.40), rpe – Ribulose phosphate epimerase
(EC 5.1.3.22), rpi – Ribose phosphate isomerase (EC
5.3.1.6), talA – Transaldolose (EC 2.2.1.2), tktA – Tran-
sketolase a (EC 2.2.1.1), tktB – Transketolose b (EC
2.2.1.1), tpiA – Triosephosphate isomerase (EC 5.3.3.1),

zwf – Glucose-6-phosphate dehydrogenase (EC 1.1.1.49).
The following abbreviations are used for metabolites:
DHAP – Dihydroxyacetonephosphate, E4P – Erythrose-4-
phosphate, F6P – Fructose-6-phosphate, FDP – Fructose-
1,6-bisphosphate, G1P – Glucose-1-phosphate, G6P –
Glucos-6-phosphate, GAP – Glyceraldehyde-3-phos-
phate, GLC – Glucose, PEP – Phosphoenolpyruvate, PG –
6-phosphogluconate, PG2 – 2-phosphoglycerate, PG3 –
3-phosphoglycerate, PGP – 1,3-diphosphoglycerate, PYR
– Pyruvate, Rib5P – Ribose-5-phosphate, Ribu5P – Ribu-
lose-5-phosphate, Sed7P – Sedoheptulose-7-phosphate,
Xyl5P – Xylulose-5-phosphate. Other abbreviations are:
ARL – Aggregated Rate Law, CI – Confidence Interval, CV
– Coefficient of Variation, fval – Cost Function Value,
GRC – General Rules of Cleland, MEX – MATLAB Execut-
able Files, MRL – Mass Action Rate Law, NSO – Numerical
Simulation and Optimization, ODE – Ordinary Differen-
tial Equation, PBS – Particle Based Simulation, QSSA –
Quasi Stationary State Assumption, RE – Relative Errors
compared to 0% noise case, SD – Standard Deviation,
SMKA – Schematic Method of King and Altman.
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