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Abstract

Background: When analyzing complex biological systems, a major objective is localization of
function — assessing how much each element contributes to the execution of specific tasks. To
establish causal relationships, knockout and perturbation studies are commonly executed. The vast
majority of studies perturb a single element at a time, yet one may hypothesize that in non-trivial
biological systems single-perturbations will fail to reveal the functional organization of the system,
owing to interactions and redundancies.

Results: We address this fundamental gap between theory and practice by quantifying how
misleading the picture arising from classical single-perturbation analysis is, compared with the full
multiple-perturbations picture. To this end we use a combination of a novel approach for
quantitative, rigorous multiple-knockouts analysis based on the Shapley value from game theory,
with an established in-silico model of Saccharomyces cerevisiae metabolism. We find that single-
perturbations analysis misses at least 33% of the genes that contribute significantly to the growth
potential of this organism, though the essential genes it does find are responsible for most of the
growth potential. But when assigning gene contributions for individual metabolic functions, the
picture arising from single-perturbations is severely lacking and a multiple-perturbations approach
turns out to be essential.

Conclusion: The multiple-perturbations investigation yields a significantly richer and more
biologically plausible functional annotation of the genes comprising the metabolic network of the
yeast.

decisions. Many of the analysis techniques that are aimed
at identifying the functional role of elements in biological

Background

A central objective of the analysis of complex systems is

localization of function, that is, determining which task is
executed by each element or, more precisely, assessing
how much each element contributes to the execution of
specific tasks. For example, one can ask, for a given cell,
which gene-products are responsible for energy metabo-
lism, and which are involved in cell cycle and cell fate

systems, such as gene expression microarrays, are based
on studying correlations in the data. However, establish-
ing causal relationships in the data is not possible using
purely correlational measures [1,2] without utilizing a
randomized experimental framework [3]. For example,
when observing a gene whose over-expression is coupled
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with a phenotypic phenomenon, one cannot ascertain
whether the over expression is the direct cause of this phe-
nomenon or an epiphenomenon of the activation of
other genes.

These observations naturally lead to the notion of pertur-
bations or knockouts: To understand what a specific ele-
ment (gene, enzyme, neuron, brain area) does, lesion it
and observe the functional consequences. A classical
example is studying the effects of systematic deletions of
genes on an organism's viability, with the resulting causal
categorization of essential genes [4-6]. These classical
knockout studies are however based on single-perturba-
tions: In each experiment, a single element in the system
is perturbed, and the resulting phenotype is used to iden-
tify its function. Yet, such single-perturbations will fail to
reveal the functional organization of systems in which
there is no one-to-one correspondence between elements
and functions. For example, in a system with two redun-
dant elements backing each other's function, the removal
of any of the two will have no phenotypic effect, leading
to the false conclusion that both elements are superflu-
ous. Indeed, in a recent in-silico multiple-knockouts study
of the robustness of the yeast's metabolic network [7],
74% of the genes were attributed some functional contri-
bution, as opposed to only 13% found to be essential
using single knockouts. There are a number of recent in-
silico studies on the robustness against double and multi-
ple knockouts (e.g., [8,9]).

Such considerations and findings suggest that under-
standing even moderately-complex biological systems
requires the use of multiple concurrent perturbations. On
the other hand, the vast majority of gene knockout studies
employ only single knockouts. How detrimental is this
gap? To what extent can we rely on the large body of
observations that have been made using single knockout
studies in biology?

The first obvious step toward addressing this question lies
in double knockout perturbations. As the simplest con-
ceivable genetic interaction is that of full overlap or redun-
dancy (e.g., the result of gene duplication), one can set out
to experimentally test the phenotype of all double concur-
rent perturbations, in search of gene pairs whose deletion
is lethal (called synthetic lethal) or damaging. In fact, a
large scale experiment looking for such gene pairs in S.
cerevisiae [10] tested some 600,000 gene pairs and found
~4000 synthetic lethal pairs, at 0.65% frequency. These
included ~1000 individual genes (almost all non-essen-
tial by themselves), encompassing about 16% of the
genome. Two recent papers performed all double knock-
outs of yeast and the bacterium Helicobacter pylori meta-
bolic genes using in-silico models [11,12].
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These numbers offer a bipolar view on the importance of
genetic interactions, and hence multiple-perturbations
analysis, in functional genomics. On the one hand, one
may convincingly argue that genes with complete or par-
tial backups are in fact less important to the functioning
of the organism, as each can be removed with small effect,
and the probability of random mutations damaging both
copies is very low. The rarity of synthetic lethal pairs is a
further possible argument against the importance of mul-
tiple perturbations as a tool for localizing function. On
the other hand, as only 20-30% of the yeast genes were
found to be essential or partially contributing to growth
(e.g., [5]), amultiple-knockouts analysis may expand con-
siderably the effective size of the network of genes with
significant functional contribution. In addition, more
complex forms of redundancy and interactions are not
necessarily manifested in synthetically lethal gene pairs.
Finally, the functional annotations gained from single
perturbations alone might be seriously lacking.

Travelling down this path of thought, the next obvious
step is to experimentally test triple knockouts, and then
quadruple and more. As these experiments are difficult
and costly, the key question is whether these multiple-
knockouts data will enhance our understanding of the sys-
tem, and if so — to what extent. In a previous work [7], we
have applied multiple concurrent knockouts to a widely
accepted large scale in-silico model of the metabolism of S.
cerevisiae, and enumerated synthetic lethal pairs and larger
lethal groups termed essential sets. In this paper, we start by
estimating the extent of multiple-lethality phenomena in
S. cerevisiae using the same model, in a manner analogous
to the experimental results cited. While useful in its own
sake, we will see that this brute force approach leads to
serious technical and conceptual scaling problems. Tack-
ling these difficulties, we utilize a novel approach for
quantitative rigorous multiple-knockouts analysis, the
Multiple-perturbations Shapley value Analysis (MSA, See
Methods), a methodology introduced at [13]. This
method borrows fundamental concepts and analytical
approaches from the field of Game Theory, which have
already been used in many diverse fields [14-17].

The MSA utilizes perturbation (or knockout) experiments
for assigning each element of a system a numerical contri-
bution score (contribution value, CV) to a specific given
task. Given such contributions we can address questions
regarding the functional role of elements, the identifica-
tion of submodules in the system, the quantification of
localization/distribution of specific tasks, etc. The MSA is
the first method providing a unique, axiomatically correct
and scalable attribution of contributions to the system's
elements, in the context of multiple-perturbations experi-
ments. It was previously applied to brain networks,
genetic networks and artificial neurocontrollers [18-20].
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Using the MSA, we further analyze the yeast's metabolism
to get more insight into the localization of metabolic
function, and quantify how misleading the picture arising
from classical single-perturbation analysis is in compari-
son.

Results

A Computational Study of Synthetic Lethality

Our first jab at the question of the necessity of multiple
perturbations is an obvious one. We wish to estimate the
extent of multiple-lethality phenomena in similar lines to
the experiments of Tong et al. [10], that systematically
crossed mutations in ~130 different query genes into a set
of ~4700 viable gene yeast deletion mutants and identi-
fied synthetically lethal or sick interactions. To this end we
employ the large scale in-silico constraint-based modelling
approach of [21].

We have used the in-silico Flux Balance Analysis (FBA)
model of [22] to predict the viability of S. cerevisiae under
single knockouts of all genes included in the model, find-
ing 101 essential genes comprising 16% of the 619 genes
involved in the metabolic network modelled (see Meth-
ods). Limited only by computing power, we have pro-
ceeded to measure the viability of the yeast in the model
under all double knockouts of non-essential genes, and
under random samples of triple and quadruple knock-
outs. Figure 1 shows the observed frequency and count of
lethal interactions per group size (essential genes, syn-
thetic lethal pairs etc.).

Note the good agreement of the model statistics with the
experimental data for the single and double knockouts:
For knockout depths 1 and 2, the predicted lethal frequen-
cies are 13% and 28%, respectively, lower than the empir-
ical frequencies, a fairly small bias that might stem from
the inherent optimism of the FBA predictions. Similarly,
the statistics of three and four concurrent knockout exper-
iments probably bound the expected true experimental
frequencies from below, and probably not tightly so.

Both experimental and model data suggest that some
important knowledge can be mined only from the multi-
ple-perturbations experiments. Unfortunately, Figure 1
also points at two serious problems with this straightfor-
ward approach of measuring the amount of lethal interac-
tions. First, it does not scale: On the one hand, as we use
more concurrent perturbations, there is an increasing
number of lethal interactions that we should aim to find.
On the other hand, their frequency among all potential
gene combinations is decreasing, because the number of
such potential combinations grows even faster. Thus, even
the switch to in-silico simulations, while accelerating the
process over in-vivo experiments by many orders of mag-
nitude, cannot provide a brute force complete answer to
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How many synthetic lethals are there?. For each per-
turbation size (knockout depth) we plot: -m- the frequency
of lethal gene interactions, left axis; and -{- the absolute
number of lethal interactions, right axis. For sizes 1,2 we use
the true numbers, while 3,4 are based on 2 - 108 samples
each (about 10% and 0.1% of the total interactions space,
respectively). For all sizes we only count lethal gene groups
for which no subgroup is in itself lethal. Compare with -A-
for experimentally derived frequencies [5,10] for 1D and 2D
interactions.

the multiple-perturbations problem. The second problem
is a conceptual issue. Given the results of Figure 1, is it
important to execute a multiple-perturbations analysis? Is
the amount of interactions found small or large? How
should one interpret the 200,000 four-dimensional inter-
actions found in the metabolic network?

More specifically, as we use more concurrent perturba-
tions two main problems potentially hinder the execution
of the multiple-perturbations analysis: (a) without prior
knowledge about the groups of elements involved in
important interactions, the analysis requires the collec-
tion of an exponentially large (in the number of elements)
set of costly multiple-knockouts experiments; and (b) it
necessitates an accepted definition of importance for the
analysis of the resulting large data set. In the following, we
utilize the Multiple-perturbations Shapley value Analysis
(MSA) method (see Methods) to overcome these issues.

MSA Analysis of the Yeast Metabolic Network

Applying multiple concurrent perturbations to the meta-
bolic network, we utilize MSA to assess the increase in
information gained in the process. MSA, explained in
more detail under Methods below, tackles the problem of
quantifying the relative contributions of system elements
(e.g., genes or enzymes) to a given task. The contribution
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is computed by measuring the effect of removing an ele-
ment (e.g., gene deletion) not only in the fully functional
system - as is done in classic single knockouts, but also
after already removing one or more other elements. Thus,
interactions between elements can be revealed. This basic
idea was already employed, e.g., to identify synthetic
lethal gene pairs [10] - but MSA introduced the computa-
tional and theoretical framework allowing the combina-
tion of many multiple knockout tests into a concise
contribution score per element (for a given task). In out
case, the elements perturbed are the genes coding for
enzymes catalyzing the metabolic pathways. Perturba-
tions are defined as complete knockouts of genes. The net-
work's performance is the optimal solution found using
FBA.

General Analysis: The Growth Task

Initially, we use the classic biomass production as the
objective function in the FBA modelling. The biomass
production target has proved successful in predicting
experimental results in wild-type strains and mutants in
several organisms [23-26]. It is also the objective function
that best fits the experimental flux data among several
functions tested in [27]. Although it is not necessarily the
true single objective of the organism [28], maximization
of growth is a good in-silico measure of the potential of
growth of the organism.

Figure 2 presents the contribution values (CVs) of the 619
genes in the S. cerevisiae model, for the task of maximal
growth. The distribution spans several orders of magni-
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Figure 2

Gene contribution values. Gene contribution values for
the general biomass production task of S. cerevisiae (ordered
by decreasing contribution, first 200 genes shown). The high
CV plateau marks essential genes, all equally important and
cumulatively responsible for much of the growth.
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tude, which is to be expected: in accordance with the intu-
itive notion of importance discussed in the Introduction,
the MSA attaches only small contribution values to redun-
dant elements, as their contribution is marginal as long as
the element buffering their function is intact. Importantly,
however, it does attach non-zero contributions to them,
in contrast to what might be expected from single knock-
out studies.

To compare the picture of function localization arising
from a single perturbations analysis with that of the full
MSA, we track 3 measures: (a) The number of genes
involved in the task (requiring statistical significance, see
Table 1); (b) The cumulative contribution of the essential
(lethal) genes, i.e. the sum of their CVs; and (c) The mean
relative error in the CVs computed using single-perturba-
tions versus their true axiomatic value, as computed by an
MSA of the multiple-perturbations data. Additionally, we
record the number of essential genes for every task. Here
we use the usual definition of essentiality, i.e., a gene is
essential if its single-perturbation is lethal.

From the results presented in Table 1, one can derive two
main conclusions regarding the localization of the general
growth task: (a) the classic single-perturbation analysis
misses some 33% of the genes found to have a statistically
non-negligible contribution by the MSA. Since we used a
conservative statistical estimation of the number of
involved genes, this percentage might be even higher in
the real organism. (b) Yet, the genes found by single
knockout analysis contribute up to 96% of the cumulative
sum of contributions to growth, while the many genes
missed by the single-perturbation analysis end up having
a very minor overall contribution in the MSA.

Production Of Biomass Constituents

We turn to a detailed localization of function, measuring
the metabolic network's ability to individually produce
the different biomass constituents. To this end we used an
array of objective functions, each corresponding to the
maximization of the production of a single biomass con-
stituent, including the various amino acids, nucleotides,
carbohydrates and lipids. We thus measure the contribu-
tion of genes to the potential production capability of
each biomass constituent individually, in an isolated
manner.

Figure 3 applies the same measures as in Table 1 for the
different tasks studied. It shows an important quality of
the different subsystems in the metabolic networks: their
respective complexity (which in this paper refers specifi-
cally to "localization complexity”, i.e., the need for ana-
lyzing the system with multiple perturbations). It is clear
that the amino-acid production systems are both larger
and more complex (with functional overlap masking the
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Table I: Results of single vs. multiple perturbations analysis.
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As revealed by single knockouts

As revealed by multiple knockouts

(a) System size

(b) Cumulative CV of essential genes
(c) Mean relative error

(d) Number of essential genes

131 215
96% 94.8%

45%
101

(a) Number of genes implicated as involved in the task. In the multiple case, we only count genes with a statistically significant CV (corrected for
multiple testing by FDR [37]: the expected proportion of falsely counted genes is controlled at 10%, or 22 in this case); (b) Total contribution of the

i . i . =1
essential genes; (c) Mean relative error of CVs; MRE ] ziel

genes.

discovery of involved genes) than the other groups, with
lipid production being somewhat simpler than the other
groups (Figures 3a and 3c). Concurrently, the amino acid
and carbohydrate pathways have a significantly smaller
number of essential genes (Figure 3b) compared with the
other pathways. Single knockouts are only able to accu-
rately recover the contributions of elements with little or
no genetic interactions (like the essential genes), and
indeed, when these elements are responsible for most of
the task, single knockouts are quite accurate (Figures 3¢
and 3d). Most importantly, while the CVs of essential
genes (revealed already by a single-perturbations analysis)
cover about 95% of total CV mass in the general growth
task (Table 1), it covers only a small percentage in some of
the individual tasks, testifying to the necessity of multiple
perturbations for correctly localizing the processing of
individual tasks (Figure 3d).

Hence, a multiple-knockouts analysis finds many more
significant genes when examining individual tasks, than a
single-knockout analysis. Figure 4 plots the genes (col-
umns) participating in every task (rows) in both cases. The
multiple-knockouts analysis provides a very large enrich-
ment of the genes participating in each task and vice versa.
For example, the single-knockout analysis functionally
annotates only 148 genes by finding them important in
one or more tasks (with 970 specific gene-per-task anno-
tations (i.e., non-zero entries in the matrix)), while the
multiple-knockouts analysis annotates 341 genes with a
total of more than 2600 annotations. In other words,
according to the multiple-knockouts analysis, each gene
participates in many more tasks and one obtains a much
richer, "soft" annotation of the functional roles of the
gene products in the system. This conceptual picture con-
forms intuitively much better with the numerous annota-
tions that genes may be ascribed to in standard
annotation systems like GO, than the very sparse, "hard"
annotation obtained with the single-lesion analysis.

B0
o

! averaging only for the involved genes I; (d) Number of essential

To address the question whether the richer, multiple-
knockouts annotation actually carries more valid biologi-
cal information than the single-knockout analogue, we
perform a hierarchical clustering of tasks, represented by
their gene annotation vectors given in the data presented
in Figure 4. The resulting cluster hierarchies in both the
single and multiple knockouts cases are shown in Figure
5. Both clusterings successfully identify a few of the pri-
mary classes of the metabolic tasks (e.g., phospholipids
and sterols). However, as evident, multiple-knockouts
annotation produces a superior clustering, e.g., grouping
correctly the amino acids and the pyrimidines to separate
categories, while the single-knockout clustering fails to do
sO.

Discussion and Conclusion

We present a large-scale study of function localization in
a metabolic network model of the yeast. First, let us
address our main question whether multiple knockouts
are necessary to correctly localize function in simple
organisms. We find that the essential elements revealed by
the single-perturbations analysis of general growth span
most of the total contribution values (CV mass). Yet, this
analysis completely misses a large number (one third) of
functionally relevant elements whose contribution,
though small, is non-negligible and depends on the status
of other elements. In the individual metabolic subtasks,
the picture portrayed by single-perturbations analysis is
significantly lacking, and in some of these subtasks the
single perturbation analysis reveals only 20% of the con-
tributing genes, which together account for only 40% of
the total CV mass. The general growth task hence appears
simpler than many of the subtasks producing biomass
constituents. This is likely because it is a logical AND com-
bination of the subtasks (all constituents are necessary for
growth). This translates to an abundance of lethal ele-
ments in the general growth task, leaving relatively little
mass (in the contribution sense) to the intricate interac-
tions and nonlethal elements.
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Complexity of metabolic subsystems. Considering 4 groups of tasks, for the production of the various biomass constitu-
ents: 20 Amino acids, 9 Nucleotides, 8 Lipids and sterols and 4 Carbohydrates. Mean/standard deviations across group mem-
bers: (a) Count of genes implicated for involvement in the task (c.f. Table 1), left/right histograms mark the genes identified
using single-perturbations/MSA respectively; (b) Number of essential genes; (c) Mean Relative Error (c.f. Table |); (d) Total

contribution of the essential genes.

We began our investigation by mimicking in-silico the
experimental paradigm recently introduced in-vivo, of per-
forming a set of multiple knockouts (double, in the in-vivo
case) and assessing the amount of lethal interactions that
is uncovered. Remarkably, the model's results for the sin-
gle and double knockouts concord fairly well with the in-
vivo tesults. The triple and quadruple model experiments

confirm the trends observed in the lower-dimensional
interactions - that is, as the dimension (size) of the inter-
action increases, the frequency of lethal interactions
decreases and their absolute number increases by about
an order of magnitude. However, we find that this
approach cannot be extended in practice, even by using in-
silico models, because of two main reasons: First, it is com-

Using Single Knockouts
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Figure 4

Annotation matrices. 41 x 619 element matrices, with dots indicating the gene (column) participates in the execution of the
task (row). With multiple knockouts, only statistically significant genes are plotted (c.f. Table ).
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Clustering of tasks by participating genes. Hierarchical clustering of the 4| subtasks according to the binary vectors of
participating genes from Figure 4. Clustering with a standard agglomerative, shortest single link algorithm, using a Jaccard dis-
tance metric with Matlab software. Tasks are manually classified according to product biochemical identity, to illuminate the

clustering qualities: Amino acids, Purines, pYrimidines, pHospholipids, Sterols and Carbohydrates.

putationally intractable, and second, and perhaps more
important, it is not clear how the results obtained can
actually be transcribed to measures of system size or com-
plexity, or to yield a more useful functional gene annota-
tion. We hence turn to a more rigorous, systematic
approach. Using the MSA to quantitatively identify the
significant genes and their contribution to the different
metabolic tasks, we are able to characterize the functional
profile of the genes in the system in both the single and
multiple knockouts cases. Indeed, the multiple-knockouts
analysis is shown to give a description which is both richer
and conforms better with basic biological knowledge than
the single knockout analysis.

In our multiple-knockouts study of the yeast metabolism,
a batch of 105 perturbation experiments already gives a
fairly accurate function localization picture for some
tasks, in a system with 600 elements. Depending on the
complexity of the analyzed system, knockout depths from
k =4 and up to k = 10 are needed. Given that current in-
vivo experimental studies already perform tens of thou-

sands of single perturbations [4] and hundreds of thou-
sands of double-knockout experiments [10], it is not
unreasonable to expect that an in-vivo multiple-perturba-
tions analysis of large metabolic pathways, and perhaps
even whole cellular systems, will become feasible in the
foreseeable future.

One should note that the genes that require multiple
knockouts to unravel their functional contributions are
not of marginal importance and are of considerable bio-
logical significance, as already shown in previous studies:
[7] have provided numerous examples of genes sets dis-
covered by high-depth knockouts and discuss their back-
ups from a biological perspective. [29] have shown that
including the contributions of genes identified via double
knockouts significantly extends the coverage and quality
of their functional annotation in the yeast (vs GO and vs
the annotation obtained considering only single knock-
outs). Specific examples of such genes are discussed in
depth and the pathways that they compose are elucidated
and further validated via auxotrophy experiments.
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Summarizing our findings, this paper shows two funda-
mental results. First, in response to our basic research
question, we show, for the yeast's metabolic network, that
the conventionally used single knockout analysis provides
only a very partial picture of function localization. Sec-
ond, we show that the current experimental paradigm for
probing the system's higher-order lethal interactions is
both practically and conceptually limited. In turn, we
demonstrate the essential value of a rigorous multiple-
knockouts analysis method for accurately estimating the
network's effective significant size. Moreover, the identifi-
cation of the significant elements might even guide the
experimental search for lethal interactions in the future,
and make it more efficient. The current study of functional
genomics in biological systems is just the beginning of an
important endeavor, and much remains to be done. Fur-
thermore, the multi-perturbation approach presented
here is not necessarily limited to perturbations at the gene
level. One potentially important extension is to the study
of complex, combinatorial gene regulation programs, to
elucidate the relative role of the different transcriptions
factors and their binding sites on a given gene promoter.
First steps in this direction have been recently taken by
[30]. Overall, our results strongly indicate that multiple-
knockouts experimental studies are likely to drastically
change the way we understand and think about function
localization in biological systems.

Methods

Constraint Based Models and Flux Balance Analysis
Genome sequencing and annotation have enabled the
reconstruction of genome-scale metabolic networks. We
use constraint-based models of S. cerevisiae [22]. These
models enumerate the biochemical reactions involved
and impose mass balance, thermodynamic and maxi-
mum flux constraints to define the set of flux vectors rep-
resenting all possible steady states. Flux Balance Analysis
(FBA) [31,32] is a constraint-based method which uses
the objective function of maximum growth yield to find
an optimal steady state in the set of feasible solutions. As
a single optimal solution is rarely of interest, FBA is used
to explore the optimal solution as a function of varying
conditions. Several useful predictions have been obtained
from such in-silico models [23,24], including predicting
the consequences of gene deletions, optimal growth pat-
terns, outcomes of adaptive evolution and more. The suc-
cess rate of these predictions is typically in the order of
70-90% depending on the organism studied and the type
of prediction being made. It is important to note that as
optimality is sought, when the predictions are false these
models tend to err in one direction more than the other:
they are usually overly optimistic with regard to the organ-
ism's true capabilities, probably because maximum yield
is never completely attained in Nature [25,28,33,34].
Briefly, the FBA method describes the stoichiometry of a
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system of N metabolic reactions involving M metabolites
in an M x N matrix S. It then solves the following linear
programming problem:

max ¢'v
st.Sv=0 (1)
I<v<u

where v is the (unknown) vector of fluxes through the
reactions. The constraints enforce a steady-state mass bal-
ance, and additional lower and upper bounds (I and u,
respectively) are placed on some of the fluxes to enforce
all irreversible reactions to have flux in the correct direc-
tion, limit environmentally available nutrients etc. At least
one v; flux must be bounded from above in order to avoid
diverging solutions, and because this is biologically mean-
ingful, for example, due to limitation of substrate uptake.
The constant vector ¢ determines the optimization target.
Here, we use different objective functions to enable the
measurement of different functions or tasks, i.e., different
aspects of metabolism. Specifically, we consider optimal
production of biomass, and optimal production of partic-
ular biomass constituents. For the optimal biomass pro-
duction in the yeast's case, FBA seeks the maximal
production of a linear combination of biomass constitu-
ents, including 20 amino acids, 9 nucleotides, 8 lipids,
phospholipids, fatty acids and sterols, and 4 carbohy-
drates, and sulfate (which is available from the environ-
ment). The weights for the linear combination were
determined in [22]. We had simulated aerobic growth on
minimal media based on Yeast Nitrogen Base (YNB) w/o
amino acids, with glucose as carbon source.

MSA: Multiple-Perturbations Shapley Value Analysis

Assume you can measure the system's performance at
some task (e.g., the organism's growth rate), and that you
can introduce multiple perturbations to the system before
measuring performance. This is the essence of knockout
studies (though we stress quantification while tradition-
ally the results are often categorized). Obviously, for a sys-
tem of n elements (genes) you can end up with 27
numbers. Even restriction to double perturbations solely
yields ~n? results. This data set must be concisely summa-
rized to be of any use. A basic summary should give each
gene a contribution score, quantifying its importance to
the successful performance of the task. This process can be
repeated for different tasks, yielding a soft annotation vec-
tor for each gene, across the tasks, denoting to which tasks
does it contribute in a significant manner. Another impor-
tant consideration in looking for such a one-dimensional
summary is scalability -these contribution values (CV)
should be computable given a very partial data set, as the
entire set of 2" experiments can hardly ever be accom-
plished in reality. The MSA [13] addresses the fundamen-
tal challenge of defining and calculating the contributions
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of network elements to a defined measurable task, given a
data set of multiple-perturbations experiments and their
corresponding performance scores.

To understand the MSA, examine a system of N = {1, ..,
n} elements, performing a defined task. Suppose we
measure the performance of the system at this task under
all possible multiple perturbations, i.e., we have a per-
formance score v(S), for every subset S = N designating
the unperturbed elements. Let the marginal contribution
of element i to a group S, with i ¢ S, be

A(S) = v(S w {i}) - v(S). (2)

The contribution of element i € N as defined by the Shap-
ley Value [35] (which is one of a broader family of semi-
values differing in the way experiments are weighted; it is
used for its axiomatic qualities, though our results remain
qualitatively similar for other members of the semi-values
family) is

1
7i= o D AS(R) (3)

ReR

where R is the set of all n! orderings of N, and S;(R) is the

set of elements preceding i in the ordering R. The Shapley
value is the unique fair division of the total performance
gap v(N) - v(J) among the different elements [35], i.e.

n
D ri=vN) - u(2). (4)
i=1
In this respect, the intuitive interpretation of the Shapley
value is the relative fraction that each element plays in the
total execution of the task. Note that v(S) can represent the
performance after some transformations. For example, if
one assumes a multiplicative effects model, it is reasona-
ble to use a logarithm transform (as was done for example
in [36]). While in traditional game theory the Shapley
value is more a theoretical tool, the MSA introduces sam-
pling methods to compute the CVs approximately with
high accuracy and efficiency from a relatively small set of
experiments.

Important to our work is the concept of k perturbations
contribution value (kp-CV), which is a generalization of
the CV concept, defined as

y¥ =|71<|2Ai(siuz)) 5)

ReK
where K'={ReR| R(i) >n -k} and R(i) is the position of

element i in the permutation R, i.e. K includes exactly

http://www.biomedcentral.com/1752-0509/2/50

those orderings where i is in one of the last k positions.
For k = n this reduces to the contribution value, while for
k = 1 it is the result of the single-perturbation measure-
ments. The kp-CV has a simple intuitive meaning; it meas-
ures the importance of elements when only k-limited
knockout experiments (i.e., where no more than k ele-
ments are silenced concomitantly) are applied to the sys-
tem. The kp-CV, computed with k = 1 enables one to
assign contribution values to the elements and quantify
their importance even using single-perturbations solely.

Applying MSA

We utilize MSA to analyze the computational model of
the yeast's metabolic network. The elements perturbed are
the genes coding for enzymes catalyzing the metabolic
pathways. Perturbations are defined as complete knock-
outs of genes. The network's performance is the optimal
solution found using FBA. As directed by the MSA
method, we sampled random orderings of the elements,
then sequentially perturbed them in this order, and meas-
ured the performance after each consecutive perturbation.
The MSA gives statistical error estimates that allow one to
stop sampling when the accuracy of results is satisfactory
[13]. These estimates usually converge faster for the dom-
inant elements, with higher relative errors for the less
important ones, which naturally lends to finding the
former quicker. Depending on the specific experiment, we
had used samples of 105 - 10° perturbation experiments
to estimate the contributions of the genes, obtaining very
small estimation errors. Unless explicitly marked, stand-
ard deviations of presented results are not shown, to
reduce clutter.
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