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Abstract
Background: The current challenge of Systems Biology is to integrate high throughput data sets
for simulating the complexity of biological networks, exploit the evolution of nature-designed
networks that maintain the robustness of a biological system, and thereby generate novel,
experimentally testable hypotheses. In order to simulate non-linear biological complexities, we
have previously developed an Enzyme-Centric mechanistic modeling approach and validated it using
metabolic network in E. coli. The idea is to use prior knowledge of catalytic and regulatory
mechanisms of each enzyme within the metabolic network to build a dynamic model for
investigating the network level regulation and thus understand the nature design principle behind
the network.

Results: In this paper, we further demonstrate the application of complex enzyme catalytic and
regulatory modules to simulate nonlinear network regulatory patterns vs. simple linear conversion
model. We learned and validated that it is essential to incorporate prior knowledge from the
literature to simulate non-linear biological complexities. The network expandability is
demonstrated and validated with the complex amino acid biosynthetic network with multi-
regulations. Also, we demonstrated the compatibility of mechanistic models within close species.
Furthermore, the eukaryotic protein factory model for insuring steady mRNA production is
simulated and the coupling of RNA transcription and splicing is validated by both mathematical
simulation and experimental analysis.

Conclusion: We demonstrated the importance of modeling complex enzyme catalytic and
regulatory mechanisms to further understand nonlinear network regulatory patterns. The
simulations presented in this paper reveal how a living system maintains homeostasis and its
robustness to continue functioning while facing environmental stresses or genetic mutations.

Background
Remarkable advances in the high throughput technolo-
gies enable researchers to broaden their research focuses
from a single gene/protein to global gene/protein expres-
sion profiles. The daunting challenge is how to turn these
overwhelmingly data into real information and gain
meaningful insights of how the information is processed

in a living system. The goal of Systems Biology is to inte-
grate these high throughput data sets through mathemat-
ical models that can computationally simulate the
complexity of a biological network, explore the design
principles during the evolution of a biological circuit to
insure its robustness and thereby generate novel, experi-
mentally testable hypotheses. It is the mission in the post-
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genomic era to understand how all the parts of cells –
genes, proteins, and many other molecules – work in con-
cert to create complex living organisms and analyze how
entire biological systems function, both in health and in
sickness.

The main challenge for systems biologists is to develop a
mathematical modeling technique suitable for modeling
the complexity of biological systems. The "Enzyme-Cen-
tric" mechanistic modeling approach has been developed
in order to integrate expert knowledge in the mechanistic
understanding of enzyme catalytic and regulatory mecha-
nisms [1,2]. Various enzyme models can be assembled
into a pathway such that the combination of various path-
ways is automatically extended into a larger biological
network. The modularity of the model and the feature of
automatic model generation enables flexible updates.
This approach incorporates non-linear biological proper-
ties which are essential for simulating the network level
regulation and predicting responses to perturbations.

In contrast, commonly seen modeling approaches either
ignore the dynamic properties of enzymes by assuming
they are constant or, without considering regulation, sim-
ply assign probability linkage among components
through training sets. The term "non-linear" here refers to
the biological nonlinearity of enzymes that are variables
in the equations (not mathematical non-linearity). The
amino acid biosynthetic network and the interaction of
transcription and RNA splicing are presented here to show
the advantages of using the non-linear Enzyme-Centric
approach vs. a linear conversion model. These examples
reveal the value of Enzyme-Centric modeling to help
understand how a living system maintains homeostasis
and continues to function (robustness) while facing envi-
ronmental stresses or genetic mutations.

Results
The Modularity of Non-linear Enzyme-Centric Modeling 
of the Amino Acid Biosynthetic Network
The validated Enzyme-Centric models for the branched
chain amino acids (BCAA: isoleucine, valine and leucine)
[1] and its upstream threonine biosynthetic pathways [3]
in Escherichia coli (E. coli) K12 strain were integrated
together to demonstrate the modularity and expandabil-
ity of this approach (Fig 1A&B) [Additional file 1: Mathe-
matica™ codes and parameter values]. This network
includes seventeen enzymes (four of which are allosteric
enzymes), eight feedback regulation loops, three sets of
isozymes and several multi-functional enzymes of multi-
functional pathways. This integrated model represents the
first example of modeling "network level regulatory pat-
terns" of multifunctional pathways. The non-linear,
dynamic responses of intermediate metabolites due to the
feedback regulations were observed. There are only three

simple enzyme (i.e. one substrate and one product) mod-
els (Fig 1B, underlined Sim) in the network which empha-
size the importance of modeling the complex enzyme
model. Although there are only four allosteric enzymes
(Fig 1B, underlined Allo), they are located at the upstream
of each pathway. It is important to model them correctly
[3] in order to simulate the regulation of the metabolic
flux entering the individual pathway.

In Fig 2 with Simple Feedback Loops, a sharp rise in the
concentrations of Asp-P, ASA, Hse and Hse-P at the begin-
ning was followed by a sharp rise in the concentration of
threonine (Thr). These initial increases in the concentra-
tions of metabolites are feedback-inhibited by accumula-
tion of threonine on AKI, HDHI and HSK. After
connecting the downstream pathway, threonine levels are
also controlled by its downstream enzyme (TDA) (Fig 2,
Interaction of Feedback Loops). TDA enzyme activity is
feedback inhibited by isoleucine (Ile) and feedback acti-
vated by valine (Val). The ripple effect (i.e. damping oscil-
lation) is due to the balance between different regulatory
mechanisms. At the end, all metabolites reach homeosta-
sis (i.e. steady states) dynamically. We demonstrate here
that, using the Enzyme-Centric approach, each individual
pathway model can be built and validated independently
and then added into a larger network model.

Non-linear Network Level Regulation vs. Linear Conversion Model: 
Prediction of Isoleucine Production over Pyruvate Perturbation
It is important to demonstrate the difference between the
non-linear, enzyme-centric model and linear conversion
model. The easiest way is to do this is by introducing per-
turbation into both models. In Fig 3A and 3B, we intro-
duce pyruvate (Pyr) perturbation. Changes in the levels of
threonine (upstream of Pyr) and isoleucine (downstream
of Pyr) are simulated. When perturbing Pyr in the linear
model (Fig 3C), isoleucine reaches the max flux and
remains constant while threonine stays in constant since
it is upstream of Pyr and assumed independent from Pyr
in the linear model. In contrast, with the enzyme-centric
model (Fig 3D), products (isoleucine and threonine) are
decreased as substrate (Pyr) increases.

To illustrate what happens in the non-linear model, in Fig
3B, AHAS, IR, DAD and TB are multi-functional enzymes
shared by valine and isoleucine biosynthetic pathways.
Excess Pyr disturbs the balance of enzyme partition and
shifts most of enzymes to the valine biosynthesis.
Decreased enzymes for the isoleucine pathway produce
less isoleucine and the feedback inhibition of threonine
deaminase (TDA) is relieved. TDA is more active to con-
sume and decrease threonine level. To validate the
response of the feedback regulation, the product of TDA,
αKB, is a toxic metabolite that blocks glucose transport
and cell growth. When TDA is activated, αKB accumulates,
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Simulation of Metabolic Flux from Aspartate to the Branched Chain Amino Acid (BCAA) Biosynthetic Pathways in E. coli K12Figure 1
Simulation of Metabolic Flux from Aspartate to the Branched Chain Amino Acid (BCAA) Biosynthetic Path-
ways in E. coli K12. A. The metabolic network from glucose, through TCA cycle, to amino acids. The mathematical model of 
colored pathways was simulated here. Each color represents an operon that regulates the same color enzyme levels in the net-
work. B. The abbreviations of enzymes: TDA, threonine deaminase; AHAS, acetohydroxy acid synthase; IR, acetohydroxy acid 
isomeroreductase; DAD, dihydroxy acid dehydrase; TB, transaminase B; TC, transaminase C; IPMS, α-isopropylmalate syn-
thase; IPMI, α-isopropylmalate isomerase; IPMDH, β-isopropylmalate dehydrogenase; LIV-I, leucine, isoleucine, and valine 
transporter I; LS, leucine specific transporter, AKI, aspartate kinase I; AKIII, aspartate kinase III; HDHI, homoserine dehydroge-
nase I; ASD, semialdehyde dehydrogenase; HSK, homoserine kinase; TS, threonine synthase. The abbreviations of metabolites: 
Thr, threonine; Ile, isoleucine; Val, valine; Leu, leucine; Glu, glutamate; Ala, alanine; Pyr, pyruvate; αKB, α-ketobutyrate; αAL, 
α-acetolactate; αAHB, α-aceto-hydroxybutyrate; αDHIV, α,β-dihydroxy-isovalerate; αDMV, α, β-dihydroxy-β-methylvalerate; 
αKIV, α-ketoisovalerate; αKMV, α-keto-β-methylvalerate; αKG, α-ketoglutarate; αIPM, α-isopropylmalate; βIPM, β-isopropyl-
malate; αKIC, α-ketoisocaproate; ex-Ile, extracellular isoleucine; ex-Val, extracellular valine; ex-Leu, extracellular leucine, Asp, 
aspartate; AspP, Aspartyl phosphate; ASA, aspartate semialdehyde; Hse, homoserine; HseP, homoserine phosphate. kMech 
models used for each enzyme are italicized. Allo: allosteric, Sim: simple, PBiBi: Ping Pong Bi Bi enzyme mechanisms. Enzyme 
reactions are indicated by arrows. Feedback inhibition patterns are indicated by dashed lines. Activation is indicated by a plus 
sign, and inhibitions are indicated by vertical bars.
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and AHAS enzymes become a rate limit step due to the
shift of enzyme partition between two pathways. Using a
simple growth assay, we validated that excess Pyr inhibits
E. coli K12 growth (the right image of Petri dish in Fig 3D).
This phenomenon cannot be explained by the simple lin-
ear conversion model.

It is essential to realize that under the network regulation,
increasing substrate alone can not guarantee increased
product amount. This is especially important for meta-
bolic engineering. What we demonstrated here is the
effect of multi-functional enzyme partition under increas-
ing substrate condition on preventing over-production
and maintaining homeostasis of an amino acid.

Non-linear Network Level Regulation vs. Linear Conversion Model: 
Prediction of Valine Production over Pyruvate Perturbation
While excess Pyr shifts enzymes to the valine biosynthesis,
an interesting question is whether this affects valine pro-
duction. Given more substrates and enzymes, the obvious
answer is valine will increase, which is true if the reaction
is in a test tube with purified enzymes. However, the sim-
ulated valine response pattern (dashed line in Fig 3E) tells
a different story. Initially, valine increases in concert with
Pyr level until saturation occurs. While Pyr keeps increas-
ing and passes a certain threshold, an isozyme (transami-
nase C or TC) reaction is turned on (Fig 3F). TC converts
valine reversibly back to its intermediate, αKIV. Once
turned on, the TC reaction becomes a dominant reaction
over the major transamination of transaminase B (TB), so
that valine decreases as Pyr continues to increase.

This biological circuit is designed to automatically switch
the direction of the metabolic flux to prevent over-produc-
ing and thus maintain homeostasis of valine. While the
substrate levels increase, the outcome could be increasing,
unchanged or decreasing, depending upon the given con-
dition. Although the difference may not be obvious
within the physiological levels of Pyr in both models
(1000 uM in Fig 3C&D), under the extreme perturbation
(e.g. drug treatments or gene mutations), the enzyme-cen-
tric model clearly shows a distinct response pattern.

Flexibility and Compatibility of Mechanistic Model within Close 
Species: Prediction of Drug Sensitivity in Salmonella LT2
The ability to reuse models within close species or cell
lines is another advantage of the mechanistic modeling
over statistic modeling. The model can be reused by
changing a few parameters that are known to be different
among species and validated without rebuilding the
model. In contrast, statistical models require an entirely
new training data set to train a new model.

We demonstrate here that Escherichia coli (E. coli) K12 and
Salmonella typhimurium (S. typh.) LT2 are two closely
related model organisms. However, several enzyme
kinetic properties are known to be different: (i) E. coli K12
has non-functional, mutated AHAS isozyme II; S. typh.
LT2 has normal AHAS II, but does not express AHAS III;
(ii) LT2 has much higher TDA enzyme activity (kcat is over
10 fold increased) than K12; and, (iii) although the allos-
teric TDA is a tetramer in LT2 the same as in K12, it has
only two functional catalytic sites. The allosteric parame-

Interaction of Feedback LoopsFigure 2
Interaction of Feedback Loops. Simple Feedback Loops: Simulation of threonine (Thr) biosynthetic pathway starting from 
aspartate with three feedback inhibition loops. Interaction of Feedback Loops: Threonine biosynthetic pathway connected with 
the downstream BCAA pathways. The graphical insets show the approach (minutes) to steady state (μM) synthesis and utiliza-
tion of the substrates, intermediates, and end-products of the pathways. Where available, the ranges of reported values for 
pathway intermediate and end-product levels in cells growing in a glucose minimal salts medium are shown in parentheses (μM) 
in the inset graphs. Dashed lines indicate feedback regulation. Plus sign is positive feedback and minus sign is negative feedback.
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Network Level RegulationFigure 3
Network Level Regulation. A. The linear conversion model of the metabolic network. B. The corresponding non-linear, 
enzymecentric model. The grey arrow starting from Pyr depicts metabolic flow shifting to valine while pyruvate (Pyr) increas-
ing. Black vertical arrows depict up- or down- regulated metabolites. C and D are the spectra of threonine (upstream of Pyr) 
and isoleucine (downstream of Pyr) responses over the Pyr perturbation using Model A and Model B, respectively. X-axis: Pyr 
from 50 to 10,000 uM. Y-axis: the simulated steady state levels of threoine and isoleucine at given Pyr concentrations. The dish 
images are growth assays given low (left) and high (right) Pyr. E. The spectrum of valine production using the Model B. F. The 
black arrow on the top right-hand corner depicts while Pyr passing the threshold, turning on the reverse TC enzyme reaction 
to switch the direction of metabolic flux.
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ters (c and L) were refitted to the kinetic data from LT2 as
described in [3] [curve fitting shown in Additional file
2A]. The following are values of parameters in the models
to reflect this knowledge: LT2: [AHAS II] = 8 uM, [AHAS
III] = 0 uM, c = 0, L = 0.27 vs. K12: [AHAS II] = 0 uM,
[AHAS III] = 2 uM, c = 0.013, L = 1.05.

The LT2 model was validated with the known drug toxic-
ity effect on Sulfometuron Methyl (SM), which is an her-
bicide that specifically blocks AHAS II activity. The
enzyme concentration of AHAS II was turned down to
simulate the SM effect. The Ile feedback resistant mutant
of TDA was simulated by increasing Ki of TDA to Ile to a
large number. Again, using αKB as a growth indicator,
when treated with SM + Val, SM inhibits AHAS II. Val
inhibits AHAS I (downstream of αKB), but activates TDA
(upstream of αKB). AHAS III is null in LT2 (Fig 1B). Thre-
onine is rapidly converted to αKB which blocks glucose
transport. Cell growth was suppressed in both strains
[experimental results shown in Additional file 2B]. TDA is
an allosteric enzyme that is activated by Val and inhibited
by Ile. Ile can rescue the wild type strain (ilvA+) by com-
peting with Val to inhibit TDA activity and eliminate αKB
accumulation (simulation shown as dotted line in Fig
4A), but not in the TDA_Ile feedback mutant (ilvA219)
(simulation shown as dotted line in Fig 4B). The results
demonstrate that, with mechanistic modeling, we are able
to switch the metabolic network model of E. coli to S. typh
by changing a few parameter values. The simulations of
drug sensitivity agree with known experimental results.

Enzyme-Centric Modeling of the Coupling Effect of 
Spliceosome and RNA Polymerase
In eukaryotic cells, proper RNA processing is essential for
producing proteins with normal functionality. The pro-
tein factory hypothesis suggests that the protein-protein
interaction of RNA polymerase II (Pol II) and spliceosome
protects the functional splice sites within nascent pre-
mRNA from the RNase degradation and results in the effi-
cient mature mRNA production (Fig 5A&D). In contrast,
other RNA polymerases (e.g. viral T7) do not provide sim-
ilar protection resulting in excess mature mRNA degrada-
tion (Fig 5B&E) [4]. The Enzyme-Centric interactome
model of spliceosome and RNA polymerase was con-
structed, and after systematic perturbing, the key control-
ling factor that was identified is the affinity (Km) of
spliceosome to pre-mRNA related to the affinity of RNase
to pre-mRNA. The former needs to be much less (~1/50)
than the latter (Fig 5C vs. 5D). Computer simulations sup-
port the protein factory hypothesis that the gene expres-
sion machinery in eukaryotic cells is closely interacted
with each other to form an assembly line. We demonstrate
that this circuit design guarantees an extended half-life for
the proper processing of nascent pre-mRNAs and ensures
that the quality and steady production of mature mRNA
production (Fig 5D) vs. viral polymerase dose not warrant
this functionality (Fig 5E). Furthermore, the deterministic
Pol II model can be adapted to the stochastic simulation
by adding normally distributed noise terms (Langevin
equation) to the rate constants. The probabilistic pertur-
bations of reaction rates for transcription and splicing also
demonstrate that these two rate constants are the key fac-
tors to simulate the observed experimental variations
[Additional file 3B].

Discussion
In this paper, we demonstrate the application of complex
enzyme catalytic and regulatory modules to simulate non-
linear network regulatory patterns. In order to simulate
the non-linear biological complexities, it is essential to
incorporate prior knowledge of enzyme mechanism from
the literature. Simulation/perturbation of the integrated
mathematical model from each individual enzyme mod-
els will help us to understand the network level regulation
and the purpose of the circuit design. The model expand-
ability is demonstrated; each individual amino acid meta-
bolic pathway is simulated/validated independently and
then adds into a larger network model to form a complex
amino acid biosynthetic network with layers of multi-reg-
ulations. These regulatory mechanisms, including multi-
functional enzyme partition and reversible isozyme reac-
tion, contribute to prevent over-production and maintain
homeostasis of amino acids under environmental
changes. The purposes of these metabolic circuit designs
are never realized by investigators when the focus is on
studying the mechanism of a single enzyme. Simulations

Simulation of the Branched Chain Amino Acid (BCAA) Bio-synthetic Pathways in Salmonella LT2Figure 4
Simulation of the Branched Chain Amino Acid 
(BCAA) Biosynthetic Pathways in Salmonella LT2. A. 
Simulation of treatments in wild type (ilvA+) LT2; B. Simula-
tion of treatments in the TDA_Ile feedback resistant mutant 
(ilvA 219); αKB is an inhibitor for glucose transporter. Low 
αKB (Y-axis) indicates growth; high αKB indicates growth 
suppression. Solid line: Sulfometuron Methyl (SM) + valine 
(Val); Dotted line: SM + Val + Ile (isoleucine); Dashed line: 
control with no treatment.
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The Interactome Model of RNA Transcription and SpliceosomeFigure 5
The Interactome Model of RNA Transcription and Spliceosome. A. The protein factory model of RNA Polymerase II 
and spliceosome. B. The T7 polymerase model without interacting with spliceosome. C. to E. Simulations of the in vitro RNA 
splicing assay. Black squares: measured premRNA; Solid lines: simulated pre-mRNA curves; Black triangles: measured mature 
mRNA; Dotted lines: simulated mRNA curves. Black bars: standard deviations of data. The interactome of Pol II and spliceo-
some (NEs) increases the affinity of NEs to the pre-mRNA (smaller Km) as demonstrated by perturbing Km (NEs to pre-
mRNA). The value is 50 nM in C and 1 nM in D while Km (RNase to pre-mRNA) is 50 nM in both cases. D. The pre-mRNA 
protected by PolII interactome is in steady state to maintain mature mRNA production. E. The viral T7 polymerase simulation. 
Mature mRNA is rapid degraded without protection. Km (NEs to pre-mRNA) = Km (RNase to pre-mRNA) = 50 nM.
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using the integrated, non-linear Enzyme-Centric model
uncover the purposes of these designs. To simulate and
understand these properties are especially important for
metabolic engineers to design mutant strains that remove
these regulatory mechanisms that protect microorganism
from over-production to increase yield of amino acid pro-
duction.

We also demonstrated the flexibility of mechanistic mod-
els within close species by changing a few parameter val-
ues. The model can easily be re-used from one species to
the other. Furthermore, the eukaryotic protein factory
model for ensuring steady mRNA production is simulated
and the coupling of RNA transcription and splicing is val-
idated by both mathematical simulation and experimen-
tal analysis. This circuit design guarantees an extended
half-life for the proper processing of nascent pre-mRNAs
and ensures the quality and steady production of mature
mRNA production, which does not occur in viral RNA
polymerase.

Comparison of Non-linear Enzyme-Centric Approach to 
Other Models: The Key for Modeling the Biological Non-
Linearity is "Enzyme is a Variable"
Traditional enzyme modeling approaches use the Michae-
lis-Menten kinetic equation for one substrate/one product
reactions while the King-Altman method is used to derive
equations for more complex multiple reactant reactions.
These types of equations are called steady-state velocity
equations since the derivatives of the concentration over
time for each reactant in the model are set to zero to sim-
plify a set of nonlinear differential equations to linear
algebra equations. This type of approach may be suitable
for single enzyme or unifunctional pathway modeling
(Fig 6). Michaelis-Menten equation is mathematically non-
linear but biologically linear, since the Vm (Vmax, the
maximum flux of the reaction) in the equation is a con-
stant and Vm = kcat × [En]total. kcat is a constant, therefore
[En]total is a constant. This assumption is valid if the
model only concerns the reactions inside a test tube, but
not for multifunctional pathways and network-level regu-
lation. In the field of metabolic engineering, the most
widely used modeling framework is metabolic control
analysis (MCA). The major limitation of the traditional
MCA is its assumption that a system is always in a steady
state, i.e. the assumption of linearity and independency
(Fig 6). Therefore, the traditional MCA approach is not
suitable for modeling the transient phenomena from per-
turbations of metabolic parameters. Several improve-
ments have tried to remove these limitations, including
the Power-law approximation (S-system) [5], the
(Log)Linear refinement of the MCA model [6] and lin-log
kinetics [7] which have been developed to consider
enzyme concentrations, feedback regulators and reversi-
ble enzyme reactions in the models.

The network level regulation involving multiple regula-
tory mechanisms is beyond the concept of a simple feed-
back loop, linear conversion [8] or statistic model.
Regulatory proteins which are critical for the robustness
and integrity of the system can be identified using numer-
ical perturbations as shown above. In general, such regu-
latory proteins are located at the upstream branch points
of a network. Usually, multiple regulators or isoforms
control the direction or partition of metabolic flux (e.g.
TDA and AHAS). Nevertheless, downstream regulators are
also observed (e.g. TC) under certain conditions. Com-
puters can generate spectra of dynamic responses over
biological perturbations to facilitate the identification of
regulatory proteins and thereby explicate the design prin-
ciples of nature-occurring biological circuits.

Unfortunately, biology is more complicated than those
models can realistically reflect without the introduction of
numerous extra dynamic variables. For example, in the
metabolic network model below, to model the isozymes
(AKI&III and AHASI&II&III) that are controlled by differ-
ent modes of regulation, the MCA models must allow
multiple fluxes for the conversion of the same substrate to
the same product. To model the bi-functional enzyme
(AKI-HDHI, the same protein carrying two enzyme activ-
ities), the fluxes of these two enzyme reactions must be
"dependent" on each other. Also, several enzymes are
involved in multi-pathways and their fluxes depend on
the enzyme partition between these pathways in a given
condition. These facts point out the fundamental draw-
back of the MCA approach in considering metabolic net-
works as a collection of "independent" chemical
conversions. With enzymes remaining as variables, the
Enzyme-Centric approach allows the temporal patterns of
enzyme state/partition and network-specific regulatory
patterns to be identified and is able to incorporate non-
linear properties of a biological network, such as positive/
negative feedback regulation, allosteric regulation [3],
reversible enzyme reaction, post-translational modifica-
tion (intermediate enzyme states), biological redundancy
(isozymes/isoforms), multifunctional enzyme and its par-
tition between the multifunctional pathways [1]. In con-
trast, commonly seen modeling approaches mainly focus
on discovering correlations or probability linkages
between molecular species using specific training sets.
Regulation is not considered to simplify the complexity of
their models (Fig 6). Nevertheless, simulations presented
here demonstrate these non-linear regulatory properties
are essential for modeling the network level regulation
that maintains the robustness of a biological system.

Conclusion
In conclusion, we recognize biological complexity and
develop a novel modeling tool to integrate prior mecha-
nistic knowledge into a mathematical model. With per-
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turbing the parameters in the model systematically,
regulatory factors critical to maintaining the functional
integrity of the system were found. We demonstrated the
importance of modeling complex enzyme catalytic and
regulatory mechanisms to further understand the nonlin-
ear network regulatory patterns and circuit design for pre-
venting of over-production and thereby maintaining
homeostasis. The simulations presented in this paper
reveal how a living system maintains homeostasis and
robustness to continue functioning while facing environ-
mental stresses and also strengthen the idea of bringing
knowledge and regulatory mechanisms into computer
simulation [8] to make a model smart enough, and, as
such, become an engine of discovery and prediction.

Methods
Enzyme-Centric Modeling Approach
The idea of "Enzyme-Centric" modeling is to understand
common enzyme catalytic and regulatory mechanisms in
biological processes, and then integrate individual
enzyme models into a pathway so various pathways
assemble into a larger biological network [1,2]. The focus
is on mining the expert knowledge of individual enzymes
studies by different laboratories from the literature to
identify molecular interactions and regulatory patterns of
each enzyme (e.g. feedback and allosteric regulation).
Special attention is given to enzyme isoforms and multi-
functional enzymes which are essential for the reactive
flux distribution within the network [1]. The mathemati-
cal tools for the Enzyme-Centric modeling, including
kMech (enzyme kinetics), GMWC (Generalized MWC
model for multi-ligand allosteric regulation) and Cellera-
tor, are freely available to noncommercial users http://

Comparison of Current Modeling Approaches Using the Simple Enzyme ModelFigure 6
Comparison of Current Modeling Approaches Using the Simple Enzyme Model.
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www.cellerator.org. They can be executed in Windows,
MacOS, or Linux within Mathematica™. Alternatively, Cel-
lerator can generate ordinary differential equations
(ODEs) in System Biology Markup Language (SBML).

Network Extension: The Modularity of Enzyme-Centric 
Modeling
Yang et al. 2005 [1] and Najdi et al. 2006 [3] have used the
Enzyme-Centric approach to model the regulated flow of
metabolites through the multi-functional branched chain
amino acids (BCAA, isoleucine, valine and leucine) bio-
synthetic pathways and their upstream threonine biosyn-
thesis in the model organism, and E. coli K12, respectively
(Fig 1A). Both models have been validated with several
known genetic and biochemical perturbations. To dem-
onstrate the modularity and expandability of kMech, we
simply put these two models together in the simulator to
form a network of four interacting metabolic pathways.
Cellerator automatically regenerates 131 ODEs with 189
rate parameters for the new model consisting of 17
enzymes [Additional file 1: Mathematica™ codes and
parameter values]. The enzyme mechanisms of these
pathways include simple catalytic, Bi Bi, Ping Pong Bi Bi,
and Bi Ter mechanisms that are regulated by either allos-
teric, competitive, noncompetitive inhibition or activa-
tion mechanisms (Fig 1B). The connecting points of these
four pathways (Thr, Pyr and αKIV) and eight feedback
loops are automatically found and connected by the com-
puter. In the reported simulations, steady-state enzyme
activity levels were optimized to properly channel the
steady-state flow of metabolic intermediates through
these pathways at levels that match their reported in vivo
levels and the concentrations of enzyme cofactors, ATP
and NAD(P)(H) were kept as constants [3,1].

Rate Constant Approximation
One important issue of mechanistic modeling is how to
obtain kinetic rate constants for simulation. It is a difficult
task to measure the forward and reverse rate constants (kf,
kr) experimentally. Alternatively, the rate constants of
metabolic enzymes are approximated from easily meas-
ured kinetic constants Km (Michaelis-Menten constant)
and kcat (catalytic constant or enzyme turnover number)
using the Lambda (Λ) approximation which is previously
developed and implemented in kMech [1,2]. In brief, the
approximation introduces a new parameter Λ that repre-
sents the ratio of forward reaction flux of the enzyme-sub-
strate complex formation to the catalytic flux of product
production. In other words, when Λ is large, the enzyme-
substrate complex approaches steady state very fast. This is
the same as the Michaelis-Menten pseudo-steady state
assumption [9]. The flexibility of data fitting using the Λ
approximation over the Michaelis-Menten equation is also
illustrated in Additional file 3A. The values of Λ are empir-
ically adjusted to fit experimental data. In the case of met-

abolic network simulation, the values of Λ can be varied
from 10 to 1,000,000 with no significant changes in the
steady levels of intermediates and end-products. There-
fore, the Λ is set to 100 for all enzymes in the model
[Additional file 1: Mathematica™ codes and parameter
values]. However, in the RNA splicing model, the binding
of RNA polymerase to the DNA template is a slow process,
and the Λ is set to 1 to fit the measured results [Additional
file 4: Mathematica™ codes and parameter values]. How-
ever, not all biological pathways are as well studied as the
metabolic network (i.e. Km and kcat are not always avail-
able). One solution for this challenge is to apply the quan-
titative time course data after certain treatments to
constrain the model and approximate parameter spaces
for kinetic constants as demonstrated in the RNA splicing
model below.

The other issue of dealing with a large number of param-
eters is how to prevent over-fitting. The integrated meta-
bolic network model has total of 189 rate parameters. To
avoid the over-fitting problem, the key is to understand
the parameters. For each enzyme, at least three parameters
are needed: total enzyme concentration ([En]total), affin-
ity to all of its substrates (Km), and reaction rate (kcat). If
the enzyme is regulated by additional factors, more
parameters are added (e.g. Ki for affinity to an inhibitor;
Ka for an activator). The Monod, Wyman, Changeux model
[3] is used for modeling an allosteric enzyme with two
additional allosteric parameters: L (partition of active and
inactive enzymes) and c (affinity of substrate to the inac-
tive enzyme). In other words, we only introduced biolog-
ical meaningful parameters into the model to prevent the
problems of over-fitting.

The Interactome of RNA Transcription and Spliceosome: 
The Mathematical Model of RNA Splicing
The mathematical model of RNA splicing was built using
the Enzyme-Centric approach. Each enzyme mechanism
is parsed by kMech into a set of fundamental association-
dissociation reactions that are translated by Cellerator
into ordinary differential equations (ODEs) that are
numerically solved by Mathematica™. The pathway dia-
gram of the interaction between transcription and RNA
splicing is shown below:

where NE1 is RNA polymerase (either human Pol II or
viral T7), NEs is spliceosome, and NEd is RNase. The
model consists of three major reactions: Transcription of
DNA, Splicing of pre-mRNA and Degradation of all
mRNA. This reaction model can be represented by the fol-
lowing six kMech/Cellerator reactions:
Page 10 of 12
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The 1st reaction represents "Transcription of DNA" mod-
eled by the kMech generalized BiBi (two-substrate, two-
product) reaction. NTP represented four nucleotides
required for transcription. The 2nd reaction represents
spliceosome binds to pre-mRNA modeled by the Cellera-
tor simple catalytic model. The 3rd reaction represents
spliceosome_pre-mRNA complex releases mRNA and free
spliceosome. The 4th to 6th reactions represent pre-
mRNA and mRNA degradation by RNase. The above
model was translated by Cellerator into 13 ODEs with 15
rate constants that describe the rates of change of 13 reac-
tants involved in the model [Additional file 4: Mathemat-
ica™ codes and parameter values]. The forward rate
constants (variable names with kf-prefix) and reverse rate
constants (variable names with kr-prefix) were not availa-
ble experimentally and approximated from experimental
measurements (Km and kcat) of enzymes by Λ approxima-
tion method. The plausible values of the kinetic measure-
ments (Km and kcat) are optimized from the quantitative
time course measurements of pre-mRNA and spliced
mRNA using in vitro RNA splicing assay for the Pol II and
T7 polymerase as shown in Additional file 4.

Analysis of the Nonlinear System using Systematic 
Perturbation
The rule of thumb for the Enzyme-Centric approach is
that as more factors are introduced into the model, the
more we can study how these factors affect the robustness
of the system and why the system evolves to have these
factors. However, the common bi-stability or bifurcation
analysis requires reducing the complex nonlinear model
(by assuming many variables as constants) to a simplified
near-linear model with a few parameters. To maintain the
biological complexity, an alternative way is to apply the
systematic perturbation, which is commonly used in
other contexts (e.g., bridge building, or automobile and
airplane manufacturing) to test newly designed products
through extensive computer simulations before prototyp-
ing. The goal of this task is to identify the regulatory pro-
teins or controlling factors which are critical for the
robustness and integrity of the biological system by iterat-
ing simulations with altered values of substrate/enzyme
concentrations or kinetic constants. All enzymatic param-

eters including [En]total (total enzyme concentration),
Km (the affinity of enzyme to substrate) and kcat (the rate
of catalysis) were perturbed numerically.
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