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Abstract
Background: Although a great deal is known about one gene or protein and its functions under
different environmental conditions, little information is available about the complex behaviour of
biological networks subject to different environmental perturbations. Observing differential
expressions of one or more genes between normal and abnormal cells has been a mainstream
method of discovering pertinent genes in diseases and therefore valuable drug targets. However,
to date, no such method exists for elucidating and quantifying the differential dynamical behaviour
of genetic regulatory networks, which can have greater impact on phenotypes than individual genes.

Results: We propose to redress the deficiency by formulating the functional study of biological
networks as a control problem of dynamical systems. We developed mathematical methods to
study the stability, the controllability, and the steady-state behaviour, as well as the transient
responses of biological networks under different environmental perturbations. We applied our
framework to three real-world datasets: the SOS DNA repair network in E. coli under different
dosages of radiation, the GSH redox cycle in mice lung exposed to either poisonous air or normal
air, and the MAPK pathway in mammalian cell lines exposed to three types of HIV type I Vpr, a wild
type and two mutant types; and we found that the three genetic networks exhibited fundamentally
different dynamical properties in normal and abnormal cells.

Conclusion: Difference in stability, relative stability, degrees of controllability, and transient
responses between normal and abnormal cells means considerable difference in dynamical
behaviours and different functioning of cells. Therefore differential dynamical properties can be a
valuable tool in biomedical research.

Background
Cell functions are complex temporal processes and
should be studied as complex dynamical processes rather
than only in their individual steady states. It is increas-
ingly recognized that it is the dynamics and the internal
structures of the biological systems that give rise to the
functioning of cells [1]. Currently, uncovering co-
expressed genes and discovering differentially expressed
genes are the primary methods for discovering the role of

genes in disease pathogenesis [2], but these methods offer
only static views and steady-state explanations and thus
fail to account for the transient behaviours that influence
phenotypes. Genetic regulatory networks seek to model
complex interactions and dynamics of gene regulations.
Genetic networks should behave differently in sick cells
vs. healthy cells because genes that cause diseases behave
fundamentally differently, and that difference should be
reflected in their dynamical properties. Dynamical prop-
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erties of genetic networks such as their response time have
been studied mostly in the context of network motifs
[3,4], but now we propose that they be investigated for
their difference in normal vs. abnormal cells.

In this report we studied four dynamical properties: stabil-
ity, relative stability, controllability, and transient behav-
iours (overshoot, settling time, and rise time). Stability
governs how a system responds to internal noise and
external perturbation and determines whether the system
returns to steady states and whether the effect of noise and
perturbation diminishes over time. Biologically, an unsta-
ble cellular system is very brittle and the slightest distur-
bance can drive the system beyond tolerance and possibly
result in cell death. Prill et al. [5] used stability as a crite-
rion to discern network motifs and their organizing prin-
ciples, and synthetic biologists are beginning to pay close
attention to the stability of their artificial networks [6].
Furthermore, the stability of the system under pure gain
feedback control can be analyzed by the root-locus
method and the result can be interpreted as a measure of
relative stability. In control theory, the root-locus method
is a design tool but it is also used as an analytic tool, to see
how large a gain can drive the system unstable with feed-
back loops: the larger margins of stabilizing gains, the bet-
ter. Related to feedback control, controllability is another
pivotal concept in control theory. It and its dual property,
observability, were originally conceived as solutions to
existence and uniqueness problems of optimal control
[7], and the controllability of a dynamical system roughly
refers to the ability to move the states of the system
around the state space with reasonable efforts. Although
controllability is a binary question, there is a measure of
the degree of controllability, the idea being that the more
controllable a system is the less effort is needed to move
the system. Less theoretical than stability and controllabil-
ity are transient behaviours like settling time and over-
shoots, which have also received attention from systems
biologists [3,4,8]. These four dynamical properties are
determined by the parameters of the dynamical system
and the unknown parameters of biological systems need
to be estimated.

Parameter estimation must be done under a particular
modelling framework. Several modelling frameworks
have been proposed: Boolean networks [9-12], differen-
tial equations [13], S-system [14,15], and dynamical
Bayesian networks [16,17]. A special case of dynamical
Bayesian networks is the state-space model, which has
been used to model genetic regulatory networks [18-22].
A state-space model has states, inputs, and outputs, where
hidden states contain complete information of the system
driven by the inputs, and the outputs are the measure-
ments made by scientists. In the state-space models of
genetic networks, states are the regulatory elements, and

the inputs and the outputs can be environmental stimuli
or expression levels. Because genetic networks have many
unknown quantities, state-space models can serve as a
good modelling framework.

In this paper, the parameters in state-space models were
estimated from the time course of gene expressions using
Kalman filter and the constrained expectation-maximiza-
tion (EM) algorithm (a modified EM algorithm that incor-
porates prior knowledge about the structure of genetic
networks). The regular EM algorithm is commonly used
to estimate parameters in the presence of hidden quanti-
ties, and they comprise two steps, E-step (expectation)
and M-step (maximization), where the E-step estimates
the hidden states, and the M-step the parameters [23]. We
applied EM algorithm to three sets of time course data and
estimated three genetic networks for analysis.

The first network we used is the SOS DNA repair system.
The SOS network is a highly conserved system [8,24] and
consists of about 30 genes, the master regulator being
gene lexA. The lexA gene inhibits the rest of the SOS net-
work's genes under normal conditions, but when DNA
damage is sensed, protein LexA is cleaved and the genes
normally suppressed are activated. A diagram of the SOS
network with 8 essential genes is shown in Fig. 1. Shown
in Fig. 2 is the second system we modelled, the glutath-
ione (GSH) redox cycle with one gene from the urea cycle
that interacts with the redox cycle [25]. The data are from
Sciuto et al. [26] who investigated the differential gene
expressions in mice lung cells exposed to either carbonyl
chloride (phosgene) or normal air. They found elements
of the GSH redox cycle differentially expressed, which is
not surprising given that the redox cycle is heavily
involved in protecting organisms from reactive oxygen
species, that it is heavily present in the lung, and that
phosgene causes massive lung damages. The third system
we investigated is the mitogen-activated protein kinase

The diagram of SOS DNA repair networkFigure 1
The diagram of SOS DNA repair network.
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(MAPK) network in cell lines disturbed by either the wild
type HIV type I Vpr or the mutant type R73A or the mutant
type R80A. HIV-1 Vpr is an important protein in promot-
ing the pathogenesis of AIDS by facilitating apoptosis and
cell cycle stall at G2. Yoshizuka et al. [27] studied the
effects of Vpr on MAPK-network-related genes in stalling
cell cycle, so they obtained cell lines that can express wild
type or mutant Vpr under a tetracycline-inducible pro-
moter. They found that many genes related to the MAPK
network differentially expressed when subjected to differ-
ent types of Vpr. The MAPK network used for this report is
shown in Fig. 3. All those data sets compare the organ-
ism's reactions to different environmental perturbations,
and from estimated genetic networks we hope to discover
the differential dynamical properties of genetic networks
under stress.

We applied our framework to three real-world time series
datasets above and found differential stability, transient
responses, and controllability of genetic networks in nor-
mal vs. abnormal cells.

Results
Models of genetic networks and their application to real 
data sets
We modeled genetic networks as dynamical systems,
more specifically as linear state-space systems. A linear
state-space model of dynamical systems can be written as

where x(t) is the state vector, y(t) the output vector, and
u(t) the input vector, all at time t; w and v are independent
noise terms assumed to be white Gaussian with zero
means and covariance Q and R, respectively. Matrix A is
called the state transition matrix, B the input matrix, C the
output matrix, and D the feed-forward matrix. Matrices A,
B, C, D and covariance matrices Q and R together make up
the parameters of the dynamical system.

The states represent the biological forces that regulate
gene regulation; they describe the behaviours of gene tran-
scription but are hidden. The outputs denote the gene
expression levels and are measured, and it is assumed that
the expression level of a gene is determined by the state of
the regulated gene. The inputs can be any external stimuli
that influence gene regulation: substances like drugs, pro-
teins, RNAs, or expression levels of other genes.

Estimated system
For the SOS system, x2 is the discretized first derivative of
x1, whereas x1 is the expression level of gene lexA, x3 gene
polB, x4 gene umuD, x5 gene uvrD, x6 gene uvrA, x7 gene
uvrY, and x8 gene ruvA. The outputs are the measured
expression levels of the seven genes listed above, and the
input is gene recA. In Fig. 4 and Fig. 5, we included the
estimated outputs and the measured outputs superim-
posed into one plot, as well as estimation errors in a sep-
arate panel for each gene. From the plots we can see that
the estimated trajectory largely follows measured values.

x t Ax t Bu t w

y t Cx t Du t v

( ) ( ) ( )

( ) ( ) ( )

+ = + +
= + +

1
(1)

The diagram of MAPK networkFigure 3
The diagram of MAPK network.

The diagram of GSH redox cycleFigure 2
The diagram of GSH redox cycle.
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The estimated system parameters are listed below for the
low level of radiation:

For the high level of radiation, the estimated system is
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Estimated expression levels and error in estimationFigure 4
Estimated expression levels and error in estimation. For each gene of the SOS system, we have superimposed the esti-
mated expression levels on measured expression levels and plotted the error in estimation in a separate panel. We have done 
this for the low radiation level data set in Figure 4. The estimations generally show good behaviors. Figs. 4a, 4b, 4c, 4d, 4e, 4f, 
4g are for the low radiation level data set, and plotted genes lexA, polB, umuD, uvrD, uvrA, uvrY, and ruvA, respectively. Each 
gene has two plots; the bottom panel shows estimated expression level superimposed on measured expression level, while the 
top panel is the estimation error.
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For the GSH redox cycle there are two inputs, gene
ALD2A1 as u1 and GPX4 as u2. All the states were mod-

elled with second order dynamics so the last four states x5,
x6, x7 and x8 are the discretized first derivatives of x1, x2, x3
and x4, respectively. Here, gene GCLC is x1, gene GCLM x2,
gene GSS x3, and gene IDH2 x4. The estimated system for
exposure to normal air is
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Estimated expression levels and error in estimationFigure 5
Estimated expression levels and error in estimation. We have superimposed the estimated expression levels on meas-
ured expression levels and plotted the error in estimation in a separate panel for the high radiation level data set in Figure 5. 
Figs. 5a, 5b, 5c, 5d, 5e, 5f, 5g are for the high radiation level data set plotted genes lexA, polB, umuD, uvrD, uvrA, uvrY, and 
ruvA, respectively. Each gene has two plots; the bottom panel shows estimated expression level superimposed on measured 
expression level, while the top panel is the estimation error.
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For exposure to phosgene, the estimated model is

As for the MAPK system, the inputs are gene BRAF as
u1and gene RAF1 as u2. The states x1, x2, x3 and x4 are genes
MAP2K1, MAP2K2, MAPK1, and MKNK2, respectively;
the other four states are the discretized first derivatives as
in the system for the GSH redox cycle. The estimated sys-
tem for the wild type Vpr is

and for the R73A mutant

and for R80A mutant

Although the number of parameters is small compared
with the number of states, which agrees with the knowl-
edge that genetic networks are sparse [28], it is still hard to
see at a glance whether they differ in any fundamental
way. For that, we must apply systematic analysis to the
estimated systems.

Differential stability of systems under different 
perturbations
Stability is a very important property of a biological sys-
tem, for an unstable system puts great stress on neigh-
bouring systems and may even lead to cell death. A system
is stable if it will converge to steady states after distur-
bance; it is unstable otherwise. The stability of a discrete
linear system can be determined by the eigenvalues of its
state transition matrix A: if all the eigenvalues are within
the unit circle in the complex plane, then the discrete sys-
tem is stable. The eigenvalues of the three analyzed net-
works are listed in Table 1, 2, and 3, and their
implications discussed below.

We analyzed the SOS DNA network under low and high
dosage of radiation and discovered that the network was
stable for low dosage and unstable for high dosage. We
found that the eigenvalues of SOS network under low dos-
age of radiation to have the eigenvalues' norm all less than
one, and therefore the network was stable. On the other
hand, the SOS network was unstable under high dosage of
radiation, as the norm of one of its eigenvalues was greater
than one.

We also analyzed the redox cycle in mice lung cells that
were exposed to either carbonyl chloride (phosgene), an
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Table 1: Differential stability of the SOS network

Low Dosage High Dosage

0.8117 0.8321
0.7367 0.6530
0.9637 0.8893
0.9652 1.2216 (unstable)
0.6969 0.9062
0.6219 0.6291
0.7952 + 0.3630i 0.6647 + 0.3597i
0.7952 - 0.3630i 0.6647 - 0.3597i
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industrial toxin, or normal air; and we found that GSH
redox system in normal lung cells was stable – all eigen-
values were within the unit circle, and that the network
exposed to toxin was unstable – some eigenvalues were
outside the unit circle. Whether the unstable detoxifica-
tion system contributed to the death of mice exposed to
phosgene is not yet known, but Sciuto et al. [26] specu-
lated that the poison might have overwhelmed the detoxi-
fication system.

We also analyzed the activity data from the MAPK net-
work in mammalian cells that expressed either wild type
Vpr, mutant R73A Vpr, or mutant R80A Vpr; and we
found that both the wild type and R73A produced stable
behaviours, and R80A caused the network to become
unstable. A stable MAPK network helps the virus most, for
Yoshizuka et al. [27] found the HIV virus uses MAPK net-
work to cause cell cycle G2 arrest, and over-expression of
MAP2K2 reversed the arrest.

Differential relative stability analyzed via root locus
The relative stability of genetic networks is also important;
it is a measure of robustness. We studied relative stability
by examining the stability margins of pure gain feedback
loops through root-locus plots. Given a dynamical sys-
tem, one forms a feedback loop from the output to the
input through only a pure gain controller. Depending on
whether the control signal is negated as it is fed into the
input, the feedback can be positive (not negated) or nega-
tive (negated). The original system is called the open-loop
system, and its zeros and poles are the open-loop zeros

and poles; the zeros and poles of the overall system are
called the closed-loop zeros and poles. A dynamical sys-
tem's zeroes are the roots of the numerator of the transfer
function (for an explanation of the transfer function, see
Methods), and the poles are the roots of the denominator.
The stability of closed-loop systems depend on the closed-
loop poles. The root-locus method generates a plot that
traces the closed-loop poles as the gain of the controller is
varied, and the portion of gains that make the closed-loop
stable is called the stability margin. In the root locus plot,
the open-loop zero is represented by a circle ( ), the open-
loop pole by a cross (×), and if there is a zero-pole cancel-
lation we will see a circle and a cross on top of each other
(�). The root-locus method can only study systems with
single input and single output (SISO), but the dynamical
properties of SISO systems is a reflection of the overall sys-
tem's dynamical properties, so that the performance of the
SISO system will manifest itself in the overall system's per-
formance.

In the SOS DNA repair network, the recA to uvrA SISO sys-
tem showed differential root-locus plots, depending on
radiation levels. Their respective root-locus plots, for both
negative and positive feedbacks, are shown in Fig. 6a, 6b,
6c, and 6d. Under low level of radiation, we found that
the SISO system was comfortable with positive feedback,
which had larger margin of stabilizing gains, whereas neg-
ative feedback allowed far narrower choices. Under high
level of radiation, the opposite was true: positive feedback
had no stabilizing gain whereas negative feedback had a
large margin. The need for positive feedback loop in low
radiation level is an interesting discovery from our root-
locus analysis, because it runs counter to the common
perception that negative feedback loop promotes stability
and positive feedback loop leads to instability. Perhaps
under low radiation level, the SOS network is not suffi-
ciently stimulated and positive feedback fully activates the
network which then leads to overall stability.

In the GSH redox network, we discovered that the
ALDH2A1 to IDH2 SISO system showed a simpler but
more striking difference under different environmental
conditions. When exposed to normal air, the SISO system
was stable and the root-locus plot in Fig. 7a shows that
sizeable gain values do not destabilize the closed-loop
system, which represents a nice scenario, because the sub-
system can sustain a lot of stress. But, as we can see in Fig.
7b and Fig. 7c, the same SISO system, when exposed to
toxin, not only had an unstable open-loop system, but the
closed-loop system also remained unstable no matter
what value of the gain was, positive or negative. This
means that not only the ALDH2A1 to IDH2 SISO system
was very unstable, but that a higher order controller must
be used to produce a stable closed-loop system, a sign of
very serious damage.

Table 3: Differential stability of the MAPK network

Wild type R73A R80A

0.8527 0.7448 -1.0169 (unstable)
0.8862 -0.0437 + 0.0925i -0.4078
-0.1615 + 0.3646i -0.0437 - 0.0925i -0.2023
-0.1615 - 0.3646i -0.6472 0.5867
-0.4884 -0.3913 0.9534
-0.4601 0.4680 0.7685
0.9324 0.4877 -0.6676
-0.4477 -0.4916 0.8315

Table 2: Differential stability of GSH redox cycle by

Normal Air Phosgene

-0.6141 2.0830 (unstable)
0.1177 -1.0383 (unstable)
0.4803 + 0.3199i -0.7561
0.4803 - 0.3199i 1.0512 (unstable)
0.7467 0.9120
0.7542 0.8696
0.4972 + 0.4196i 1.0470 + 0.2711i
0.4972 - 0.4196i 1.0470 - 0.2711i
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We also found that MAPK network in mammalian cell
lines subject to different versions of Vpr of HIV type I virus
had similarly different root locus plots, which are shown
in Fig. 8a, 8b, 8c, and 8d. The RAF1 to MKNK2 SISO sys-
tem was stable under both the wild type and the R73A
mutant Vpr perturbation, and both showed comfortable

margin of gain values for which the closed-loop system
was stable. The SISO system under R80A mutant protein
exhibited a stable closed-loop system with only a small
margin of gain with positive feedback and none with neg-
ative feedback. If that small margin does not include a

Root locus plots of recA to uvrA SISO systemFigure 6
Root locus plots of recA to uvrA SISO system. These plots trace the poles of the closed-loop system as the gain K is var-
ied from zero to infinity. The trajectories start at the open-loop poles which are represented by the cross, and could end at 
the open-loop zeros which are represented by an open circle, or they could go on infinitely in some direction. The different 
colours represent distinct trajectories of different closed-loop poles. Fig. 6a This is the root locus plot of recA to uvrA system 
under low level of radiation with negative feedback, where the locus on the real axis goes out of the unit circle quickly and 
therefore shows small stability margins. (The dotted circle is the unit circle.). Fig. 6b This is the root locus plot of recA to uvrA 
system under low level of radiation with positive feedback, with some stability margins. Fig. 6c This is the root locus plot of 
recA to uvrA system under high level of radiation with negative feedback, where a good portion of all three loci stays within 
the unit circle and therefore exhibits large stability margins. Fig. 6d This is the root locus plot of recA to uvrA system under 
high level of radiation with positive feedback, which has no stability margin.

a    b 

c d
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gain that can produce a closed system with satisfactory
performance, then a higher order controller is called for.

Differential degree of controllability
Since one goal of systems biology is to aid the develop-
ment of therapeutic treatments, which in the context of
genetic networks is to bring the network from undesirable
states to healthy states by manipulating inputs, the rela-
tive ease of moving around in the state space is an impor-
tant issue. The ability to move a system from one point in
the state space to another in finite time with only finite

inputs is called controllability, which is a pivotal concept
in linear time systems theory [7]. Controllability can be
tested by the rank of controllability matrix; if the control-
lability matrix is of full rank, then the system is controlla-
ble, otherwise uncontrollable. Beyond the binary test
(controllable or not) there are also degrees of controllabil-
ity. The condition number of the controllability matrix
can be considered as a measure of the degree of controlla-
bility, the bigger the number the less the controllability. A
system with less controllability may require much greater
inputs to achieve the desired final state, which could be a

Root locus plots of recA to uvrA SISO systemFigure 7
Root locus plots of recA to uvrA SISO system. Fig. 7a Root locus plot of ALDH2A1 to IDH2 system exposed to normal 
air with negative feedback is shown, with large stability margins. Fig. 7b Root locus plot of ALDH2A1 to IDH2 system exposed 
to poisonous air with negative feedback, where the locus on the positive real axis is entirely outside of the unit circle and 
therefore it has no stability margin. Fig. 7c Root locus plot of ALDH2A1 to IDH2 system exposed to poisonous air with posi-
tive feedback, showing no stability margin because of the locus at the right.

a              b 

 

c
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problem as the inputs for biological systems are drugs,
radiation therapy, things in limited supply and subject to
cost factors. As we will see, different systems could have
radically different degrees of controllability.

Although we found all the three genetic regulatory net-
works controllable under all circumstances, their condi-

tion numbers differed, for one significantly. We
discovered that the SOS DNA repair system under high
dose of radiation had a condition number of 2.8·109 for
its controllability matrix, and that under low dosage the
condition number was 2.6·109. The similarly large condi-
tion numbers suggest the SOS system under study is diffi-
cult to control; whether this is due to radiation is not

Root locus plots of RAF1 to MKNK2 SISO systemFigure 8
Root locus plots of RAF1 to MKNK2 SISO system. Fig. 8a Root locus plot of RAF1 to MKNK2 system perturbed by wild 
type Vpr with negative feedback where a large portion of the locus can be seen within the unit circle. Fig. 8b Root locus plot of 
RAF1 to MKNK2 system perturbed by R73A mutant Vpr with negative feedback showing very good stability margins. Fig. 8c 
Root locus plot of RAF1 to MKNK2 system perturbed by R80A mutant Vpr with negative feedback, where there is basically no 
stability margin due to the two loci on the real axis. Fig. 8d Root locus plot of RAF1 to MKNK2 system perturbed by R80A 
mutant Vpr with positive feedback and small stability margins.

a               b 

c              d 
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known. On the other hand, in mice lung exposed to nor-
mal air we saw that the redox system had a condition
number of 567 for its controllability matrix, and that
those exposed to toxin had 70267. The different condition
numbers peg the redox system as much more difficult to
control after exposure to poison, perhaps due to damages
or the fact that the network was being overwhelmed by the
effects of the toxin. The third network, the MAPK network
in mammalian cell lines, was found to have a condition
number of 62.15 when exposed to the wild type Vpr, 88.5
for those exposed to the R80A mutant, and 285.4 for the
R73A mutant. It is obvious that R73A mutant results in a
stodgier MAPK network than other variants, but overall
the MAPK system retains good controllability, making it a
good target for treatment.

Differential transient responses
To study cell functions as temporal processes means we
must take stock of transient behaviors in addition to
steady states. One way to characterize transient behaviors
is through the transient response of the dynamical system
to inputs like step input and impulse input, but because
the step responses and impulses responses give same
information for linear systems, we will concentrate on the
step input responses. A step input is a constant input, a
unit step, a constant unity. The rise time is a measure of
the speed of the dynamics, and the settling time and the
overshoot gauge how close to the steady state the transient
behaviors are. Of course, systems that exhibit differential
stability will have different transient responses, but
because differential stability is addressed earlier, we will
disregard any difference in transient responses due to sta-
bility difference.

The transient responses are by their nature studied as
input-output pairs, also called a single-input-single-out-
put (SISO) system. Although we will look at individual
SISO system extracted from multiple-input-multiple-out-
put (MIMO) systems, the transient responses are still the
intrinsic properties of the original system, and differential
transient responses suggest fundamentally different
dynamical behaviors of the original system in response to
external perturbations.

The SOS DNA repair network has only one SISO system,
besides those due to differential stability, that exhibited

differential rise time and settling time, the recA to uvrD
system. The SISO system, when exposed to high radiation
dosage, was almost twice as fast as the system exposed to
low dosage of radiation, to reach their respective steady
states. This suggests that the SOS system needs uvrD to
respond faster to, and therefore has faster dynamics
under, higher levels of radiation. With no overshoot in
both cases and a smaller settling time for a higher dosage,
the recA to uvrD system under high radiation level stayed
closer to the steady states. The rise time and settling time
are listed in Table 4.

The MAPK network in mammalian cells exhibited differ-
ential transient responses to three types of Vpr of HIV type
I virus. The BRAF to MAP2K2 SISO system displayed
slower dynamics and were more distant from the steady
state under the wild type than both mutants, and among
the mutants, R73A had faster dynamics and better ability
to stay close to the steady state. On the other hand, the
BRAF to MAPK1 system's transient behaviors in response
to the wild type Vpr were dominated by a 440% over-
shoot, and with its long settling time the system's tran-
sient responses were far from the steady state. The system
perturbed by the wild type protein also had faster dynam-
ics due to its smaller rise time, and the R73A mutant pro-
duced a system that had relatively fast dynamics and
transient response closer to the steady state. The R80A
mutant resulted in a system with slow dynamics and tran-
sient responses distant from the steady state with its rela-
tive large rise time and settling time and no overshoot.
The respective rise time, settling time, and overshoots are
in Table 5.

Although overshoot is generally considered undesirable
in engineering (whether fast dynamics or staying close to
the steady states are good or bad depends on the circum-
stances and cannot be determined a priori;) a large over-
shoot can be a fast way of signalling, or it can be an
unbearable disturbance to cells. But being aware of the
difference in transient responses is the first step toward
devising treatment strategies that shape biological sys-
tems' dynamics to our liking.

Table 5: Different transient responses of the MAPK network

BRAF to MAP2K2 BRAF to MAPK1

Wild type RiseTime: 31.5 RiseTime: 0.26
SettlingTime: 56.5 SettlingTime: 76.1
Overshoot: 0 Overshoot: 440.4

R73A Mutant RiseTime: 2.6 RiseTime: 8.2
SettlingTime: 5.8 SettlingTime: 17.0
Overshoot: 0 Overshoot: 0

R80A Mutant RiseTime: 11.7 RiseTime: 48.5
SettlingTime: 21.7 SettlingTime: 90.2
Overshoot: 0 Overshoot: 0

Table 4: Different transient responses of the SOS network

recA to uvrD

Low Radiation Dosage RiseTime: 58.1993
SettlingTime: 108.1459

High Radiation Dosage RiseTime: 17.9888
SettlingTime: 35.8853
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Discussion
Discovering differentially expressed genes and clustering
co-expressed genes into functional groups have given
researchers hints about the role of genes in pathogenesis.
However, with increasing recognition that cell functions
are temporal processes and that the dynamics of gene
expression levels and gene interactions play a vital role in
determining the health of the organism [1,29], there is a
need to distinguish peculiar dynamical behaviors that
result in sickness from those that do not. Dynamical prop-
erties succinctly characterize dynamical behaviors, and
differential dynamical properties of gene networks can be
seen as a natural extension of differentially expressed
genes.

In this report we analyzed the dynamical properties of
genetic networks, such as their stability, their closed-loop
stability embodied in the root-locus plot, their step
responses, and their controllability. First, we estimated
the state-space models of three genetic networks: the SOS
DNA repair network, the GSH redox cycle system, and the
MAPK network; then we performed analysis on the esti-
mated models. From the preliminary results, we found
that significant differences in dynamical properties exist
in all three networks.

All three genetic networks exhibited differential stability.
Stability is a fundamental dynamical property in any
dynamical system. A dynamical system is unstable if it
diverges or oscillates after being subjected to perturba-
tions. An unstable system is sensitive to perturbation or
noise, and it will have erratic behaviors, possibly causing
irreparable cell damage, leading to impairment of cell
functions and maybe even cell death. A stable genetic net-
work on the other hand confers a degree of robustness
against noise on the overall organism. Recently Hornstein
and Shomron [30] proposed that miRNAs play a stabiliz-
ing role for a number of genetic networks and the stability
was necessary for the proper functioning of organisms. It
would be interesting to see whether restoring stability to
an organism's genetic networks restores the organism's
health.

Besides stability, we also studied relative stability. Root-
locus plots track the stability of the closed-loop system
under the influence of a pure gain controller for single-
input-single-output (SISO) systems, and they can be seen
as a measure of the relative stability of the SISO system. As
biological systems are often under control of other, bigger
systems, wide margins of stabilizing gains give more lee-
way to, and can sustain some stress from, the controlling
systems, and therefore they are more relatively stable than
those with narrow margins. The redox cycle system in
mice lungs is the clearest example. Exposed to normal air,
the ALDH2A1 to IDH2 system was itself stable and the

closed-loop system was stable for all possible gains, which
makes this SISO system robust in normal tissues. But
when exposed to toxin, not only was it unstable in itself,
but no gain value could make the closed-loop system sta-
ble, which makes the system brittle. Systems that change
from high relative stability to low relative stability can be
considered for association with diseases, because they
impact the outer loop systems and could make the overall
system unstable. However, relative stability is not the only
thing root-locus plots can show. In the recA to uvrA SISO
system of the SOS network, positive feedback enabled a
lot of stabilizing gains for the SISO system exposed to low
level of radiation, as opposed to the same system exposed
to high level of radiation, which needed negative feedback
for large margins of stabilizing gains. This may portend
drastic changes in the outer loops, as changing from pro-
motion to inhibition is not easy for biochemical reac-
tions, and it could be a major sign that this system is
associated with unhealthy conditions.

The last dynamical property we looked at was controlla-
bility. Therapeutic treatments can be seen as pushing gene
expression levels from unhealthy states to healthy states,
and controllability is a theoretical guarantee that there are
possible inputs that can achieve healthy states. Although
we found all systems to be controllable, we did find differ-
ent degrees of controllability. The condition number of
the controllability matrix was taken as a measure of degree
of controllability and the redox cycle system in mice lung
exhibited over 100 times difference in its condition
number, suggesting a much higher possibility that unac-
ceptably large inputs are required to move the system into
desired states.

Of course much work remains. So far in this report we
have only analyzed a small number of dynamical proper-
ties while many more remain. Robustness is an important
property that some consider an organizing principle of
complex biological system [31,32], yet we have not inves-
tigated it. There is also the issue of the robustness of esti-
mation. Due to inherent noise in measurements, there are
inevitable uncertainties in any parameter estimation. In
general, increasing the sample size will increase the relia-
bility of the results for dynamic properties. Another way to
deal with this is to obtain confidence intervals for esti-
mated parameter values. However, confidence intervals
on individual parameters do not directly translate into
confidence intervals for dynamical properties, especially
because we have imposed constraints on the parameter
space. This should be a topic for further study.

On the issue of scalability, it is known that the number of
floating point operations roughly grows to the cubic
power of the number of states [23], assuming that the
number of states is larger than either the number of inputs
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or that of outputs. We have implemented our method in
Matlab and for the systems studied in this report compu-
tation time is around ten minutes on a 1.6 GHz Core Duo
laptop, so we expect our program to have no difficulty
with a network with dozens of genes. For large systems, we
should investigate hierarchical system identification
method [33].

Conclusion
Dynamical properties are considered to be pivotal in
determining cellular functions such as apoptosis, cell divi-
sion, proliferation, etc. [34], and it follows that differen-
tial dynamical properties can serve as important
indicators for discovering the role of specific biological
processes in causing the malfunction of cells. Only by
comparing fundamentally different dynamical behav-
iours between normal and abnormal cells can we begin to
untangle the complex interactions and roles of genes in
pathogenesis. This will not only add to our understanding
of diseases but could also be a step toward effective treat-
ments.

Methods
Data sources
To test our method on real-world data, we obtained three
data sets: E. coli under radiation, mice lung cells exposed
to the normal air and a toxin, and mammalian cell lines
under the influence of various types of Vpr. They were
chosen because they all have time course data of organ-
isms reacting to different perturbations and therefore
could embody differential dynamical properties.

Ronen et al. [35] irradiated E. coli and used green fluores-
cent protein (GFP) to obtain the rate of transcription of
various genes in the SOS network. Ronen et al. tracked 8
genes of the SOS network as they reacted to different irra-
diation levels, 5 Jm-2and 20 Jm-2. Each level had two sam-
ples and each sample had 50 time points. They monitored
eight genes: uvrD, lexA, umuD, recA, uvrA, uvrY, ruvA,
and polB. They performed extensive data pre-processing
on the raw data using hybrid Gaussian median filter and
polynomial fit for smoothing. They also assumed that the
rate of accumulation of GFP was proportional to tran-
script production, so we shall make the same assumption.

Sciuto et al. [26] measured the effects of carbonyl chloride
(phosgene) on mice lung. They exposed the mice to either
normal air or phosgene for 20 minutes at a concentration
of 32 – 42 mg/m3 and sacrificed some of the mice at each
time point. Each time point had 3 samples for air or phos-
gene and two replications. All experimental data were col-
lected using Affymetrix Mouse 430A oligonucleotide
arrays. The raw data were transformed by adding a con-
stant first, and then they performed a log transformation.

Yoshizuka et al. [27] observed the effect of viral protein R
(Vpr) on cell cycles. They transfected plasmids that
expressed wild type Vpr and mutated Vpr (R73A and
R80A) into mammalian cells. The microarrays (Hs
Operon V2) containing 22,434 oligonucleotide (60- to
70-mer) spots on a glass slide were used to generate the
data. There were three replications for each time point.

Our analysis in this paper was done exclusively on the
three data sets above.

Transfer functions and dynamical properties
A transfer function is a Laplace transform of a linear ordi-
nary differential equation of constant coefficients with
zero initial conditions. A single transfer function repre-
sents a single-input-single-output (SISO) system and one
can obtain a series of transfer functions from a state-space
representation of a dynamical system and vice versa [36].
The zeroes are roots of the numerator. The characteristic
equation of the transfer function is the denominator
equal to zero, and it determines a lot of the dynamical
properties of the system. In particular, the roots of the
characteristic equation are the poles of the system, which
determine the stability of the system and have great influ-
ence over other dynamical properties.

Stability analysis
For discrete linear time-invariant systems, the system is
stable (its steady states do not diverge) if and only if all of
the eigenvalues of the state transition matrix or all of the
poles of all the transfer functions have magnitude less
than 1 [7]. For continuous systems the requirement is that
all eigenvalues or poles have negative real part. The sim-
plicity of determining stability belies its importance, for it
is one of the most important, best analyzed, and best
known dynamical property. Feedback control's first task is
to ensure stability and robust control spends a great deal
of efforts to ensure stability for uncertain models [37,38].

Root-locus plots
The root-locus method graphically illustrates how the
poles of the closed-loop system change as the gain of a
pure gain controller is varied. Later it is generalized to
show how the roots change as any parameter of the char-
acteristic equation varies. The parameters must be in the
form of 1 + KG(s) = 0 where K is the gain (or the parame-
ter), G(s) is a transfer function, and s is a complex variable.
The gain is required to be non-negative but this is not a
problem because we could just make-G(s) the new nomi-
nal system. We only need two criteria to determine the tra-
jectory

|KG(s)| = 1 (9)

∠KG(s) = 180° + k360° (10)
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where k is some integer. The root-locus plot lies in the
complex plane. The path of roots starts at the open-loop
poles and ends at the open-loop zeros, and if part of the
path lies on the real axis, then it lies to the left of an odd
number of poles [36].

Controllability

Controllability is a concept central in systems theory. It is
about the ability of a system to move from any initial state
to any final state with final control in finite time. The con-
trollability matrix is defined as H = [B AB A2B�] for a lin-
ear time invariant system (LTI) of  = Ax + Bu where u is
an m × 1 vector, x an n × 1 vector, A an n × n matrix, and
B an n × m matrix. If the controllability matrix has full
rank, then LTI is controllable; otherwise it is uncontrolla-
ble. Another way of saying that a matrix is not full rank is
that it is singular, and due to numerical inaccuracy of dig-
ital computers and model uncertainty, condition number
is used to measure how close to singularity a matrix is. The
condition number of a matrix is defined to be ||H||·||H-

1|| where ||·|| is any matrix norm. We used 2-norm in this
report. The condition number of the controllability matrix
can be seen as a measure of the degree of controllability.
The larger the condition number is, the greater the inputs
are needed to reach a target state, even though reaching
nearby states requires no great efforts.

Unit-step signal and step-response plots
A unit-step signal is a constant signal of strength one. The
step response is the output of a dynamical system in
response to a unit-step input. The step-response plot
graphically gives much information about the dynamical
properties of a system. The most important property the
step response manifests is stability. A stable system's plot
will converge to a steady state while an unstable system
will diverge or oscillate. Step-response plots also show set-
tling time, rise time, and percent overshoot. Settling time
measures how fast the system achieves the steady state and
rise time how quickly the system responds to perturba-
tion. Rise time is defined to be the time for the output to
go from 10% to 90% of the steady state. Settling time is
defined to be the time for the output to reach and stay
within a 2% neighborhood of the steady-state value. Per-
cent overshoot or undershoot is the percentage of the
maximum or minimum minus the steady state and
divided by the steady state. Rise time is generally associ-
ated with the speed of the dynamics, that is, how fast the
system responds to inputs, while overshoot and settling
time measure how close the transient responses stay
within the vicinity of the steady states. They are also
inversely related in nature, that is, both rise time and set-
tling time cannot be kept small: decrease in one necessi-
tates increase in the other if nothing else changes. The

root-locus technique is one way to use feedbacks to design
a closed-loop system with better rise time, better settling
time, and better overshoot.

Parameter estimation
We used expectation-maximization (EM) to estimate the
parameters of genetic networks. EM is a well known and
well studied method [23,39], and its application to esti-
mating parameters of linear dynamical system has
received attention recently from Gibson et al. [23], whose
notations we shall follow. We first rewrite

as

and make the following definition for the sake of conven-
ience:

Equation (12) then becomes

We shall also denote all the observations (or outputs) as
Y, all the inputs as U, and all the states as X. We will add
appropriate subscripts if we mean they are up to a certain
time step for a particular time course expressed as a super-
script. The E-step needs to estimate the conditional expec-
tation

Q(θ, θ') = Eθ'[log Pθ(X, Y|U)|Y, U] (15)

where θ is a vector of model parameters and θ' is the cur-
rent estimate of the parameters. First, the likelihood func-
tion of the nth time series, whose length is τn, is
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where  and

. Expanding equation

(16) and taking its logarithm gives

Then we define the following notations for N time series:

where τn is the number of time points in the nth time
series. Taking expectation of equation (17) gives

We need the following quantities for equation (19):

where ,

, and

; and they are obtained

from the Kalman smoother

where , Pt/t, Pt|t-1 are calculated from the Kalman filter

That constituted the E-step. The M-step, due to the con-
straints imposed by the network structure, is

[ΓnewΣ - Ψ] � M = 0 (22)

Πnew = {Φ - ΨΓnew
T - ΓnewΨT + ΓnewΨΓnew

T} � I
(23)

where Πnew and Γnew are the updated parameters, and M is
a constraint matrix of the same size as Γ, so that if an entry
of Γ is constrained then it is zero and otherwise one. We
also assume all noise covariance matrices are diagonal.

Higher order dynamics
If we stick with one gene for one state, then the system will
only have first order dynamics, which are either exponen-
tial decay or exponential growth, associated with all the
genes, but because oscillation is widely observed in biol-
ogy, at least second order dynamics should be available to
models of genetic networks. We will give a simple deriva-
tion of how to add second order dynamics for the individ-
ual nodes of the genetic networks using the principle of
continuous to discrete conversion. This is similar to
d'Alché-Buc's method [28]. The third or higher order
dynamics can be similarly added but we do not make use
of it in this report.

We shall focus on one node in genetic networks but the
results are easily extrapolated to the entire network. Sup-
pose we have a second order linear differential equation
describing the dynamics of a node:

where x is the node we are interested in, zj is the jth nodes'
expression levels, wj its corresponding weights, and λ1 and
λ2 parameters. Let

Then we get
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If the steps are uniform, then we can represent the deriva-
tives of x as

where k is the time step. The equation (26) then becomes

The ones and zeros in equation (28) are fixed except in 1
- λ1 where the whole term is variable. An interesting obser-
vation is that all interactions and inputs should be on the
second order term x2.
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