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Abstract

Background: Protein-protein interaction (PPl) networks enable us to better understand the
functional organization of the proteome. We can learn a lot about a particular protein by querying
its neighborhood in a PPl network to find proteins with similar function. A spectral approach that
considers random walks between nodes of interest is particularly useful in evaluating closeness in
PPI networks. Spectral measures of closeness are more robust to noise in the data and are more
precise than simpler methods based on edge density and shortest path length.

Results: We develop a novel affinity measure for pairs of proteins in PPl networks, which uses
personalized PageRank, a random walk based method used in context-sensitive search on the Web.
Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times
the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein.
PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise
measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-
membership, making it a meaningful measure. In our experiments on protein networks we find that
our measure is better at predicting co-complex membership and finding functionally related
proteins than other commonly used measures of closeness. Moreover, our experiments indicate
that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we
build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily
scales to much larger biological networks.

Conclusion: We define a meaningful way to assess the closeness of two proteins in a PPl network,
and show that our closeness measure is more biologically significant than other commonly used
methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the
user to quickly find nodes closest to a queried vertex in any protein network available from
BioGRID or specified by the user.

Background and the relationships between them. For example, we can
Networks are often used to represent a system where the  find vertices central to the network, which is useful for
nodes are a set of agents, and the edges are the relation-  biological [1,2] and social networks [3]. In addition, we

ships/interactions between those agents. We can then use  can use the network topology to find communities, in the
the network topology to find out more about the nodes  context of the Internet [4-6], and social and biological net-
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works [7-9]. It is also useful to consider relationships
between pairs of vertices. For an interacting pair, we can
look at how essential this interaction is to the network
[10], and use this information for community detection
[11,12], or to find properties of these pairs [13].

Moreover, we can use the graph topology to evaluate the
closeness of pairs of vertices, which can provide additional
insight into the structure of the network. In many net-
works most node pairs are not connected, but it is still
meaningful to consider how nodes that are not directly
connected relate to each other. A lack of an interaction
may be due to physical constraints on the nodes, such as
an airport only being able to support service to so many
other airports, or a person only being capable of knowing
so many other people. However, it may also simply be
due to noise in the network, such as the extremely high
false negative rate in protein networks [14,15]. Con-
versely, even among node pairs that are connected it is
still meaningful to see which pairs are closer to each other.
For example, we may consider a pair of vertices in the
same cluster in the graph to be closer than a pair that is
not. And once again, some connections may simply be
due to noise.

The simplest notion of distance between two nodes in a
network is the length of the shortest path between them.
However, this is an imprecise measure, especially for
small-world graphs where the longest path between any
two nodes is very short [16,17]. As an extreme example,
consider large social networks, where it is speculated that
the longest distance between any two people is six [18].
Shortest path distances consider a single path in assessing
the closeness of two nodes. If we use a measure that takes
all the paths in the network into account, we should be
able to compute distances that are more meaningful.

Here we consider the problem of assessing the closeness
of two proteins in a protein-protein interaction (PPI) net-
work. There has been considerable work done in this area,
where measures of interconnectedness between protein
pairs have been used to find functionally similar proteins
[19-22]. Different notions of interconnectedness have
also been used to predict false negative interactions in
protein networks [23]. All of these measures consider the
density of interactions in the immediate neighborhood of
two proteins, and some also normalize by the number of
interactions of each protein, or the number of interactions
in the neighborhood expected by chance.

A problem that is related to computing the distance
between two proteins is finding the closest neighbors of a
set of proteins. This is addressed in [24] by generalizing
pairwise notions of interconnectedness. A similar prob-
lem is considered in the context of probabilistic PPI net-
works, where reachability [25] and shortest path distance

http://www.biomedcentral.com/1752-0509/3/112

[26] (in instantiated networks) are used to recover protein
complexes when only some of their proteins are known.
Discovering protein complexes from protein network
topology is itself a very well-studied problem, and is usu-
ally addressed by clustering [27-31].

Contribution

In this work we develop a novel method to evaluate the
closeness of proteins in a PPI network. We also create a
tool that allows the user to quickly find nodes closest to a
queried protein in any PPI network available from BioG-
RID or specified by the user. Our measure of closeness
uses personalized PageRank, which was introduced by
[32], and has been used for context-sensitive search on the
Web [33,34]. We define the PageRank Affinity of two pro-
teins a and b to be the minimum of pr(a — b) and pr(b —
a), where pr(a — b) is the amount of PageRank that a con-
tributes to b in the PPI network, which is proportional to
the number of times b is visited in a random walk on the
network that restarts at a. We show that our closeness
measure is more biologically meaningful than other com-
monly used methods in terms of predicting co-complex
membership and correlation with functional distance.
Moreover, we show that our method is very resilient to
noise in the data. We also provide intuition for why
PageRank Affinity is meaningful in protein networks by
stating some properties of PageRank vectors.

Methods

Preliminaries

We model a protein interaction network as an undirected,
unweighted graph where the nodes are the proteins, and
two nodes are connected by an edge if the corresponding
proteins are annotated as interacting with each other.

Formally, a graph is given by a set of vertices V and a set
of edges E. The degree of a node u € V, denoted by d(u), is
the number of edges adjacent to u. A graph is often repre-
sented by its adjacency matrix. The adjacency matrix of a
graph G = (V, E) is defined by

1 if(uv)eE
0 otherwise.

Ag(u,v) ={

We can learn a lot about the structure of a graph by taking
a random walk on it. A random walk is a process where at
each step we move from some node to one of its neigh-
bors. The transition probabilities are given by edge
weights, so in the case of an unweighted network the
probability of transitioning from u to any adjacent node is
1/d(u). Thus the transition probability matrix (often
called the random walk matrix) is the normalized adja-
cency matrix where each row sums to one:

We =DZlAc.
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Here the D matrix is the degree matrix, which is a diagonal
matrix given by

d(u)
0 otherwise.

ifu=v

D¢(u,v) :{

In a random walk it is useful to consider a probability dis-
tribution vector p over all the nodes in the graph. Here p
is a row vector, where p(u) is the probability that we are at
node u and 2., p(u) = 1. Because we transition between
nodes with probabilities given by W, if p, is the probability
distribution vector at time ¢, then p,; = p,W.

PageRank

A PageRank vector pr (s) is the steady state probability dis-
tribution of a random walk with restart probability a. The
starting vector s gives the probability distribution for
where the walk transitions after restarting. Formally, pr (s)
is the unique solution of the linear system

pr,(s) =as+(1—-a)pr,(s)W.

The PageRank vector with a uniform vector for s gives the
global PageRank of each vertex. PageRank with non-uni-
form starting vectors is known as personalized PageRank.

Here we always use a starting vector that has all of its prob-
ability in one vertex, defined as follows:

(0 1 ifi=u
e, (i) =
" 0 otherwise.

pr (e,) is thus the steady-state probability distribution of
a walk that always returns to u at restart, and we will refer
to it as the personalized PageRank vector of u. We will use
pr (e,) [v] to denote the amount of probability that v has
in pr (e,), and use a shorthand of pr(u — v) for this quan-
tity, dropping the o in the subscript because in our com-
putations it is always fixed. As pointed out in [35], v's
global PageRank, denoted by PR(v), satisfies

PR(v) = Zpr(u - ).

Thus pr(u — v) can be thought of as the contribution that
u makes to the PageRank of v.

PageRank Affinity

For two vertices u and v we define their PageRank Affinity
to be the minimum of the PageRank that u contributes to
v and v contributes to u:

pr - aff(u, v) = min(pr(u — v), pr(v — u)).
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This quantity can be computed by solving the PageRank
equation for pr (e,) and pr (e,), and reporting the mini-
mum of the two PageRank contributions. The restart
probability of the random walk (a) must be greater than
0 to ensure that pr (e,) and pr (e,) have unique solutions,
and must be much smaller than 1 to prevent the random
walk from returning too often to the starting vertex and
being too local. We set o to 0.15, which is typical for com-
putations of PageRank.

Approximate PageRank Affinity

We can also use approximate PageRank to compute close-
ness between nodes. While it is possible to compute exact
PageRank vectors for smaller graphs by solving the PageR-
ank equation, it is computationally infeasible to do this
for larger networks. To calculate approximate PageRank,
we use the ApproximatePR algorithm from [36], which
computes an -approximate PageRank vector for a random

walk with restart probability a in time O(é). An -

approximate PageRank vector for pr (s), denoted by

er «(8), satisfies

pr, ()I8]2 pr,, (5)[8] 2 pr, ()IS] - e-vol(s) (1)
for any subset of vertices S, where p [S] = 2, [v], and
vol(S) = £,.sd(v). In other words, the amount of error in
the approximate PageRank vector for any subset of verti-
ces is at most the product of and the sum of degrees of its
nodes.

Algorithm Description

We develop an algorithm that approximates PageRank
Affinity, which uses ApproximatePR as a subroutine. Our
approximatePRaffinity algorithm takes a queried vertex v,
approximation parameter , and integer k as input, and
returns the k nodes closest to v in the graph. The algorithm
is outlined below.

Algorithm 1 approximatePRaffinity(v, , k)

er (e,) = ApproximatePR(v, )

for each u do

pr (v —u) = pr (e,) [u]
end for

for each u do
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d(v)

er(u—>v)= er(v—>u)W

end for

for each u do

affinity(u) = min(pr (u — v), pr (v — u))
end for

return the k vertices with highest affinity scores

We first compute an approximate personalized PageRank

vector of v, denoted by er (e,), to approximate the

amount of PageRank that v gives to each vertex u, denoted

by I;r (v > u). We then use the observation that for undi-

rected graphs

d(v)

d(u)’ 2)

pr(u - v) =pr(v > u)

to approximate the PageRank contribution of each vertex
in the graph to v. We then calculate the affinity to v of each
vertex u as

affinity(u) = min(pr(u — v), pr(v — 1)),
and return the k nodes with highest affinity values. Equa-
tion 2 follows from the discussion of computing PageR-
ank contributions in the time-reverse Markov chain in
[35], and the fact that in an undirected graph the amount
of probability that a vertex has in the stationary distribu-
tion of a random walk is proportional to its degree.

It follows from Equation 1 that the amount of error in the
probability that u has in the approximate personalized
PageRank vector of v is at most - d(u):

pr(e,)lul 2 pr(e,)lul 2 pr(e,)ul - c-d(w). ()
We denote by pr-aff(u, v) the exact PageRank Affinity of u

and v, and by pr-Naff (u, v) the Approximate PageRank Affin-
ity computed by approximatePRaffinity. Using Equations 2
and 3 we can verify that the amount of error in the Approx-
imate PageRank Affinity of vertices u and v is at most the
product of and the larger of their degrees:

pr-aff(u,v) > pr—Naff(u, v) 2 pr-aff (u, v) — ¢ - max(d(u), d(v)).
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Runtime Analysis

The approximate PageRank vector computed by Approxi-
matePR has few non-zero entries. This saves computation
time because we do not need to consider vertices with 0
probability in the approximate PageRank vector (they
have an affinity of 0). Let us call the support of probability
distribution vector p, denoted by Supp(p), the set of all
vertices that have non-zero probability in p:

Supp(p) ={ve V:p[v] > 0}.

ApproximatePR computes an approximate PageRank vec-
tor with small support, which is useful for large graphs
that have many vertices. More specifically, the number of
non-zero entries in the approximate PageRank vector is

less than ﬁ :

|Supp(pr(e, )< (7

Thus the exact runtime of approximatePRaffinity is the time

necessary to compute er (e,), which takes O(é ), plus

the time necessary to compute the affinity to v of each ver-

tex in Supp( er (e,)), which is linear in the size of the sup-
port set, plus the time necessary to find the k vertices with

largest affinity scores, which takes at most k- (1_%)6 , giving

k

a total runtime of O( é * {—a)

). Moreover, if we treat

a as a constant in this analysis (because we always set it to

0.15), this expression simplifies to O( % ).

Properties of PageRank Vectors
It is well-known that a PageRank vector can be expressed
as a weighted average of random walk vectors [36]:

Pr(s) = Y (1= a)'(sW*), ()
t=0

The sW! term gives the probability distribution of the ran-
dom walk after t steps. Equation 4 thus shows that in com-
puting PageRank we consider paths of all lengths, with
less weight given to longer paths based on the value of a.

Another important property of PageRank vectors is that if
u and v are in the same cluster, both pr(u — v) and pr(v -
u) are likely to be high. The quality of a cluster C is meas-
ured by proportion of outgoing edges, known as conduct-
ance, which we denote by ®(C). A cluster of lower
conductance is better because its nodes are more con-
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nected among themselves than they are with the other
nodes in the graph. It is proved in [36] that for any set C,
there is a subset of vertices C' < C, such that for any vertex
u € C', the personalized PageRank vector of u, denoted by
pr(e,), satisfies

> pr (e z1- 29,
(04

veC

In other words, pr(u — v) = pr (¢,) [v] is high on average if
u and v are in the same good (low-conductance) cluster C
and u € C'. Moreover, the set C' is large, as the sum of
degrees of its nodes, denoted by vol(C'), satisfies vol(C')
>vol(C)/2.

Other Measures of Closeness

In our experiments on protein networks, we compare
PageRank Affinity and Approximate PageRank Affinity with
several other measures of closeness, which are described
below. Some of these measures assign an affinity score to
each pair of vertices, while others simply order pairs by
their closeness.

Shortest Path and Shortest Path Multiplicity

The shortest path closeness of two vertices is the inverse of
the length of the shortest path between them. However,
using the length of the shortest path does not allow for
much granularity, so we also consider the multiplicity of
the shortest path to break ties between pairs that are the
same distance apart.

Common Neighbors

A very intuitive measure of closeness of two vertices is the
number of neighbors that they share in the graph. In our
experiments, we notice that in addition to counting com-
mon neighbors, it also helps to take into account whether
the two nodes are directly connected, by adding a small
constant to their closeness score if this is the case.

Partitioning

We also compare with another measure of closeness,
motivated by efforts to partition PPI networks and deter-
mine overlap with known protein complexes. It is
observed that the densest clusters are often the ones that
overlap most with known complexes [30]. Therefore, we
partition the protein network, and score pairs of vertices
that are in the same cluster by the edge density of the clus-
ter. To partition the network, we use Metis [37], a widely
used algorithm that finds high-quality, balanced clusters
in the graph. Once we partition the network, we consider
protein pairs in denser clusters closer than pairs in less
dense clusters, because pairs in denser clusters are more
likely to be part of the same functional unit. Of course,
this approach only allows us to consider a small fraction

http://www.biomedcentral.com/1752-0509/3/112

of the pairs, because we have no way to evaluate the close-
ness of two proteins assigned to different clusters.

Cliques and k-cores

In addition to partitioning the graph and evaluating the
edge density of each cluster, we can also search for dense
components directly by enumerating maximum cliques
and finding k-cores. A k-core is a vertex-induced subgraph
where the degree of each node is at least k& [38]. We then
consider pairs that are part of a larger clique closer than
pairs that are part of a smaller clique, and consider pairs
that are part of an m-core closer than pairs that are part of
an n-core if m >n. However, once again, these measures
allow us to evaluate the closeness of only a small number
of pairs in the network.

Commute time

Another way to assess the closeness of two nodes using a
random walk on the graph is to consider the inverse of the
commute time between them. The commute time
between vertices u and v is the expected number of steps
taken for a random walk from u to reach v and return,
which is computed as described in [39].

Results

We develop a tool, which is accessible at http://
xialab.bu.edu/resources/pnns, that quickly finds nodes
closest to a queried protein in any protein-protein interac-
tion (PPI) network available from BioGRID. Our tool
implements the approximatePRaffinity algorithm described
in Methods, and returns a list of proteins sorted by their
Approximate PageRank Affinity to the queried protein,
along with the affinity scores (normalized and rounded to
one significant figure). The user can specify a protein net-
work by selecting an organism and a set of interaction
types. In addition, one may upload a custom (undirected)
network, which may be weighted. Our application is also
available as a command-line executable.

To assess the meaning of our closeness measure in protein
networks we use protein complex annotation from [40],
and functional distance data from [41]. We consider these
datasets "gold standard" measures of protein functional
similarity because they are based on information that is
manually curated. A good measure of closeness in a pro-
tein-protein interaction network should be consistent
with these data: we expect many of the closest nodes in the
network to be in the same protein complex, and more
generally have lower functional distances. Figure 1 dis-
plays one of the protein networks used in our study, with
proteins annotated to be in the same complex labeled
using the same color: we can see that a lot of the clusters
in the network indeed contain proteins that belong to the
same complex.
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Figure |
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A view of the protein complexes in one of the PPl networks. The AC-Western network, with proteins in the same

complex labeled with the same color.

We evaluate the closeness of protein pairs in PPI networks
from BioGRID [42], Version 2.0.44. BioGRID is a reposi-
tory that lists interacting protein pairs, and for each pair
gives the experimental method used to detect the interac-
tion. We use three different networks in our study, which
differ in the type of experiment used to detect the interac-
tions. One of the networks is formed from interactions
detected by Affinity Capture-Western experiments (which
we refer to as AC-Western), and the other two are from
Affinity Capture-MS (referred to as AC-MS), and Two-
Hybrid experiments. In each network, we use PageRank
Affinity and other measures described in Methods to rank
protein pairs by closeness, in order to determine which
measures are more biologically significant.

To calculate the PageRank Affinity of all pairs of nodes in a
network, we compute a personalized PageRank vector of
each vertex, and then calculate a PageRank Affinity score
for each pair from their personalized PageRank vectors, as
described in Methods. In order to see if we get similar
results with the quicker approximation method that our
tool implements, in each network we also calculate the
Approximate PageRank Affinity of protein pairs by running
the approximatePRaffinity algorithm from each vertex.

Predicting Co-Complex Membership

We first investigate which measure of closeness is best at
predicting co-complex membership. In every network, we
compare how many co-complex pairs are in the top per-
centile of each closeness ranking. We also calculate the
number of co-complex pairs that we expect in each per-
centile by chance, to see how statistically significant the
results are. Figure 2 displays the results of our computa-
tional experiment. There are three panels: one for each PPI
network that we study. Bars of different color are used to
represent the results for the different closeness measures
compared. In each sub-figure the x-axis lists different per-
centiles of the closeness rankings, and the y-axis lists the
fraction of the total number of co-complex pairs in the
network contained in the top percentile of a particular
ranking. For example, there are 2851 co-complex pairs
among the proteins in the AC-Western network. When we
examine the top 1% pairs with highest PageRank Affinity
in this PPI network, there are 1915 co-complex pairs

among them, which constitutes a % = 0.67 fraction

displayed in the figure.
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Which measure of closeness is best at predicting co-complex membership? The number of co-complex pairs (as a
fraction of the total number of co-complex pairs in the network) among pairs in the top percentile of each closeness ranking is
displayed. Higher values indicate measures that are more biologically meaningful. (a) The results for the AC-Western network.
(b) The results for the AC-MS network. (c) The results for the Two-Hybrid network.

Figure 2c shows that in the Two-Hybrid network there are
more co-complex pairs among protein pairs with high
PageRank Affinity. The same is true for the AC-Western net-
work, although the contrast with other measures of close-
ness is smaller (Figure 2a). The picture is different for the
AC-MS network, as common neighbors and shortest path
multiplicity are as effective as PageRank Affinity in predict-
ing co-complex pairs (Figure 2b). We also note that in all
three networks we do not lose much by approximating
PageRank Affinity rather than computing it exactly.

From Figure 2 we also see that few co-complex pairs are
considered close using partitioning. Partitioning seeks out
clusters that are balanced in size, which often hurts their
quality. PageRank Affinity is also related to cluster co-
membership (see Methods), but considers whether two
nodes are part of a local cluster rather than a cluster in a

global partition of the graph. The closeness of two nodes
is then proportional to the quality of this local cluster,
which does not depend on a partition of the entire net-
work, which is less relevant. Therefore PageRank Affinity is
a more flexible measure that better reflects whether two
nodes are part of some quality cluster in the network.

Correlation with Functional Distance

In addition to using protein complex annotation, we also
use functional distance data to see which measures of
closeness are more biologically relevant. To calculate
functional distances, we use a measure based on GO
(Gene Ontology) biological process annotation. The
method of [41] provides a very sensitive measure of func-
tional distance because it considers all known functions of
a pair of proteins in assigning them a score.
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We first investigate whether there is any global correlation
between the functional distances and any measure of
closeness. In each network we rank all protein pairs by
functional distance, and compute correlation with the
closeness ranking of each measure using the Pearson Cor-
relation Coefficient [43]. However, we find that there is
very little global correlation between functional distances
and any measure of closeness. This is not surprising
because functional annotation and protein-protein inter-
action data are fundamentally very different.

Therefore we perform a different analysis, where we sim-
ply average the functional distances of the protein pairs in
the top k percent of each closeness ranking, for different
values of k. In our calculations of functional distance we
take the logarithm (base 10) of the functional distance

http://www.biomedcentral.com/1752-0509/3/112

score from [41]; alower value indicates a closer functional
relationship. We notice that for most closeness rankings
the average functional distance is worse for protein pairs
that are further away, as expected. The results of our exper-
iment are presented in Figure 3. Once again, there are
three panels, one for each protein network that we study,
and bars of different color are used to represent the results
for the different closeness measures compared. In each
sub-figure the x-axis lists different percentiles of the close-
ness rankings, and the y-axis displays the average func-
tional distance of protein pairs in the top percentile of a
particular ranking.

Figure 3 shows that in all three networks protein pairs
with high PageRank Affinity are more functionally related
(have smaller functional distances). Once again, Approxi-
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Figure 3

Which measure of closeness best correlates with functional distance? The average functional distance of pairs in the
top percentile of each closeness ranking is displayed. Lower values indicate measures that are more biologically meaningful. (a)
The results for the AC-Western network. (b) The results for the AC-MS network. (c) The results for the Two-Hybrid net-
work. The average functional distance of two proteins in the genome is 5.8.
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mate PageRank Affinity is almost as biologically meaning-
ful, significantly outperforming other measures. We note
that Approximate PageRank Affinity outperforms closeness
based on large clique membership, which is intuitively a
very good measure of closeness. Moreover, it is not possi-
ble to find large cliques in real time, whereas Approximate
PageRank Affinity takes seconds to compute and will scale
to larger protein networks as the size of the protein inter-
action data continues to grow.

Robustness to Noise

A closeness measure is particularly useful if it tells us
something about the true structure of the network in the
presence of noise. The interactions in PPI networks are not
random: proteins function in modules, therefore we
should be able to use the community structure of the net-
work to identify true positive and true negative interac-
tions, unless this structure is completely destroyed by
noise.

As described in Methods, our measure of closeness is
provably related to cluster co-membership, therefore we
expect it to be resilient to noise if the network has strong
community structure. To test this hypothesis, we conduct
an experiment where we build a PPI network from the
complex annotation in [40], add noise to it by adding/
removing edges, and then evaluate the closeness of true
positive and true negative interactions in the noisy net-
work using PageRank Affinity. To build the protein net-
work we connect two proteins by an edge if they are
annotated as co-complexed in [40]. We only consider pro-
tein complexes of size >30, which results in a network
with 250 nodes and 6913 edges.

To evaluate the resilience of a closeness measure to noise,
we use a metric that considers the closeness of nodes in
the noisy network, and counts how often true positive
interactions are closer than true negative interactions.
More specifically, let G = (V, E) be the true network and
G = (V, E) be the modified (noisy) network. We add
noise to the network by randomly choosing r; * |E| of the

true positive interactions and removing them, and ran-
domly choosing r, * |E| of the true negative interactions

and adding them. We then consider node pairs p; = (u;,
v;) € Vx Vandp, = (u, v,) € V x V, such that one of them
is connected in the true network and the other is not:
either (u,, v;) € E and (u,, v,) ¢ E or (uy, v;) ¢ E and (u,,
v,) € E. We call (p,, p,) concordant if the connected pair

is closer in the noisy network than the disconnected pair,
and discordant otherwise.

http://www.biomedcentral.com/1752-0509/3/112

For a particular experiment, where we take the true net-
work, add noise to it, and calculate the closeness of node
pairs in the modified network, we use n_to denote the
number of concordant pairs and n, to denote the number
of discordant pairs. We then calculate a robustness score
for a similarity measure as Z;ZZ
indicates that each true positive interaction is closer in the
noisy network than each true negative interaction, and a
score of -1 indicates that each true positive interaction is
further in the noisy network than each true negative inter-
action.

e [-1, 1]. A score of 1

Figure 4 displays the results of our computational experi-
ment. We vary r; and r, to create several noisy networks,
and record the robustness score of PageRank Affinity for
different levels of noise. As a base for comparison, we also
compute the robustness score of shortest path closeness,
where all ties in distance are broken randomly. From Fig-
ure 4 we notice that when r, = r, = 10%, PageRank Affinity
scores a perfect 1, indicating that even though we have
added considerable noise to the network, we can still per-
fectly distinguish between true positive and true negative
interactions: if we know the number of true edges, we can
simply take the highest scoring |E| node pairs in the noisy
network to recover the true interactions. Even as we
increase the amount of noise considerably, the robustness
score for PageRank Affinity remains very high, while for
shortest path closeness it is much lower.

This experiment provides insight into why our closeness
measure is effective at identifying co-complex protein
pairs in PPI networks. The protein networks used in our

study are similar to G, the noisy network in our experi-
ment: they are formed from a true set of protein-protein
interactions given by the protein complexes, which is
altered by noise due to the nature of the experiments used
to detect the interactions. Still, the noisy network pre-
serves some of the community structure, and many of the
protein pairs that have high PageRank Affinity are true
interactions, which are the co-complex pairs.

With this in mind, we further investigate whether our
measure can be used to detect false negative interactions
in PPI data by examining non-interacting pairs with high-
est PageRank Affinity in each protein network used in our
study. For each pair, we look for other evidence of interac-
tion between the two proteins using complex annotation
from [40], and also examine whether the two proteins are
annotated as interacting in BioGRID using other experi-
mental methods.
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Figure 4

How robust is PageRank Affinity to noise? We add noise to a network represented by a graph G = (V, E) by randomly
choosing r, * |E| of the true positive interactions and removing them, and randomly choosing r, * |E| of the true negative inter-
actions and adding them. We calculate the robustness score of PageRank Affinity by computing the PageRank Affinity of each
pair of vertices in the noisy network, and counting how often true positive interactions score higher than true negative interac-
tions. As a base for comparison, we also compute the robustness score of shortest path closeness (with ties in distance broken
randomly). (a) The results for r, = 0.1 and varying values of r,. (b) The results for r; = 0.2 and varying values of r,. (c) The
results for r; = 0.3 and varying values of r,. (d) The results for r; = 0.4 and varying values of r,.

We find that for many of the disconnected (not directly
connected) pairs with highest PageRank Affinity there are
other (often multiple) sources of evidence of interaction
between the two proteins. The results are presented in
Additional files 1, 2, 3, where we consider the 20 discon-
nected protein pairs with highest PageRank Affinity in each
network. Additional file 1 shows that when we examine
the 20 disconnected pairs with highest PageRank Affinity
in the AC-Western network, we find evidence that 14 of
them are in fact interacting. For the ACMS and Two-
Hybrid networks we find 5 and 7 such pairs (out of 20),
respectively (see Additional files 2 and 3). These numbers

are all much higher than expected by chance (for each net-
work the probability that a non-interacting pair chosen at
random is annotated as an interaction elsewhere is less
than 0.01).

Discussion

Defining PageRank Affinity

To determine the closeness of proteins a and b in a PPI
network, we compute two PageRank contributions ¢, =
pr(a — b) and ¢, = pr(b — a) (see Methods). To better
understand how to combine the two contributions into a
single score, we consider different possibilities, and see
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which ones are more biologically relevant in terms of pre-
dicting co-complex membership and correlation with
functional distance (using the same experiments
described in the Results). We first try combinations of the
form

B -max(cy,¢,) +(1-B)-min(cy,c,),

for different values of 3. Here 3 = 0 corresponds to taking
the minimum of ¢; and ¢,, = 1/2 corresponds to taking
the arithmetic mean, and B =1 corresponds to taking the
maximum of the two contributions. In addition, we try
combinations of the form of

max(c,,¢,)? -min(c,,¢c,)"”,

for different values of . Here B = 0 corresponds to taking
the minimum of the two contributions, B = 1/2 corre-
sponds to taking the geometric mean, and § = 1 to taking
the maximum.

When we evaluate different ways of combining the two
PageRank contributions we notice that taking the mini-
mum of ¢, and ¢, better predicts co-complex membership
in two out of the three networks. Moreover, using the
minimum of the two contributions gives a measure that is
more correlated with functional distance in all three net-
works.

The complete results of our experiments are presented in
Additional files 4 and 5. Additional file 4 displays the
results of evaluating different ways of combining the two
PageRank contributions using a weighted arithmetic
mean, while Additional file 5 displays the results of eval-
uating different ways of combining the two values using a
weighted geometric mean. There are 6 panels in each fig-
ure: the first three display a comparison in terms of pre-
dicting co-complex membership (one sub-figure for each
protein network that we study), and the next three display
a comparison in terms of correlation with functional dis-
tance (one sub-figure for each protein network). For the
first three panels higher values are better because they
indicate more co-complex pairs that are close, while for
the next three panels lower values are better because they
indicate that pairs that are close have low functional dis-
tances, and are thus more functionally related.

Our experiments indicate that taking the minimum of
pr(a — b) and pr(b — a) gives a more biologically mean-
ingful measure of closeness. Furthermore, we know that
d(b)

d(a)’

where d(a) denotes the degree of a. Therefore using the

in an undirected network pr(a — b) = pr(b — a)

http://www.biomedcentral.com/1752-0509/3/112

minimum of the two contributions is equivalent to
reporting pr(a — b) if d(a) = d(b), and pr(b — a) other-
wise. Thus our measure of closeness considers a random
walk on the protein network from the larger-degree pro-
tein to the smaller-degree protein, which is a sound
approach because proteins with large degree are easily
reachable from most other proteins in a random walk
regardless of their identity.

Advantages of PageRank Affinity

As discussed in Methods, node pairs that are part of the
same cluster in a graph will likely have higher PageRank
Affinity. This property makes it a very relevant measure for
protein networks because we expect pairs of proteins in
the same cluster to be more functionally related, and be
more likely to be in the same protein complex. Therefore
it is not surprising that PageRank Affinity outperforms
other measures of closeness in terms of correlation with
functional distance and predicting co-complex member-
ship.

In addition, PageRank Affinity is a very precise measure of
closeness, and is robust to noise in the data. As discussed
in Methods, personalized PageRank takes into account all
paths between two nodes in a graph (with more weight
given to shorter paths), by considering an arbitrarily long
random walk from the starting vertex. This allows for
more precision in assessing closeness, which is especially
useful in protein networks, where most protein pairs are
very close to each other in terms of shortest path distance.
Moreover, considering all paths between two vertices
makes PageRank Affinity very robust to noise in the data,
because a few extraneous or missing edges are less likely
to make a big difference in evaluating the closeness of two
nodes. We also have experimental evidence to support
this claim, as PageRank Affinity performs very well in dis-
tinguishing between true positive and true negative inter-
actions in our simulated noisy networks.

A Tool to Compute PageRank Affinity

One of our goals is to use our closeness measure to
develop a practical tool that can be used to quickly find
proteins closest to a queried vertex in a PPI network. We
can compute the PageRank Affinity of one vertex to all
other vertices in the network by solving a single PageRank
equation (see Methods). While it is possible to do this in
real time for most protein networks formed from interac-
tions listed in BioGRID today, as the size of the data con-
tinues to grow this computation will become more
challenging. Moreover, even right now some of the pro-
tein networks from BioGRID (constructed from the union
of several interaction types) are already too big to com-
pute PageRank Affinity exactly in real time.
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Our approximation algorithm, on the other hand, allows
us to easily manage the tradeoff between computation
time and the quality of the produced output. In our exper-
iments we have shown that when we approximate PageR-
ank Affinity, the quality of the output does not decrease
much. Our tool works quickly on datasets currently avail-
able in BioGRID, and easily scales to much larger protein
networks and other biological networks.

Conclusion

We develop a method to evaluate the closeness of two
proteins in a PPI network, and show that it is biologically
meaningful in terms of predicting co-complex member-
ship and correlation with functional distance. Moreover,
we create a tool that can be used to quickly find nodes
closest to a queried vertex in any protein network availa-
ble from BioGRID or specified by the user.
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Additional material

Additional file 1

Predicted false negative interactions in the AC-Western network. The
table lists disconnected node pairs with highest PageRank Affinity in the
AC-Western network, along with evidence for the existence of each inter-
action. Each row specifies a pair of proteins and the rank of their PageR-
ank Affinity score (closeness rank). For each pair we list evidence of the
existence of this interaction in the evidence of interaction column by writ-
ing co-complexed if the two proteins are annotated as co-complexed in
[40], and writing ac-western, ac-ms, two-hybrid, and other if the pair
is listed as interacting in BioGRID using Affinity Capture-Western, Affin-
ity Capture-MS, Two-Hybrid, or any other type of experiment.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-3-112-S1.PDF]

Additional file 2

Predicted false negative interactions in the AC-MS network. The table
lists disconnected node pairs with highest PageRank Affinity in the AC-
MS network, along with evidence for the existence of each interaction.
Each row specifies a pair of proteins and the rank of their PageRank
Affinity score (closeness rank). For each pair we list evidence of the exist-
ence of this interaction in the evidence of interaction column by writing
co-complexed if the two proteins are annotated as co-complexed in [40],
and writing ac-western, ac-ms, two-hybrid, and other if the pair is listed
as interacting in BioGRID using Affinity Capture-Western, Affinity Cap-
ture-MS, Two-Hybrid, or any other type of experiment.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-112-S2.PDF]

http://www.biomedcentral.com/1752-0509/3/112

Additional file 3

Predicted false negative interactions in the Two-Hybrid network. The
table lists disconnected node pairs with highest PageRank Affinity in the
Two-Hybrid network, along with evidence for the existence of each inter-
action. Each row specifies a pair of proteins and the rank of their PageR-
ank Affinity score (closeness rank). For each pair we list evidence of the
existence of this interaction in the evidence of interaction column by writ-
ing co-complexed if the two proteins are annotated as co-complexed in
[40], and writing ac-western, ac-ms, two-hybrid, and other if the pair
is listed as interacting in BioGRID using Affinity Capture-Western, Affin-
ity Capture-MS, Two-Hybrid, or any other type of experiment.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-112-S3.PDF]

Additional file 4

Evaluating different ways of defining PageRank Affinity by using a
weighted arithmetic mean to combine the two PageRank contribu-
tions. We evaluate different ways of combining c; = pr(a b) and c,=
pr(b a) using a weighted arithmetic mean: B-max(c;, ¢,) + (1 -

B) -min(c;, c,). Each value of B gives a distinct closeness measure (repre-
sented by bars of different color), which is evaluated in terms of predicting
co-complex membership (panels a-c), and correlation with functional dis-
tance (panels d-f) in the three networks that we study. Panels (a)-(c) dis-
play the number of co-complex pairs (as a fraction of the total number of
co-complex pairs in the network) among pairs in the top percentile of each
closeness ranking in the AC-Western (a), AC-MS (b), and Two-Hybrid
(c) networks. Higher values indicate measures that are more biologically
meaningful. Panels (d)-(f) display the average functional distance of
pairs in the top percentile of each closeness ranking in the AC-Western
(d), AC-MS (e), and Two-Hybrid (f) networks. Lower values indicate
measures that are more biologically meaningful.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-3-112-S4.PDF]

Additional file 5

Evaluating different ways of defining PageRank Affinity by using a
weighted geometric mean to combine the two PageRank contribu-
tions. We evaluate different ways of combining c; = pr(a b) and c,=
pr(b a) using a weighted geometric mean: max(c,, ¢,)P- min(c,, c,)!-b.
Each value of B gives a distinct closeness measure (represented by bars of
different color), which is evaluated in terms of predicting co-complex
membership (panels a-c), and correlation with functional distance (pan-
els d-f) in the three networks that we study. Panels (a)-(c) display the
number of co-complex pairs (as a fraction of the total number of co-com-
plex pairs in the network) among pairs in the top percentile of each close-
ness ranking in the AC-Western (a), AC-MS (b), and Two-Hybrid (c)
networks. Higher values indicates measures that are more biologically
meaningful. Panels (d)-(f) display the average functional distance of
pairs in the top percentile of each closeness ranking in the AC-Western
(d), AC-MS (e), and Two-Hybrid (f) networks. Lower values indicate
measures that are more biologically meaningful.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-3-112-S5.PDF]
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