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Abstract
Background: Up to now, there have been three published versions of a yeast genome-scale
metabolic model: iFF708, iND750 and iLL672. All three models, however, lack a detailed description
of lipid metabolism and thus are unable to be used as integrated scaffolds for gaining insights into
lipid metabolism from multilevel omic measurement technologies (e.g. genome-wide mRNA levels).
To overcome this limitation, we reconstructed a new version of the Saccharomyces cerevisiae
genome-scale model, iIN800 that includes a more rigorous and detailed description of lipid
metabolism.

Results: The reconstructed metabolic model comprises 1446 reactions and 1013 metabolites.
Beyond incorporating new reactions involved in lipid metabolism, we also present new biomass
equations that improve the predictive power of flux balance analysis simulations. Predictions of
both growth capability and large scale in silico single gene deletions by iIN800 were consistent with
experimental data. In addition, 13C-labeling experiments validated the new biomass equations and
calculated intracellular fluxes. To demonstrate the applicability of iIN800, we show that the model
can be used as a scaffold to reveal the regulatory importance of lipid metabolism precursors and
intermediates that would have been missed in previous models from transcriptome datasets.

Conclusion: Performing integrated analyses using iIN800 as a network scaffold is shown to be a
valuable tool for elucidating the behavior of complex metabolic networks, particularly for
identifying regulatory targets in lipid metabolism that can be used for industrial applications or for
understanding lipid disease states.
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Background
The yeast Saccharomyces cerevisiae is widely used for pro-
duction of many different commercial compounds such
as food, feed, beverages and pharmaceuticals [1]. It also
serves as a model eukaryotic organism and has been the
subject of more than 40,000 research publications [2,3].
After the complete genome sequence for yeast was
released in 1996 [4], about 4,600 ORFs were characterized
[3] and yeast contains many genes with human homologs
[2]. This has allowed for comparative functional genomics
and comparative systems biology between yeast and
human. Yeast, for example, has been used to understand
the function of complex metabolic pathways that are
related to the development of human diseases [5-7].

Several human diseases (e.g. cancer, atherosclerosis,
Alzheimer's disease, and Parkinson's disease) are associ-
ated with disorders in lipid metabolism [8-10]. The emer-
gence of lipidomics has allowed analysis of lipid
metabolism at the systems level [8,11]. Lipidomics prom-
ises to make a significant impact in our understanding of
lipid related disease development [12]. As with other
high-throughput techniques, however, we hypothesize
that one of the main challenges for utilization of lipidome
data will be our ability to develop appropriate frameworks
to integrate and map data for studying relations between
lipid metabolism and other cellular networks.

Previous work has shown that genome-scale metabolic
models provide an excellent scaffold for integrating data
into single, coherent models [13]. The calculation of
Reporter Metabolites using genome-scale metabolic mod-
els is an example of how metabolic models can be used to
upgrade the information content of omics data [14]. This
approach allows mapping of key metabolites and reac-
tions in large metabolic networks when combined with
transcriptome [14] or metabolome data [15]. However,
pathways, reactions, and genes that are not included in
the metabolic network cannot be queried. Therefore, the
Reporter Metabolite algorithm requires a reliable and glo-
bal genome scale-model to achieve precise and accurate
data interpretation.

So far, three yeast genome-scale metabolic models,
iFF708, iND750 and iLL672, have been published. All
three models, however, lack a detailed description of the
lipid metabolism. The first model, iFF708 [16], consists of
1175 reactions linked to 708 ORFs. iFF708 shows good
predictions of many different cellular functions [17] and
gene essentiality predictions [18]. However, almost all
intermediate reactions in lipid metabolism were either
lumped or neglected. The second model published was
iND750 [19]. iND750 is fully compartmentalized, con-
sisting of 1498 reactions linked to 750 ORFs. The model
was validated by a large-scale gene deletion study and

metabolic phenotypes [20] and was expanded to include
regulation for predicting gene expression and phenotypes
of different transcription factor mutants [21]. iND750
contains more reactions and metabolites in lipid metabo-
lism than iFF708, but still lacks a comprehensive descrip-
tion of lipid metabolism. The third published model is
iLL672, which is derived from iFF708 and comprises 1038
reactions. Several dead-end reactions of iFF708 were elim-
inated leading to an improved accuracy of the single gene
deletion prediction [22]. However, only minor improve-
ments were made to reactions involved in lipid metabo-
lism. The model was validated using 13C-labeling
experiments to study the robustness of different yeast
mutants [23].

Here our objective was to expand the genome-scale meta-
bolic model of yeast to include a detailed description of
lipid metabolism for use as a scaffold to integrate omics
data. We used iFF708 as a template for building a model
based on recent literature that contains new reactions in
lipid metabolism and transport relative to all previous
models. The new model named iIN800 includes 92 addi-
tional ORFs and provides a more detailed structure of
lipid metabolism, tRNA synthesis and transport processes
than previous models. The biomass composition, which
is very important for flux balance analysis and predicting
lethality, was also recalculated and improved. iIN800 was
validated with large-scale gene deletion data and growth
simulation predictions. Simulated intracellular fluxes
were also supported by 13C-labeling flux experimental
data. Finally, we show that the transcriptome data of yeast
cultivated under various growth conditions can be inte-
grated with iIN800 to identify lipid related Reporter
Metabolites. We anticipate that iIN800 will be useful as a
scaffold for integrating multilevel omic data and that this
new model will have a significant impact in the emerging
field of lipidomics.

Results and discussion
Model reconstruction and characteristics of iIN800
Due to the complexity of compartmentalization used in
iND750 and the smaller scope of iLL672, the metabolic
model iFF708 was selected as a template for the develop-
ment of the model iIN800. Pathway and reaction data-
bases (e.g. KEGG), online resources (e.g. SGD), and
literature were used to expand iFF708, with particular
focus on lipid metabolism. iIN800 contains 340 total
reactions in lipid metabolism, more than at least 143 reac-
tions greater than previous models (Table 1).

To compare metabolic characteristics of the different in sil-
ico models, lipid metabolism was classified into unique
sub-categories (e.g. mitochondrial fatty acid synthesis,
ergosterol biosynthesis) (Table 1). Fatty acid synthesis
and elongation accounted for three of these sub-catego-
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ries. In contrast to previous models, iIN800 incorporates
fatty acid biosynthesis in both mitochondria and the
cytosol. Fatty acid synthesis, which involves iterative mal-
onyl-CoA condensations that result in a growing chain of
fatty acids, is catalyzed by four major enzymes: β-ketoacyl-
ACP synthase (a condensing enzyme), β-ketoacyl-ACP
reductase, β-dehydroxyacyl-ACP dehydratase and enoyl-
ACP reductase. In the cytosol, these enzymes are encoded
by the multifunctional FAS1 and FAS2. In the mitochon-
dria, however, fatty acid synthesis is carried out by the
products encoded by CEM1, OAR1, HTD2 and ETR1.
These ORFs were missing from previous models, which
prevented simulation of mitochondrial fatty acid synthe-
sis. Fatty acid elongation, which leads to the production of
long-chain fatty acids, was not included in iFF708, but
was also updated in iIN800. Including fatty acid elonga-
tion resulted in the addition of four major biochemical
reaction steps: condensing enzyme, 3-ketoacyl-CoA
reductase, enoyl-CoA dehydratase and enoyl-CoA reduct-
ase [24]. These reactions are carried out by the enzymes
encoded by ELO1, ELO2, ELO3, IFA38 and TSC13. While
the gene encoding enoyl-CoA dehydratase has not been
identified in S. cerevisiae, the reaction was inferred due to
the identification of long chain fatty acids in yeast.

β-oxidation is the process where fatty acids, after becom-
ing activated in the form of acyl-CoAs, are broken down
to make acetyl-CoA, and ultimately energy. FAT1, encod-
ing an enzyme for long-chain fatty acid activation was
missing in iFF708 and iLL672. The genes SPS19, ECI1 and
DCI1 are also now included in iIN800. As a result, iIN800
can simulate the oxidation of unsaturated fatty acids.

Sphingolipid synthesis reactions were added to iIN800
according to a recently reported model [25], resulting in
more sphingolipid reactions than the template iFF708.
Sphingolipid synthesis is the only sub-category in iIN800
with a significantly lower reaction tally than iND750. This
is because iND750 incorporated both C24:0 and C26:0 as
very long-chain fatty acids (the back bone of sphingolip-

ids) to produce ceramides. Because the amount of very
long chain fatty acids in S. cerevisiae is so low relative to
other fatty acid species (<2% of total fatty acid pool)
[24,26], iIN800 treats very long chain fatty acids as a sin-
gle metabolite. As a result, fewer reactions are present in
sphingolipid synthesis.

Relative to other models, only minor changes in the bio-
synthesis of phospholipids and triacylglycerides as well as
ergosterol were introduced in iIN800. However, esterifica-
tion of sterols and degradation of lipids, which were not
included in all other previous models, are present in
iIN800 (Table 1). Finally, 26 ORFs encoding for tRNA syn-
thesis and one related enzyme, lipoamide dehydrogenase
as well as 14 ORFs encoding transporters were also
included in iIN800. The additionally included ORFs and
their related references as well as detailed comparisons of
reactions in lipid metabolism of all reported models are
given in Additional files 1 and 2, respectively.

In summary, iIN800 was reconstructed from 17.2% of the
characterized ORFs in yeast and contains 1446 metabolic
reactions and 1013 metabolites in total. This model is rel-
atively more comprehensive as compared with previously
described models (Table 2). The network characteristics of
iIN800 and the starting model iFF708 are shown in Table
3. Within lipid metabolism, we have incorporated many
new reactions in mitochondrial fatty acid synthesis,
cytosolic fatty acid synthesis, fatty acid elongation, fatty

Table 1: Comparison of the number of lipid metabolism reactions among yeast genome-scale metabolic models

Model iFF708 iLL672 iND750 iIN800

Mitochondrial fatty acid synthesis 14 0 13 45
Cytosolic fatty acid synthesis 17 18 27 48
Fatty acid elongation 0 4 2 33
Fatty acid activation and beta-oxidation 9 19 53 65
Sphingolipid synthesis 18 23 37 27
Phospholipid and TAG synthesis 37 37 35 68
Ergosterol biosynthesis 31 28 30 29
Ergosterol esterification 0 0 0 2
Lipid degradation 0 0 0 23

Total 126 129 197 340

Table 2: Structure comparison of S. cerevisiae genome-scale 
metabolic models

Model Genes Reactions Metabolites

iFF708 708(15.2%)* 1175 825
iLL672 672(14.1%)* 1038 636
iND750 750(16.1%)* 1489 972
iIN800 800(17.2%)* 1446 1013

* percentage of associated ORFs in the model relative to 
characterized ORFs in the yeast genome
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acid activation and β-oxidation, sphingolipid synthesis,
ergosterol esterification, and lipid degradation (Table 1).
96 new reactions are derived from biochemical and phys-
ical considerations. These reactions mostly describe trans-
portation of fatty acids and lipids across the mitochondria
and the plasma membrane. To visualize the model
iIN800, we constructed a comprehensive metabolic map
using ReMapper software (Figure 1). This visualized map
provides a method for globally plotting transcript and flux
data onto iIN800. The source file is available for down-
load (see Methods).

Improved biomass equation
The biomass equation is crucial for using genome-scale
models to simulate growth using flux balance analysis
(FBA). Therefore, an important consideration in the
development of iIN800 was to address the concern that
the biomass composition of S. cerevisiae changes under
different growth conditions. For example, during growth
on excess glucose the carbohydrate content increases and
during growth on excess ammonium the protein content
increases.

To assess the sensitivity of flux simulations using iIN800
towards changes in the macro-molecular composition, we
performed constraint-based simulations by varying the
protein, RNA, carbohydrate and lipid content of the bio-
mass in physiological relevant ranges based on previous
experimental reports [27-29], from 35–65%, 3.5–12%,
15–50% and 2–15%, respectively. Specifically, glucose
and ammonium uptake rates were minimized for both
glucose- and ammonium-limited growth conditions,
respectively, using different macromolecular composi-
tions at fixed growth rates, (note: this is the same mathe-
matical problem as fixing uptake rates and maximizing

growth rate). In this way, we could compare the differ-
ences between glucose- and ammonium-limited growth
conditions. The results are illustrated in Figure 2. An inter-
esting finding was that the protein content strongly affects
the uptake rates at both glucose- and ammonium-limited
conditions, albeit to a greater extent in ammonium-lim-
ited conditions (Fig. 2A). The carbohydrate content on the
other hand does not have an impact on the ammonium
uptake rate, it strongly impacts the glucose uptake rate
(Fig. 2C). The RNA content and the lipid content have
only a minor impact on growth (Figures 2B and 2D).

In summary, the sensitivity analysis shows that the bio-
mass composition can significantly impact predictions
made with genome-scale metabolic models to varying
degrees based on different growth conditions. We there-
fore present new biomass equations to be used under C-
limited and N-limited growth conditions, respectively.
These compositions result from previous studies and our
own measurements of lipids and fatty acids across multi-
ple N-limited and C-limited growth conditions (data not
shown). Using a separate biomass composition for N-lim-
ited cultures has not been proposed previously. The N-
limited biomass equation is therefore new. Relative to
previous C-limited biomass compositions, the most dra-
matic changes in our here proposed biomass equation is
with respect to the lipids and fatty acids (Table 4). While
our sensitivity analysis suggests that these components
will most likely only lead to a small improvement in the
accuracy of C-limited flux simulations, they may play an
important role in lethality prediction by the model, as the
addition of extra components in the biomass equation
will give a higher resolution.

Growth simulation capability
In silico genome-scale models are most generally used to
predict various phenotypes. These include growth rates
and extracellular secretion rates of metabolite products, as
well as uptake rates of nutrients. In addition, models can
be employed to explore active route(s) in metabolic path-
ways under certain growth conditions as illustrated for a
genome-scale metabolic model of E. coli [30-32] as well as
for one of the S. cerevisiae genome-scale metabolic models
[17].

To validate iIN800, we first investigated the model's abil-
ity to simulate aerobic and anaerobic growth in glucose-
or ammonium-limited conditions. Several published che-
mostat datasets were used as experimental references. As
shown in Figure 3, the results from the computational
growth prediction agreed with experimental measure-
ments. Less than 10% relative error was observed (Figure
3). The details of the simulations and the corresponding
reference data are given in Additional file 3. Intracellular

Table 3: Network characteristics of the reconstructed metabolic 
network of S. cerevisiae strain iFF708 and iIN800

Model iFF708 iIN800

Metabolites 825 1013
Cytosolic metabolites 518 631
Mitochondrial metabolites 170 228
Extracellular metabolites 137 154

Reactions 1175 1446
Mitochondrial reactions 104 161
Cytosolic reactions 723 906

Exchange fluxes 348 379
Cytosolic exchange fluxes 286 304
Mitochondrial exchange fluxes 62 75

Reactions with ORF assignments 1075 1209
Biochemical and Physical consideration 140 237
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fluxes can be easily visualized using the ReMapper soft-
ware and our model (Additional files 4 and 5).

Since the new biomass equations would be expected to
impact the overall flux distributions, we used 13C-flux
analysis data to further confirm the computed intracellu-
lar fluxes. Specifically, fluxes in the central carbon metab-
olism at two different growth conditions were both
measured by 13C-labeling experiments and calculated by
FBA using iIN800. The model validation is shown in Fig-
ure 4. There is a high degree of agreement between the pre-
dicted and experimental fluxes in the central metabolism,
with the exception of fluxes through the pentose phos-
phate pathway (PPP). Using FBA, the flux through the PPP
is largely determined by the requirement for NADPH, and
it has earlier been shown difficult to balance NADPH pro-
duction and consumption [33]. This may explain why the
FBA simulations under-predict the flux through this path-
way.

Evaluation of large-scale gene deletion
To verify further iIN800, we investigated the ability of the
model to predict for growth viability due to a single gene
deletion. In silico deletion phenotype predictions were
examined for the new model with cells grown in both
minimal media with a sole carbon source (glucose, galac-
tose, glycerol and ethanol) and with rich media (YPD).
iIN800 was assessed for its ability to make correct predic-
tions based on experimental data [22,34]. A summary of
the in silico single gene deletion predictions are given in
Table 5. The overall prediction rate of iIN800, derived
from 3392 total predictions, was 89.36%, with 95.50%
sensitivity and 38.69% selectivity. The evaluation of the
mean of a confusion matrix as the geometric mean of
iIN800 equals 60.79%. The performance of the iIN800
model has improved by ~2% and ~7% in terms of overall
prediction rate compared with the models iFF708 and
iND750, respectively. We believe that the improvement is
mainly due to upgrades in the biomass equation, which is

The reconstructed S. cerevisiae genome-scale metabolic model iIN800Figure 1
The reconstructed S. cerevisiae genome-scale metabolic model iIN800.
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consistent with results from Kuepfer et al. demonstrating
that more accurate biomass compositions lead to
improved lethality predictions [22]. The false predictions
might be due to missing information in gene regulation,
biomass compositions, dead-end reactions and medium
composition, especially in the rich medium [18,19]

Integration of transcriptome data with genome-scale 
metabolic models
Genome-scale metabolic models have shown promise for
identifying Reporter Metabolites, defined as metabolites
whose neighboring genes in a bipartite metabolic graph
are most significantly affected and respond as a group to
genetic or environmental perturbations [14]. Such an
approach has previously been used to reveal important
regulatory hot-spots in metabolism from genome-wide
expression data and has demonstrated promise for inte-

grating omic data using network topology. To highlight
the importance and utility of having a more complete
metabolic model in this integrated analysis, the genome-
scale models iIN800 and iFF708 were used to calculate
Reporter Metabolites. Multiple sets of transcriptome data
were used for analysis. Lists of the top thirty most signifi-
cant Reporter Metabolites for several perturbations are
compared between iIN800 and iFF708 in Table 6, and
Reporter Metabolites unique to iIN800 are marked in
bold.

First, transcriptome data from the yeast metabolic cycle
[35] were analyzed. Notably, the reporter algorithm iden-
tified unique Reporter Metabolites with iIN800 that
would have been missed if iFF708 was used as the scaffold
(Table 6). The most dramatic difference was observed for
the reductive charging phase of the metabolic cell cycle.

Sensitivity analysis shows the influence of macromolecular composition on the simulated growth rate using iIN800Figure 2
Sensitivity analysis shows the influence of macromolecular composition on the simulated growth rate using 
iIN800. The simulations were performed for aerobic glucose- and ammonium-limited cultivations by varying (A) the protein 
content (35–65%), (B) the RNA content (3.5–12%), (C) the carbohydrate content (15–50%) and (D) the lipid content (2 – 
15%).
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Page 6 of 15
(page number not for citation purposes)



BMC Systems Biology 2008, 2:71 http://www.biomedcentral.com/1752-0509/2/71

Page 7 of 15
(page number not for citation purposes)

Table 4: Biomass composition

Metabolites Amount (mmol/gDW)

Amino acids Carbon-limited Nitrogen-limited
L-Alanine 0.357 0.252
L-Arginine 0.136 0.098
L-Asparagine 0.172 0.153
L-Aspartate 0.172 0.153
L-Cysteine 0.043 0.044
L-Glutamate 0.268 0.231
L-Glutamine 0.268 0.231
Glycine 0.325 0.278
L-Histidine 0.075 0.071
L-Isoleucine 0.172 0.142
L-Leucine 0.250 0.207
L-Lysine 0.239 0.204
L-Methionine 0.050 0.044
L-Phenylalanine 0.114 0.092
L-Proline 0.129 0.118
L-Serine 0.254 0.225
L-Threonine 0.197 0.160
L-Tryptophan 0.027 0.028
L-Tyrosine 0.096 0.068

Carbohydrates Carbon-limited Nitrogen-limited
Glycogen 0.519 0.667
alpha,alpha-Trehalose 0.023 0.085
Mannan 0.821 0.994
1,3-beta-D-Glucan 1.136 0.963

RNA Carbon-limited Nitrogen-limited
AMP 0.051 0.040
GMP 0.051 0.040
CMP 0.050 0.039
UMP 0.067 0.052

DNA Carbon-limited Nitrogen-limited
dAMP 0.004 0.004
dCMP 0.002 0.003
dTMP 0.004 0.004
dGMP 0.002 0.003

Lipids Carbon-limited Nitrogen-limited
Phosphatidylcholine 0.002884 0.001660
1-Phosphatidyl-D-myo-inositol 0.001531 0.001656
Phosphatidylserine 0.000373 0.000302
Phosphatidylethanolamine 0.000697 0.000083
Acyl_acids 0.000206 0.000723
Triacylglycerol 0.000781 0.003618
Ergosterol-ester 0.000812 0.004632
Ergosta-5,7,22,24(28)-tetraenol 0.000125 0.000167
Ergosterol 0.005603 0.005155
Zymosterol 0.000015 0.000051
Episterol 0.000096 0.000062
Fecosterol 0.000114 0.000068
Lanosterol 0.000032 0.000074
4,4-Dimethylzymosterol 0.000056 0.000046
Ceramide-I 0.000351 0.000075
Ceramide-II 0.000066 0.000009
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While both models revealed the importance of regulation
controlling the cellular response at glycogen, trehalose,
UDP-glucose, glucose-6-P and glucose nodes, only iIN800
was able to identify key intermediates in β-oxidation. For
example, iIN800 identified trans-3-acyl-CoAs, trans-2-
acyl-CoAs, 3-keto-acyl-CoAs and some fatty acids as
Reporter Metabolites (Table 6). This result demonstrates
the advantage of expanding the metabolic model to
include a much more detailed description of lipid metab-
olism. Namely, we can now use the genome-scale meta-
bolic model to identify the regulatory importance of lipid
precursors and intermediates at different physiological
conditions or at different phases of cellular growth.
Searching for highly co-regulated subnetworks that impli-
cate lipid genes is also now possible.

Further demonstrations of the applicability of iIN800 as a
scaffold to integrate omic data were performed by analyz-
ing transcriptome data derived from nutrient-limited
[36], oxygen-limited [36] and temperature stress condi-
tions [37] Previously, mRNA and protein levels of genes
and enzymes in fatty acid catabolism have been shown to
be significantly different between carbon-limited and
nitrogen limited growth [38]. When comparing these con-
ditions, only iIN800 was able to identify fatty acids as
Reporter Metabolites (Table 6). In anaerobic yeast cultiva-
tion, oleic acid has to be added to the medium because
unsaturated fatty acids synthesis is not possible; therefore,
the expression of genes in this pathway is induced by the
function of the ORE element [39]. Consistent with this

observed cellular response, only iIN800, with identified
Reporter Metabolites involved in β-oxidation (Table 6).
Similarly, iIN800 was able to highlight the importance of
unsaturated fatty acids when comparing high and low
temperature cultivations (Table 6), which is known to be
important for maintaining proper membrane structure
and fluidity [40].

Without the expanded model, the importance of cellular
regulation stemming from lipid metabolism would be
missed in analyses where metabolic topology is used for
integrating data. As an illustration, we integrated results
from our Reporter Metabolite analysis with known pro-
tein-protein and protein-DNA interaction networks to
infer regulatory structure. First, genes associated to
Reporter Metabolites in lipid metabolism unique to
iIN800 and determined when comparing carbon- and
nitrogen-limited growth (decanoyl-CoA, dodecanoyl-
CoA, trans-2-C141-CoA, trans-2-C161-CoA, trans-2-C181-
CoA) were identified. These genes were then used to
search for highly regulated subnetworks within a protein-
protein and protein-DNA interaction network. By apply-
ing a p-value threshold of 0.01 to filter for genes with sig-
nificant gene expression, we inferred a regulatory network
controlling the expression of lipid metabolism genes asso-
ciated to the Reporter Metabolites (Figure 5). Strikingly,
regulators at the top of this hierarchy are consistent with
those previously known to be significantly changed
between carbon- and nitrogen-limited growth. These
include: SNF1, SNF4, MIG1 and ADR1 (glucose repres-
sion), OAF1 (β-oxidation), and INO1 and INO4 (phos-
pholipid synthesis), among others. Previously reported
genome-scale models are not capable of being used as
scaffolds for implicating the conditional response of these
lipid metabolism regulators because they lack a detailed
description of lipid metabolism.

Conclusion
Genome-scale metabolic models have emerged as a valu-
able tool in the post-genomic era for illustrating whole-
cell functions based on the complete network of biochem-
ical reactions. An iterative reconstruction process is
required to achieve a comprehensive S. cerevisiae genome-
scale metabolic model. In this work, we focused on
improving the formulation of lipid metabolism relative to
previously published S. cerevisiae genome-scale metabolic
models. Validating the model and new biomass equa-
tions, the constraint-based simulation of iIN800 showed
accurate predictions of cellular growth and is also consist-
ent with 13C-labeling experiments. Furthermore, in silico
gene essentialness predictions were found to be in high
agreement with in vivo results. Finally, we show that
iIN800, being more complete, is a better network scaffold
for integration of multilevel omics data.

Comparison demonstrating in silico and in vivo growth rates at various cultivation conditionsFigure 3
Comparison demonstrating in silico and in vivo 
growth rates at various cultivation conditions.In silico 
predictions were performed using FBA with iIN800. Experi-
mental measurements were taken from the literature (see 
text for references).
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In conclusion, by incorporating a more complete descrip-
tion of lipid metabolism, iIN800 is positioned to have a
broader impact than previously described yeast models.
Its capability of predictions were consistent with a
number of experimental data both quantitatively (growth
rate) and qualitatively (gene essentialness). Moreover, the
new model is positioned to be used for studying the regu-
lation and role of lipid metabolism during different
growth conditions. With the high degree of homology in
lipid metabolism between yeast and humans and emer-
gence of lipidomics, this is expected to allow for new
insights into the connection between lipid metabolism
and overall cellular function for industrial and medical
applications.

Methods
Model reconstruction and visualization
Reconstruction of the S. cerevisiae genome-scale metabolic
model was done by expanding iFF708 [16]. The addi-
tional ORFs included in the expansion procedure were
involved in lipid metabolism, tRNA synthesis and lipoa-
mide dehydrogenase. These ORFs were added based on
publications listed in Additional file 1. Online resources
related to S. cerevisiae, such as SGD [41], MIPS [42] and
YPD [43], were also used to confirm the existence of the
ORFs and their function. Pathway and reaction databases
including KEGG [44], ExPASy [45], and Reactome [46],
were used together with research papers to identify rele-
vant information of the additional reactions and metabo-
lites, e.g. stoichiometry and co-factor usage. The expanded
iFF708, called iIN800, was visualized by Adobe Illustrator

software (Adobe Systems), and then converted to EPS for-
mat (Adobe Systems) format which is downloadable as
Additional file 6. In this visualization file, it is possible to
overlay information about transcription, fluxes etc. A
detailed list of metabolic reactions in iIN800 is provided
as Additional file 7.

Metabolic modeling and simulations
The reaction set in iIN800 was used for construction of a
stoichiometric matrix S (m × n). In the stoichiometric
matrix, m = 1013, which is the number of metabolites,
and n = 1446, which is the number of metabolic reactions.
With an assumption of steady state for all metabolite
pools, a linear equation constraining the fluxes in the met-
abolic network is obtained [30,47]:

S·v = 0 (1)

Here v is a vector that contains all the fluxes in the model.
Equation (1) has a large number of degrees of freedom,
i.e. it is an underdetermined problem, and linear pro-
gramming was employed to solve the equation system by
maximizing an objective function Z (equal to the growth
rate), an approach generally referred to as flux balance
analysis (FBA) [30,47]. The problem formulation is
described below.

Maximize:

Z = ω·v

Subject to:

S·v = 0

α ≤ v ≤ β

where α and β are lower and upper bounds of fluxes
respectively, ω is a weight vector indicating an amount of
desired metabolites for biomass synthesis. For irreversible
fluxes semi-positive infinite boundary was applied as 0 ≤
v ≤ ∞, and fully infinite boundaries was applied as -∞ ≤ v
≤ ∞ for reversible fluxes. The problem was solved by using
the commercial linear programming software package
LINDO (Lindo systems Inc., Chicago, IL, USA). The calcu-
lated intracellular fluxes were overlaid on the visualized
genome-scale map as described previously by the ReMap-
per software (The software has been developed for visual-
ization of multilevel omics data onto a metabolic map.).

Calculation of biomass composition and sensitivity 
analysis
The biomass composition was re-calculated in order to
improve the prediction of the model during growth at dif-
ferent nutrition-limitations, i.e. carbon- and nitrogen-lim-

Comparisons of the major intracellular fluxes in the central metabolism calculated using FBA with iIN800 and 13C-labeling metabolic flux analysis at a dilution rate of 0.05 h-1 of either aerobic or anaerobic glucose-limited conditionsFigure 4
Comparisons of the major intracellular fluxes in the 
central metabolism calculated using FBA with iIN800 
and 13C-labeling metabolic flux analysis at a dilution 
rate of 0.05 h-1 of either aerobic or anaerobic glu-
cose-limited conditions.
Page 9 of 15
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ited growth condition. The contents of macro-molecules
were extracted from the thesis of Schulze [27] who meas-
ured the biomass composition at a dilution rate of 0.1 h-

1. The calculations were performed as described previ-
ously [16]. The calculation of protein precursors, i.e.
amino acids, and carbohydrate precursors, i.e. trehalose,
glycogen, manna and glucan, were adopted from
Schulze's work [27]. Deoxyribonucleotide and ribonucle-
otide compositions were calculated from the study of
Vaughan-Martini and co-workers [48]. Lipid composi-
tions were calculated from our own measurements of
structural lipidomics, which contains phospholipids, tria-
cylglycerol, sterols, sterol-esters, sphingolipids, free fatty
acids and fatty acids composition of all measured lipid
classes (unpublished data). The impact of the macromo-
lecular composition on biomass yield was explored in aer-
obically glucose- and ammonium-limited conditions by
fixing the specific growth rate and then minimizing the
glucose and ammonium uptake rates at both glucose- and
ammonium-limited growth conditions. Four parameters
were evaluated, namely the protein, RNA, carbohydrate
and lipid content of the biomass.

Growth simulations
The metabolic capabilities of iIN800 were evaluated by
using FBA and linear programming to simulate the bio-
mass flux representing the in silico growth rate, which were
derived by maximizing the biomass production. Data
from various carbon-limited and nitrogen-limited chemo-
stat experiments performed at either aerobic or anaerobic
growth condition were taken from the literature for com-
parisons (see references in Additional file 3). These data
were used to validate the metabolic capabilities of the
model by comparing in silico biomass yields with in vivo
biomass yields. The in silico biomass yields were calcu-
lated by fixing measurable uptake rates of extracellular
metabolites, such as glucose, ammonium and oxygen, as

well as secretions rates of acetate, glycerol, ethanol, succi-
nate, pyruvate and carbon dioxide. The biomass equation
(or flux), which was the objective function, was changed
depending on the growth conditions evaluated according
to the data provide in Table 4.

Large-scale gene essentiality simulations
The impact of individual gene deletions on cell growth of
iIN800 was evaluated by eliminating the reaction(s) cor-
responding to each gene in the model from the stoichio-
metric matrix S and then simulating growth of the mutant
by FBA. The in silico gene essentialities were simulated for
growth on rich- and minimal-medium. For minimal
media, different carbon sources (glucose, galactose, glyc-
erol and ethanol), ammonium, sulphate and phosphate
were evaluated. For rich media, the uptake fluxes of amino
acids, purines and pyrimidines were added as additional
constraints as previously described [18]. The in silico sim-
ulations were compared to experimental data available in
the MIPS and SGD databases and from competitive
growth assays [34] as well as yeast mutant array experi-
ments [22]. The power of iIN800 to predict gene essenti-
ality was evaluated based on the criteria defined as
follows:

Accuracy = (TP + TN)/(TP + TN + FP +FN)

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)

Positive predictive value = TN/(TP + FP)

Negative predictive value = TN/(TN+FN)

Geometric mean = (Sensitivity·Specificity)1/2

Table 5: Summary of large-scale single gene deletion evaluation of S. cerevisiae iIN800.

Minimal media on Rich media
Evaluation Glucose* Glucose** Galactose Glycerol Ethanol YPD Total

TP 468 469 461 461 463 567 2889
TN 23 23 20 17 21 38 142
FP 37 37 42 45 43 21 225
FN 14 13 19 19 15 56 136
Number of deletions 542 542 542 542 542 682 3392
Positive prediction rate 92.67 92.69 91.65 91.11 91.50 96.43 92.77
Negative prediction rate 62.16 63.89 51.28 47.22 58.33 40.43 51.08
Accuracy 90.59 90.77 88.75 88.19 89.30 88.71 89.36
Sensitivity 97.10 97.30 96.04 96.04 96.86 91.01 95.50
Selectivity 38.33 38.33 32.26 27.42 32.81 64.41 38.69
Geometric mean 61.01 61.07 55.66 51.32 56.38 76.56 60.79

* = Aerobic growth, ** = Anaerobic growth
TP = true positive, TN = true negative, FP = false positive, FN = false negative.
Page 10 of 15
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1 Table 6: Top thirty Reporter Metabolites calculated from various perturbations. The Reporter Metabolite algorithm was performed w

Oxidative phase1 Reductive building phase1

iIN800 iFF708 iIN800 iFF708 iIN800

AMP IMP AMPM AMPM Dodecanoyl-
IMP Xanthosine 5'-phosphate PyrophosphateM tRNAM Decanoyl-Co
Pyrophosphate L-Methionine ATPM PyrophosphateM Trans-3-C16
L-Methionine 5-Phospho-alpha-D-ribose 1-PP tRNAM Porphobilinogen Trans-3-C18

Xanthosine 5'-phosphate L-Aspartate H+M L-TryptophanM Trans-3-C14
ATP Sulfate NADHM L-Tryptophanyl-tRNA(Trp)M alpha,alpha-Tr
5-Phospho-alpha-D-ribose 1-PP Homocysteine Porphobilinogen Dolichyl beta-D-mannosyl-P Glycogen
L-Serine AMP Dolichyl beta-D-mannosyl-P Mannan alpha,alpha'-Tr

phosphate
L-Aspartate H+EXT L-Tryptophanyl-tRNA(Trp)M Xanthine Oxalosuccinat
H+EXT 3-Phosphonooxypyruvate Mannan L-Asparaginyl-tRNA(Asn)M Trans-2-C14
Homocysteine N6-(L-1,3-Dicarboxypropyl)-L-

lysine
tRNA(Ile)M* H+M Trans-2-C16

Sulfate 5,10-Methylenetetrahydrofolate L-Isoleucyl-tRNA(Ile)M* Dolichyl phosphate Trans-2-C18
L-Glutamine Aminoimidazole ribotide tRNA(Thr)M* all-trans-Nonaprenyl-PP 3-keto-Dode
L-Cysteine L-Cystathionine L-Threonyl-tRNA(Thr)M* NADHM 3-keto-Deca
L-Asparagine L-Serine Xanthine ATPM 3-keto-Octa
S-Adenosyl-L-methionine Uracil Dolichyl phosphate D-Mannose 6-phosphate 3-keto-Hexa
Uracil Sulfite all-trans-Nonaprenyl-PP UbiquinolM 3-keto-Butan
5,10-
Methylenetetrahydrofolate

5-amino-4-imidazolecarboxylate L-Asparaginyl-tRNA(Asn)M Ubiquinone-9M Dodecanoic_

3-Phosphonooxypyruvate 2-Hydroxybutane-1,2,4-
tricarboxylate

tRNA(Phe)M* CO2M Carnitine

N6-(L-1,3-Dicarboxypropyl)-L-
lysine

S-Adenosyl-L-methionine L-Phenylalanyl-
tRNA(Phe)M*

Guanosine alpha-D-Gluco

L-Cystathionine L-Asparagine Intermediate_Methylzymoster
ol_II

IsocitrateM Trans-2-4-di

NH3 5-Phosphoribosylamine Intermediate_Zymosterol_II GTPM Isocitrate
tRNA(Phe)* GlycineM UbiquinolM GDPM alpha-D-Gluco
L-Phenylalanyl-
tRNA(Phe)*

Guanine D-Mannose 6-phosphate ITPM UDPglucose

Tetrahydrofolate L-Histidine Ubiquinone-9M IDPM D-Glucose 1-p
Guanine N1-(5'-

phosphoribosyl)acetamidine
tRNA(Asp)M* ITP O-Acetylcarni

Sulfite Tetrahydrofolate L-Aspartyl-tRNA(Asp)M* IDP Tetradecano
L-Histidine alpha-D-Glutamyl phosphate tRNA(Pro)M* Phosphatidate Decanoic_ac
5-amino-4-
imidazolecarboxylate

HomoisocitrateM L-Prolinyl-tRNA(Pro)M* C100ACPm (S)-3-Hydroxy
methylglutaryl

GlycineM GMP Pyrophosphate Dodecanoyl-ACPM H2O2

* Metabolite is contained in iIN800 only
1 = data from Tu, B. P., A. Kudlicki, et al. (2005)
B
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Carbon- and Nitrogen-limited2 Aerobic and Anaerobic2 Tempera

iIN800 iFF708 iIN800 iFF708 iIN800

Glyoxylate Glyoxylate Oxygen Ferricytochrome cM IMP
GLUxt L-Phenylalanine Ferricytochrome cM Ferrocytochrome cM Tetrahydrofolate
Isocitrate GLUxt Ferrocytochrome cM Ubiquinone-9M alpha,alpha-Trehalose
ALAxt Isocitrate Ubiquinone-9M Oxygen Hexadecanoyl-9-ene-

CoA*
Malate ALAxt UbiquinolM UbiquinolM Octadecanoyl-9-ene-

CoA*
Allantoate Allantoate ADPM ADPM Tetradecanoyl-9-ene

CoA*
SERxt Malate H+M H+M D-Erythrose 4-phosphat

L-Alanine L-Alanine Dodecanoyl-CoA* FADH2M L-OrnithineM
Decanoyl-CoA* SERxt FumarateM FumarateM Xanthosine 5'-phosphate
ASNxt ASNxt OrthophosphateM OrthophosphateM N6-(L-1,3-Dicarboxypro

L-lysine
GLNxt GLNxt FADH2M Sphinganine 1-phosphate URIxt
ILExt ILExt Hexadecanoyl-9-ene-

CoA*
ATPM Homocysteine

VALxt VALxt Octadecanoyl-9-ene-
CoA*

Fumarate Octadecanoyl-CoA

Trans-2-C161-CoA* Ferricytochrome cM Tetradecanoyl-9-ene-
CoA*

Glyoxylate N-Acetyl-L-glutamateM

Trans-2-C181-CoA* Ferrocytochrome cM Sphinganine 1-phosphate Isocitrate Dihydrofolate
Trans-2-C141-CoA* PHExt Phytosphingosine 1-

phosphate
ERGOSTxt N2-Acetyl-L-ornithineM

PHExt L-Asparagine Tetradecanoyl-Co ZYMSTxt Anthranilate
Ferricytochrome cM Allantoin Fumarate NAD+ Hexadecanoyl-9-

ene_acid*
Ferrocytochrome cM LEUxt Trans-2-C161-CoA* FADM Octadecanoyl-9-ene_
FRUxt FRUxt Trans-2-C181-CoA* 6-Phospho-D-gluconate S-Adenosyl-L-homocyst
Allantoin Succinate Trans-2-C141-CoA* 1,3-Diaminopropane NADH
LEUxt HISxt Glyoxylate sn-Glycerol 3-phosphate UREAxt
Succinate TYRxt sn-Glycerol 3-phosphate O-Acetylcarnitine L-Aspartate
HISxt METxt Isocitrate Ethanol 1-Phosphatidyl-D-myo-

inositol-3-P
Dodecanoyl-CoA* GLYxt ERGOSTxt DIPEPxt N(pai)-Methyl-L-histidin
PROxt ASPxt ZYMSTxt Dipeptide Adenosine 3',5'-bisphosp
alpha-D-Mannose GLCxt 1,3-Diaminopropane OPEPxt L-Asparagine
Trans-3-C16-CoA* L-Tyrosine 6-Phospho-D-gluconate Oligopeptide C24-CoA*
Trans-3-C18-CoA* PROxt H2O2 PEPTxt 1-(5-Phospho-D-ribosyl)

amino
Trans-3-C14-CoA* alpha-D-Mannose Trans-3-C16-CoA* Sphinganine 3-Methyl-2-oxobutanoat

Table 6: Top thirty Reporter Metabolites calculated from various perturbations. The Reporter Metabolite algorithm was performed with iIN80
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2 = Tai, S. L., V. M. Boer, et al. (2005)
3 = Pizarro, F., M.C. Jewett, et al. (2008)
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where TP = true positive, TN = true negative, FP = false
positive, FN = false negative. Positive and negative values
referred to viable and lethal phenotype, respectively.

Reporter Metabolite determination
Published microarray data were retrieved from Gene
Expression Omnibus (GEO) [49]. The CEL files were nor-
malized by the dChip software [50] in order to minimize
overall intensity variation among a set of chips. The statis-
tical test of significance was done by ANOVA or student t-
test for p-value calculation.

Briefly, we describe the Reporter Metabolite calculations.
The genome-scale model was converted to a bipartite
undirected graph. In this graph each metabolite node has
as neighbors the enzymes catalyzing the formation and
consumption of the metabolite. The transcriptome data
were mapped on the enzyme nodes using the significant
values of gene expression. The normal commutative dis-
tribution was used to convert the p-values to a Z-score for
further calculations. To identify an importance of metab-
olites in the metabolic network of the particular experi-

mental conditions, the reporter algorithm was applied as
described earlier [14].

Inferring regulatory modules from Reporter Metabolites
The interactome network was initially constructed with
data obtained from YPD [43], ChIP-chip databases [51]
(protein-DNA interaction) and BioGRID [52] (protein-
protein interaction). The candidate genes of high scoring
Reporter Metabolites were retrieved from the bipartite
metabolite-gene encoding enzyme interaction graph.
They were then used to identify subnetworks from the
interactome network [53]. Significantly changing p-values
from microarray data were mapped on the subnetwork
and then also genes having a p-value < 0.01 directly con-
nected with the Reporter Metabolites. The module was
visualized by Cytoscape software [54].
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Click here for file
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Additional file 2
Lipid metabolism reactions and comparison. Comparison of lipid 
metabolism reactions of all S. cerevisiae genome-scale models.
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Additional file 3
Growth simulation results. Growth simulations and comparison with 
experimental measurements.
Click here for file
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Additional file 4
Aerobic Flux distribution. Visualization of flux distribution of aerobic 
growth mapping on Figure 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-71-S4.pdf]

Regulatory module implicated in the control of lipid metabo-lism genes associated to iIN800 Reporter Metabolites, which were determined by comparing N-limited and C-limited growthFigure 5
Regulatory module implicated in the control of lipid 
metabolism genes associated to iIN800 Reporter 
Metabolites, which were determined by comparing 
N-limited and C-limited growth. Without the expanded 
model iIN800, the importance of cellular regulation stemming 
from lipid metabolism would be missed. High scoring 
Reporter Metabolites (diamonds), metabolic genes associ-
ated to Reporter Metabolites (circles), and genes encoding 
regulators (triangles). The blue, red, gray and green edges 
represent metabolite-gene interactions from the genome-
scale metabolic model, protein-DNA interactions from ChIP-
CHIP data, protein-DNA interactions from YPD and protein-
protein interactions from BioGRID, respectively.
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