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Abstract
Background: Being sessile organisms, plants should adjust their metabolism to dynamic changes
in their environment. Such adjustments need particular coordination in branched metabolic
networks in which a given metabolite can be converted into multiple other metabolites via different
enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics
approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid
metabolic networks in plants in response to environmental stresses, using publicly available
microarray results.

Results: Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two
oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network
of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a
single group of "highly coordinated" genes within the branched aromatic amino acid metabolic
network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly
coordinated adjustable negative and positive expression responses to various stress cues, which
apparently regulate adjustable metabolic shifts between competing branches of these networks.
We also provide evidence implying that these highly coordinated genes are central to impose intra-
and inter-network interactions between the Asp-family and aromatic amino acid metabolic
networks as well as differential system interactions with other growth promoting and stress-
associated genome-wide genes.

Conclusion: Our novel Gene Coordination elucidates that branched amino acid metabolic
networks in plants are regulated by specific groups of highly coordinated genes that possess
adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also
hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed
for adaptation to the stresses.

Background
Being stationary organisms that are unable to move,
plants represent a unique biological system that is highly
adaptive to environmental stresses. The adaptation mech-
anisms of plants to stresses also involve coordinated

adjustments of a large array of metabolic networks.
Among those are metabolic networks containing amino
acids as intermediate metabolites, which can either be
incorporated into proteins, accumulate to high levels in
response to specific cues, such as proline accumulation in
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response to salt stress [1], or serve as precursors for a large
array of metabolites with multiple functions. Some of the
metabolic networks of amino acids possess several com-
peting branches, each leading to the synthesis of one or
more amino acids and their downstream metabolites.
Two of the most important branched metabolic networks
of amino acids are the Asp-family network and the aro-
matic amino acids (AAA) network (Fig. 1 panels A and B).
These two networks also possess significant nutritional
value because humans and much of their farm animals
cannot synthesize the amino acids produced by them and
therefore depend on plants as their nutritional supple-
ments [2].

The Asp-family network, which classically includes the
amino acids Lys, Thr, Met and Ile (Fig. 1 panel A), is a cen-
tral regulator of plant growth not only because its amino
acids are essential for protein synthesis. Met is a metabolic
precursor for multiple fundamental cellular processes [3-
8], while Thr, through its conversion into Ile, participates
plant pathogen interactions [9,10] and cellular energy
production [11]. Thr is also catabolized by two Thr aldo-
lase isozymes into Gly, which is closely associated with
photorespiration [12,13]. Lys biosynthesis and catabo-
lism was also shown to be associated with plant pathogen
interactions as well as with the production of the stress
associated hormone salicylic acid [14,15]. The AAA meta-
bolic network leads to the synthesis of Trp, Phe and Tyr,
which are further used as precursors for various hor-
mones, cell wall components and a large array of multi-
functional secondary metabolites [8,16-18].

Using a bioinformatics approach based on publicly avail-
able microarray results, we have recently demonstrated
evidence supporting the presence of principal transcrip-
tional programs of amino acid metabolism in response to
abiotic stresses [19]. Strikingly, these responses were most
profoundly associated with changes in expression of genes
encoding the catabolic enzymes of the amino acids with
only minor changes in mRNA levels of genes encoding the
biosynthesis enzymes [19]. This phenomenon in which
genes encoding only a fraction of the enzymes within a
given metabolic pathway are altered in response to a given
cue is in sharp contrast to microorganisms in which the
expression of all genes of a given metabolic pathway is
generally altered in response to a given cue [20]. This
major conceptual difference is likely because highly divid-
ing microorganisms face extensive dilution of their
enzyme concentrations through the frequent cell divi-
sions, while cells of higher organisms relatively infre-
quently divide in the short time scales of environmental
changes. In addition, higher organisms often have more
than one gene encoding a given enzyme, and therefore
transcriptionally regulate only a fraction of the genes
encoding isozymes in different tissues or in response to
different cues. This fact adds another damnation of com-

plexity when analyzing transcription results of higher
organisms. Notably, Arabidopsis plants specifically adjust
the expression of genes encoding different catabolic
enzymes of amino acids in response to different stresses

Schematic representation of the Asp-family and aromatic amino acids metabolic networks analyzed in the present reportFigure 1
Schematic representation of the Asp-family and aro-
matic amino acids metabolic networks analyzed in 
the present report. The positions of the different amino 
acids in the different networks are marked in boxes. Biosyn-
thetic/allosteric, biosynthetic/non-allosteric and catabolic 
enzymatic steps are indicated respectively by blue, black and 
red arrows, while enzymatic steps whose genes have not yet 
been identified are indicated by grey arrows. Numbers near 
each arrow refer to enzyme names as provided in Table 1. 
(A) The Asp-family network; (B) The Aromatic amino acids 
network. Dotted lines ending by a bar sign represent feed-
back inhibition loops.
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Table 1: A list and additional relevant information of all genes belonging to the Asp-family and the aromatic amino acids (AAA) 
networks analyzed in this report.

Pathway Enzyme Stepa Symbole ATGb Probesetc

Lys met. monofunctional aspartate kinase 1 AKd AT3G02020 258977_s_at
AKd AT5G14060 258977_s_at
AK1 AT5G13280 250291_at

aspartate-semialdehyde dehydrogenase 2 ASD AT1G14810 262841_at
dihydrodipicolinate synthase 3 DHDPS1 AT3G60880 251392_at

DHDPS2 AT2G45440 245145_at
dihydrodipicolinate reductase 4 DHDPR AT2G44040 267237_s_at

DHDPR AT3G59890 267237_s_at
DHDPR AT5G52100 248402_at

L, L-diaminopimelate aminotransferase 5 AGD2 AT4G33680 253308_at
diaminopimelate epimerase 6 DAPE AT3G53580 251948_at
diaminopimelate decarboxylase 7 DAPDd AT3G14390 258365_s_at

DAPDd AT5G11880 258365_s_at
lysine-ketoglutarate reductase/saccharopine dehydrogenase 8 LKR/SDHd AT4G33150 253373_at

Met met. aspartate kinase/homoserine dehydrogenase 9 AK/HSDH1d AT1G31230 263696_at
AK/HSDH2 AT4G19710 254535_at

aspartate-semialdehyde dehydrogenase 2 ASD AT1G14810 262841_at
homoserine kinase 10 HSK AT2G17265 264855_at
cystathionine γ synthase 11 CGS1d AT3G01120 259279_at

CGS AT1G33320 256531_at
cystathionine β lyase 12 CBL AT3G57050 251666_at
methionine synthase 13 MS1 AT5G17920 259343_s_at

MS2 AT3G03780 259343_s_at
MS3 AT5G20980 246185_at

homocysteine S-methyltransferase 14 HMT1 AT3G25900 258075_at
HMT2 AT3G63250 251175_at
HMT3 AT3G22740 258322_at

S-adenosylmethionine synthetase 15 SAMS1 AT1G02500 260913_at
SAMS2 AT4G01850 255552_at
SAMS3d AT3G17390 258415_at
SAMS4 AT2G36880 263838_at

methionine γ lyase 16 MGLd AT1G64660 261957_at
methylthioalkylmalate synthase 17 MAM1d AT5G23010 249866_at

MAMLd AT5G23020 249867_at
methionine-oxo-acid transaminase BCAT4d AT3G19710 257021_at

Thr met. aspartate kinase/homoserine dehydrogenase 9 AK/HSDH1 AT1G31230 263696_at
AK/HSDH2 AT4G19710 254535_at

aspartate-semialdehyde dehydrogenase 2 ASD AT1G14810 262841_at
homoserine kinase 10 HSK AT2G17265 264855_at
threonine synthase 18 TS AT1G72810 262380_at

TS AT4G29840 253700_at
threonine aldolase 19 THA1d AT1G08630 264777_at

THA2 AT3G04520 258599_at
Ile met. threonine deaminase 20 TD AT3G10050 258884_at

acetolactate synthase 21 AHASS1 AT2G31810 263460_at
AHASS2 AT5G16290 250111_at
AHAS AT3G48560 252325_at

ketol-acid reductoisomerase 22 KARI AT3G58610 251536_at
branched-chain aminoacid aminotransferase 23 BCAT1 AT1G10060 264525_at

BCAT2d AT1G10070 264524_at
BCAT3d AT3G49680 252274_at
BCAT5 AT5G65780 247158_at
BCAT6 AT1G50110 261636_at
BCAT7 AT1G50090 261690_at

Trp met. anthranilate synthase β 24 ASBd AT1G24807 247864_s_at
ASBd AT1G24909 247864_s_at
ASBd AT1G25083 247864_s_at
ASBd AT1G25155 247864_s_at
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[19]. This implies that bioinformatics approach aiming to
elucidate interactions of different branched networks of
amino acid metabolism in plants under multiple growth
conditions is a challenging issue because different
branches are likely subjected to dynamically changing pat-
terns of coordinated regulation. Under some conditions,
such as optimal growth conditions, all branches are
expected to operate efficiently to allow the synthesis of
amino acid for incorporation into proteins. Under other
biological perturbations, such as exposure to specific
stress conditions, fluxes are expected to increase in some
branches on the expense of others to allow optimal meta-
bolic adjustments [19]. Therefore genes encoding
enzymes of specific branches within a given amino acid
metabolic network are expected to be both positively cor-
related under some biological perturbations, while nega-
tively correlated or not correlated at all under other
biological perturbations. As a consequence, genes encod-

ing enzymes of specific branches within a given metabolic
network are also expected to be both positively correlated,
negatively correlated or non-correlated with other
genome-wide genes under different biological perturba-
tions. Therefore, commonly used correlation methodolo-
gies are not suited to elucidate transcriptional network
interactions of amino acid metabolic pathways because
they are unable to resolve positive from negative correla-
tions within a wide range of biological perturbations. To
overcome this limitation, we have developed in the
present report a novel principal approach, termed "gene
coordination" allowing the elucidation of groups of genes
whose expression is coordinated by both positive and
negative correlations in response to different sets of bio-
logical perturbations. We also used this novel approach to
elucidate differential genome-wide interactions of two
central amino acid metabolic networks, namely the Asp-
family and AAA metabolic networks,. Our results expose

ASBd AT1G25220 247864_s_at
ASBd AT5G57890 247864_s_at

anthranilate synthase a 25 ASA1d AT5G05730 250738_at
ASA2 AT2G29690 266671_at
ASA AT3G55870 251716_at

anthranilate phosphoribosyltransferase 26 TRP AT1G70570 260311_at
TRP1 AT5G17990 250014_at

phosphoribosylanthranilate isomerase 27 PAI1 AT1G07780 259770_s_at
PAI2 AT5G05590 259770_s_at
PAI3 AT1G29410 259770_s_at

indole-3-glycerol phosphate synthase 28 IGPSd AT2G04400 263807_at
IGPS AT5G48220 248688_at

tryptophan synthase a 29 TSA2d AT3G54640 251847_at
TSA AT4G02610 255487_at

tryptophan synthase β 30 TSB1d AT5G54810 253898_s_at
TSB2d AT4G27070 253898_s_at
TSB AT5G38530 249515_at

cytochrome P450 31 CYP79B3 AT2G22330 264052_at
CYP79B2d AT4G39950 252827_at

Phe & Tyr met. chorismate mutase 32 CM1 AT3G29200 257746_at
CM2 AT5G10870 250407_at
CM3 AT1G69370 260360_at

arogenate dehydrogenase 33 AAT1 AT5G34930 255859_at
AAT2 AT1G15710 259486_at

tyrosine aminotransferase 34 TAT3d AT2G24850 263539_at
TAT AT5G53970 248207_at

prephenate dehydratase 35 PD1 AT2G27820 266257_at
PD AT1G08250 261758_at
PD AT1G11790 262825_at
PD AT3G07630 259254_at
PDd AT3G44720 252652_at
PD AT5G22630 249910_at

phenylalanine ammonia-lyase 36 PAL1d AT2G37040 263845_at
PAL2d AT3G53260 251984_at
PAL3 AT5G04230 245690_at

aStep numbers represent enzymatic steps described in Fig. 1 and Additional file 1.
bATG represents the common locus number using TAIR nomenclature.
cProbeset represents specific identifiers according to Affymetrix AtH1 microarray.
dHighly Coordinated genes (HCGs)

Table 1: A list and additional relevant information of all genes belonging to the Asp-family and the aromatic amino acids (AAA) 
networks analyzed in this report. (Continued)
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novel principal transcriptional regulatory aspects of each
of these networks and also show that they differentially
interact with genome-wide genes in plant growth and
response to the environment.

Results
Selection of genes associated with the Asp-family and AAA 
metabolic networks and sources of publicly available 
microarray experiments
The aim of this research was to discover novel network
interactions associated with two central metabolic net-
works of amino acids, namely the Asp-family network and
the AAA network (Fig. 1 panels A and B). The Asp-family
network includes the amino acids Lys, Thr and Met, Ile
and Gly whose synthesis initiates from Asp, and in which
one pathway leads to Lys metabolism (Fig. 1, enzymatic
steps 1–8), a second pathway leads to Thr synthesis and its
further conversion into Ile and Gly (Fig. 1, enzymatic
steps, 2, 9, 10, 18–23), and the third pathway leads to Met
metabolism (Fig. 1, enzymatic steps 2, 9–17). The AAA
network, whose synthesis initiates from chorismate,
includes three pathways; one leading to Trp metabolism
(Fig. 1, enzymatic steps 24–31), while the second and
third pathways lead to Phe and Tyr metabolism. Since the
Phe and Tyr pathways contain altogether only few enzy-
matic steps (Fig. 1, enzymes 32–36), from which one is
common to both pathways, we therefore treated them as
a single pathway. In both the Asp-family and AAA net-
works, we focused on genes encoding biosynthetic
enzymes as well as enzymes catalyzing the first catabolic
steps of the amino acids. Our definition of catabolism
included the breakdown of the amino acid into carbon,
nitrogen and energy-associated molecules as well as the
utilization of the amino acids for the synthesis of other
special metabolites, such as secondary metabolites. The
selection of the entire set of genes associated with these
two networks was as previously described [19]. The func-
tional annotation of the genes in this list was based on a
combinatorial analysis of information form TAIR http://
www.arabidopsis.org/, ARACYC http://www.arabidop
sis.org/biocyc/index.jsp and literature review. The list of
enzymes and the genes encoding them, which were used
in this study, are detailed in Table 1. Some of the genes
studied in this report are indistinguishable in the ATH1
Affymetrix chip and are monitored by a common probeset
as indicated in Table 1. For simplicity, we will refer in the
following to these probesets as genes rather than
probesets.

Our bioinformatics approach was based on analyzing a
selected set of experiments in the publicly available Arabi-
dopsis microarray data available through the NASC data-
base http://affymetrix.arabidopsis.info/. Yet, since we
were interested to elucidate programs of transcriptional
regulation, we focused only on relatively short time

responses (mostly up to 24 h) of genes, belonging to the
Asp-family and AAA metabolic networks, to different bio-
logical cues. In addition, in experiments where a mutant
genotype was analyzed in comparison to a control geno-
type, we considered these lines as two distinct genotypes.
These guidelines enabled us to extract 211 different short-
term biological perturbations, which were enforced on
many different genotypes. It is important to emphasize
that in cases in which multiple time points were analyzed
in an individual experiment, each time point was used as
an independent biological perturbation. This was done
due to the fact that the response of different genes in dif-
ferent time scales (temporal gene coordination) may play
a significant regulatory role in the adjustment of meta-
bolic channelling as was suggested in our previous report
[19].

Since different branches in branched metabolic networks
lead to the synthesis of different metabolites with distinct
functions, it is expected that the different branches should
possess significant regulatory gene expression flexibilities
to either be positively or negatively correlated in response
to different cues (see Introduction section). Hence, Pear-
son correlation analysis is not suitable to discover associ-
ations between such genes over large sets of different
experiments. To overcome this, we developed a novel bio-
informatics approach, termed "Gene Coordination". The
principal difference between gene correlation (such as
Pearson correlation) and gene coordination is that gene
coordination allows the identification of both statistically
significant negative and positive coordinations of expres-
sion between pairs of genes over a set of multiple biolog-
ical perturbations. In short, this novel measure assigns
two distinct values between each pair of genes: (i) a posi-
tive coordination, which is the number of biological per-
turbations in which both genes of a given gene pair are
either up-regulated or down-regulated together in a statis-
tical significant manner, compared to non-treated con-
trols; and (ii) a negative coordination which is the
number of biological perturbations in which one gene of
the same gene pair is up-regulated while the other is
down-regulated in a statistical significant manner, com-
pared to non-treated controls. In contrast to Pearson cor-
relation, which is usually calculated using the absolute
value of each hybridization experiment and when calcu-
lated based on expression differences ignores the statisti-
cal significance of the differences in each biological
perturbation, the gene coordination measure is always
based on expression differences and the statistical signifi-
cance of the difference in each biological perturbation is
always taken into account. It is important to mention that
since the calculation of gene coordination is strongly
based on the selection of the different biological perturba-
tions, it is essential to identify the relevant biological per-
turbations for each biological question. Detailed
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explanation of this novel measure and the statistical
model that was used to analyze it are described in the
Methods section.

The power of our novel gene coordination measure is
exemplified in Fig. 2. Panel A illustrates the relationships
between the correlation and coordination of expression of
the LKR/SDH gene of lysine catabolism with each one of
the other Arabidopsis genes (monitored by the ATH1
Affymetrix microarray), based on our entire dataset of 211
different biological perturbations. This relationship is
depicted by two dotes, one with a blue color and the sec-
ond with a red color. The two dotes possess identical cor-
relation values over the entire dataset of 211 biological
perturbations (Y axis) because they belong to the same
pair of genes. Yet, they possess two different coordination
values, one showing negative coordination, which is con-
tributed by a selected set of biological perturbations (a red
spot with a negative value on the X axis), while the other
showing positive coordination that is contributed by a dif-
ferent set of biological perturbations (a blue spot with a
positive value on the X axis) (see Methods section for
details). Panels B-D of Fig. 2 illustrate the expression rela-
tionship between the LKR/SDH gene and three represent-
ative genes over the entire dataset of 211 biological
perturbations. Each dot represents data associated with a
specific biological perturbation that was obtained from
analysis of at least four different microarray chips and
thus allows performing a significance test. R value of the
Pearson correlation coefficient is also indicated within
each panel. Panel B illustrates a case in which there is no
correlation between the pair of genes across the entire
depicted set of biological perturbations, but there is a sig-
nificant number of biological perturbations that contrib-
ute both to negative and positive coordinations between
these two genes (red and blue circled dots, respectively).
Panel C illustrates a case in which there is a positive corre-
lation of expression between a pair of genes across the
entire depicted set of biological perturbations, but a sig-
nificant number of biological perturbations contribute to
a negative coordination between these two genes (red cir-
cled dots). Panel D illustrates an opposite case in which
there is a negative correlation of expression between a pair
of genes across the entire depicted set of biological pertur-
bations, but a significant number of biological perturba-
tions contribute to a positive coordination between these
two genes (blue circled dots). Hence, genes whose expres-
sion shows statistically significant negative or positive
coordination under depicted set of biological perturba-
tions (derived from the 211 short-term biological pertur-
bations drawn from the NASC database) were defined as
"highly coordinated genes" (HCGs).

Identification of highly coordinated genes (HCGs) within 
the Asp-family and AAA networks
To identify the HCGs within each network, we used a
coordination matrix (using heat map representation) in

which the upper right triangle shows positive coordina-
tion and the lower left triangle shows negative coordina-
tion (Fig. 3). It is important to note that in such a
coordination matrix, the red or the blue squares existing
for each genes pair are derived from responses to different

Illustration of the gene coordination principal, using the LKR/SDH gene as an exampleFigure 2
Illustration of the gene coordination principal, using 
the LKR/SDH gene as an example. (A) Relationship 
between Pearson correlation and gene coordination values, 
exemplified for the LKR/SDH gene probed against the entire 
genome-wide set of Arabidopsis genes. Each blue dot repre-
sents the relationship between Pearson correlation (Y axis) 
and positive coordination (X axis), while each red dot repre-
sents the relationship between Pearson correlation (Y axis) 
and negative coordination (X axis), calculated across the 
entire set of 211 biological perturbations. The two green 
rectangles indicate areas containing genes pairs having high 
positive correlation and a significant negative coordination 
across the entire of biological perturbations (upper left rec-
tangle) and vice versa (lower right rectangle). (B, C, D) Rela-
tionships between the expression differences of the LKR/
SDH gene and three other representative genes across the 
entire set of 211 biological perturbations. Each black dot 
indicates the expression difference (treatment versus con-
trol) in response to a single specific biological perturbation. 
Black dots inside red circles indicate perturbations that con-
tribute to a negative coordination, while black dots inside 
blue circles indicate perturbations that contribute to a posi-
tive coordination between each of the two compared genes. 
The Pearson correlation value is indicated on the top of each 
panel.
(page number not for citation purposes)
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biological perturbations. Panels A and C in Fig. 3 depict
respectively the coordination matrixes of the entire set of
genes within the Asp-family and AAA metabolic networks.
Notably, only a selected group of genes within each of
these two networks showed either high negative (blue
squares) and/or high positive (red squares) coordination
of expression in which higher intensity of the colors signi-
fies higher number of biological perturbations in which
negative or positive co-regulation were observed. In order
to identify the HCGs within each network, we used a
background model for the evaluation of the negative and
positive coordination in each network, assuming no coor-
dination, and considered genes to be HCGs if their
observed coordination was higher by more then six stand-
ard deviations from the coordination that was estimated

by our background model (for detail see Methods sec-
tion). Based on these criteria, we selected 13 and 12 HCGs
within the Asp-family and the AAA networks, respectively
(Fig. 3, respective panels B and D). It is clear from these
two panels that in each network, the HCGs are divided
into two distinct groups of genes in which there is a posi-
tive coordination between the genes within each HCGs
group and a negative coordination between the genes of
the different HCGs groups. In the Asp-family network,
one HCGs group includes exclusively catabolic genes,
namely THA1 (Thr catabolism into Gly), BCAT2 (Ile
metabolism), MGL (Met catabolism into methanethiol as
well as to 2-oxobutyrate on route to Ile production) and
LKR/SDH (Lys catabolism into Glu and aspartic semialde-
hyde) (see Table 1 and Additional file 1), and from here
on will be referred to as the "Catabolic group". The second
group in the Asp-family network includes almost entirely
genes encoding enzymes of Met biosynthesis and catabo-
lism towards SAM and various glucosinolates, and there-
fore from here on will be referred to as the "Met
metabolism group". In specific, this group includes (i)
genes encoding biosynthetic enzymes, namely, the
bifunctional AK/HSDH1 isozyme plus one or more
monofunctional AK isozymes catalyzing the first step of
the Asp-family network (AT3G02020 and AT5G14060
genes whose highly homologous DNA sequences are
undistinguishable using the Affymetrix ATH1 chip), CGS1
(Met biosynthesis) and DAPD (Lys biosynthesis); and (ii)
genes encoding catabolic enzymes, namely, SAMS3 (Met
catabolism into SAM), BCAT3 (Ile metabolism) as well as
BCAT4, MAM1 and MAML (Met catabolism towards bio-
synthesis of glucosinolates) (see additional file 1).

In the AAA network, one HCGs group includes 10 genes
containing both biosynthetic and catabolic genes, while
the second HCGs group includes only two genes (PAL3
and IGPS). Since the expression patterns of the AAA genes
showed that the first group also possesses isozymic genes
of PAL and IGPS, which are expressed under conditions
that PAL3 and IGPS are repressed (data not shown), we
decided to exclude this group from further analyses. The
first group, which will be referred to from here on as the
sole "AAA group" of the AAA network, includes the fol-
lowing genes: The Trp biosynthesis genes ASA1, ASB,
TSA2, TSB1/2 and one of the IGPS genes; the Trp catabolic
gene CYP79B2, the Phe biosynthesis gene PD, the Phe cat-
abolic genes PAL1 and PAL2 and the Tyr catabolic gene
TAT3 (see Table 1 and Additional file 1).

Effects of specific biological perturbations on the patterns 
of expression of the HCGs of the Asp-family network
To identify the patterns of response of the HCGs of the
Asp-family network to specific biological perturbations,
we selected from the 211 short-term biological perturba-
tions of the NASC database all biological perturbations in

Gene coordination matrixes of the Asp-family and aromatic amino acid metabolic networksFigure 3
Gene coordination matrixes of the Asp-family and 
aromatic amino acid metabolic networks. Coordina-
tion matrixes calculated for the entire set of genes belonging 
to the Asp-family network (panel A) and the Aromatic amino 
acids (AAA) network (panel C) and only for the highly coor-
dinated genes (HCGs) of each network (panels B and D, 
respectively). In each coordination matrix, the upper right 
triangle represents positive coordination while the lower left 
triangle represent negative coordination, obtained under dif-
ferent biological perturbations. The numbers in panels A & C 
represent the entire set of genes in each network. The color 
scale for all matrixes is indicated on the right.
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which expression of at least one of the HCGs of this net-
work was increased or decreased by more then four folds.
This stringent filter was used to make sure that we are ana-
lyzing only relevant perturbations. In experiments con-
taining time course exposure to a given cue, each time
point was considered separately. Fig. 4 lists the specific
biological perturbations obeying the above rule (right
part), as well as their effect on the expression of each of
the HCGs of the Asp-family network (central matrix) and
the Euclidian distance between the specific biological per-
turbations (dendogram on the left). In this dendogram,
the larger the separation between two biological perturba-
tions, the larger is the extent of their differential effects on
the HCGs of the Asp-family network. In addition, an arti-
ficial biological perturbation of growing in the dark in the
presence of sucrose also had a significant effect on the
Asp-family network (Fig. 4, the top three biological per-
turbations associated with MYB761). The magnitudes of
the expression response of the different HCGs to the dif-
ferent abiotic and biotic stresses varied between the differ-
ent stresses and the time course of each stress, being
generally higher at later periods of exposure to the stresses
(Fig. 4). However, the HCGs could be clearly classified
into two principal groups, matching the earlier "Met
metabolism" and "Catabolic" HCGs groups with the
opposite responses, the first (Met metabolism group)
being repressed (Fig. 4; squares with varying blue color),
while the second (catabolic group) being induced (Fig. 4:
squares with yellow and red colors) by the stresses.

Notably, the artificial biological perturbation of dark plus
added sucrose on plants with suppression and over
expression of MYB761 (Fig. 4, top three biological pertur-
bations) had a significantly different effect on the Asp-
family genes repressing the expression of the genes
belonging to the catabolic group (THA1, BCAT2, MGL
and LKR/SDH), while inducing the expression of genes
belonging to the Met metabolism group (MAM1, MAML,
BCAT4 as well as to a lower extent also CGS, AK and
SAMS3). This artificial biological perturbation seems to
increase the biosynthetic fluxes and reduce much of the
catabolic fluxes of the Asp-family network and may sig-
nify an override of the sucrose signal over the dark signal
to promote growth and protein synthesis.

Effects of specific biological perturbations on the patterns 
of expression of the HCGs of the AAA network
Next, we identified the patterns of response of the HCGs
of the AAA network to the 211 short-term biological per-
turbations of the NASC database in an identical manner
to that used for the Asp-family network (see above). Fig. 5
lists the specific biological perturbations (right part), as
well as their effect on the expression of each of the HCGs
of the AAA network (central matrix) and the Euclidian dis-
tance between the specific biological perturbations (den-

Identification of highly coordinated genes within the Asp-fam-ily and aromatic amino acid metabolic networksFigure 4
Identification of highly coordinated genes within the 
Asp-family and aromatic amino acid metabolic net-
works. Clustering of the entire set of biological perturba-
tions having a significant effect on at least one of the highly 
coordinated genes (HCGs) of either the Asp-family or the 
aromatic amino acids networks based on their effects on the 
expression of the Asp-family network HCGs. The dendro-
gram on the left shows the Euclidian distance tree, while the 
heat map in the center shows the response of the different 
HCGs to the different biological perturbations that are indi-
cated on the right. The color scale bar is indicated on the 
bottom. Abbreviation of specific biological perturbations: 
ASD, adding sucrose in the dark; (s), shoot; (r), root; CBC, 
Conidiospores of Botrytis cinerea; EO, Erysiphe orontii; PID, 
Phytophthora infestans drops; PSA, Pseudomonas syringae pv 
tomato avrRpm1; PSD, Pseudomonas syringae pv tomato 
DC3000; PSDH, Pseudomonas syringae pv tomato DC3000 
hrcC-; PSP, Pseudomonas syringae pv phaseolicola.
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dogram on the left). Also in the case of the AAA network,
most of the biological perturbations influencing the
expression of AAA genes included biotic and abiotic
stresses (Fig. 5). The magnitude of the expression
responses of the different HCGs to the different abiotic
and biotic stresses varied between the different stresses
and the time course of each stress (Fig. 5). Interestingly, as
opposed to the Asp-family network (Fig. 4), the artificial
biological perturbation of adding sucrose in the dark was
inseparable from other stresses in its effect on the AAA
network (Fig. 5), implying that the hypothetical override
of sucrose over dark is network dependent.

Interactive coordination of expression of the HCGs from 
the Asp-family and AAA metabolic networks
Next, we examined the cross-network coordination
between the HCGs of the Asp-family and AAA networks,
based on the same 211 short-term biological perturba-
tions. The respective negative and positive coordination
matrixes between the HCGs of the Asp-family and AAA
networks are shown in Fig. 6. Notably, most of the HCGs
of the two networks exhibited both a considerable cross-
network negative coordination (panel A) as well as a con-
siderable cross-network positive coordination (panel B)
between them under different biological perturbations.
This implies that some cues trigger a coordinated opposite
transcriptional regulation of the two networks (or specific
branches within these networks), while other cues trigger
a coordinated similar transcriptional stimulation or
repression of the two networks (or specific branches
within these networks). It is important to notice that this
behavior, of both negative and positive coordination pat-
terns, observed between the HCGs of both networks, is
conceptually different from the behavior that was
observed within the HCGs of each network where all pairs
of genes were either positively or negatively coordinated
and therefore were respectfully assigned to the same or to
different groups.

Interactive influence of different biological perturbations 
on the Asp-family and AAA metabolic networks
Taking into account the central importance of the Asp-
family and AAA metabolic networks in plant growth, it
was also interesting to examine the extent of interactive
effects of different cues (biological perturbations) on the
operation of the Asp-family and AAA networks. To
address this, we plotted the calculated Euclidian distance
between all possible pairs of cues, which significantly alter
the expression of at list one of the HCGs in either net-
works (the same set of biological perturbations that was
used for the analyses presented in Figs. 4 and 5), in respect
to the magnitude of their differential effects on the entire
HCGs of each of the networks (Fig. 7). The pairs of cues
(black dots) ranged from pairs having highly similar mag-
nitudes of differential effects (Fig. 7, black dots within a

Clustering of biological perturbations based on their effects of the highly coordinated genes of the Asp-family and aro-matic amino acid metabolic networksFigure 5
Clustering of biological perturbations based on their 
effects of the highly coordinated genes of the Asp-
family and aromatic amino acid metabolic networks. 
Clustering of the entire set of biological perturbations having 
a significant effect on at least one of the highly coordinated 
genes (HCGs) of either the aromatic amino acids or the Asp-
family networks based on their effects on the expression of 
the aromatic amino acids network HCGs. The dendrogram 
on the left shows the Euclidian distance tree, while the heat 
map in the center shows the response of the different HCGs 
to the different biological perturbations that are indicated on 
the right. The color scale bar is indicated on the bottom. 
Abbreviations: ASD, adding sucrose in the dark; (s), shoot; 
(r), root; PSD, CBC, Conidiospores of Botrytis cinerea; EO, 
Erysiphe orontii; PID, Phytophthora infestans drops; PSA, Pseu-
domonas syringae pv tomato avrRpm1; PSD, Pseudomonas 
syringae pv tomato DC3000; PSDH, Pseudomonas syringae pv 
tomato DC3000 hrcC-; PSP, Pseudomonas syringae pv pha-
seolicola.
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green rectangle) to pairs having progressively increasing
differential magnitudes of effects on one of the network
while having progressively decreasing differential magni-
tudes of effects on the second network (black dots outside
the green rectangle). We were particularly interested in the
black dots within the blue and red circles (pairs of cues
having Euclidian distance of > 6 in one network and < 3
in the second network, each representing the extreme ~5%
of the perturbations pairs) because they represent pairs of

cues having a similar effect on one of the networks, while
a differential effect on the second network. These in fact
signify cues that are differentially recognized by the plant
in respect to the operation of the Asp-family and AAA met-
abolic networks (see Additional file 2). The entire set of
biological perturbations pairs which meet the above crite-
ria can be divided in to two groups: (i) biological pertur-
bations pairs in which both biological perturbations affect
one of the networks, while only one of them affects the
other network: and (ii) biological perturbations pairs in
which both biological perturbations affect both networks,
but having similar effects on one of the networks, while
differential effects on the other network.

Negative and positive coordination patterns between the highly coordinated genes of the Asp-family and aromatic amino acid metabolic networksFigure 6
Negative and positive coordination patterns between 
the highly coordinated genes of the Asp-family and 
aromatic amino acid metabolic networks. Negative 
(panel A) and positive (panel B) coordination matrixes 
between the highly coordinated genes (HCGs) of the Asp-
family network (Y axis) and the HCGs of the aromatic amino 
acids (AAA) network (X axis). Color scale bar in indicated 
on the right.

Classification of the biological perturbations based on their effects on the highly coordinated genes of the Asp-family and aromatic amino acid metabolic networksFigure 7
Classification of the biological perturbations based 
on their effects on the highly coordinated genes of 
the Asp-family and aromatic amino acid metabolic 
networks. Euclidian distance between pairs of biological 
perturbations that had a significant effect on one of the highly 
coordinated genes (HCGs) of either the Asp-family network 
or the aromatic amino acids (AAA) network. Each black dot 
represents one pair of biological perturbations in which the 
position along the X and Y axes represents the differential 
effect (measured as Euclidian distance) of the pair of biologi-
cal perturbations on the expression level of the HCGs of the 
Asp-family network and the AAA network respectively. 
Black dots inside blue and red circles indicate pairs of biolog-
ical perturbations having similar effects on the HCGs of one 
network and differential effects on the HCGs of the second 
network. Pairs of biological perturbations having the same 
magnitude of differential effects on both networks (either 
small or significant) are enclosed in the green rectangle.
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Identification of genome-wide genes whose expression is 
coordinated with the expression of the HCGs of the Asp-
family and AAA networks in response to the different cues
We also used the gene coordination principle to identify
cross-interactions between the HCGs of the Asp-family
and AAA networks and other functionally annotated
genome-wide genes in order to elucidate the association
between the different HCGs groups and specific biological
processes. To address this, we selected only genome-wide
genes that are either positively or negatively coordinated
with all of the genes within each one of the three groups
of HCGs (Met metabolism and catabolic group of the Asp-
family network and AAA group of the AAA network). This
created six groups of genome-wide genes as follows: (i)
920 and 1780 genome-wide genes whose expression is
positively and negatively coordinated, respectively, with
the Met metabolism group: (ii) 536 and 2451 genome-
wide genes whose expression is positively and negatively
coordinated, respectively, with the catabolic group; and
(iii) 498 and 2466 genome-wide genes whose expression
is positively and negatively coordinated, respectively, with
the AAA group. The entire lists of these genes are shown in
Additional file 3. These genome-wide groups of genes
were then classified, using the publicly available gene
ontology (GO) annotation http://www.arabidopsis.org
into distinct groups based on their link to biological proc-
esses, searching for significant enrichments of specific bio-
logical processes that are associated with the different
HCGs groups. The entire list of biological processes show-
ing a significant enrichment for each one of the six groups
of genome-wide genes is presented in table 2. In general,
the Met metabolism group of the Asp-family network was
positively coordinated with genes controlling growth-pro-
moting processes, such as nucleosome assembly ribos-
ome biogenesis, translation and biosynthetic processes,
while it was negatively coordinated mostly with stress-
associated processes, such as the stress-associated hor-
mones jasmonic acid, salicylic acid and ABA as well as tre-
halose metabolism. The catabolic group of the Asp-family
pathway was positively coordinated with various stress-
associated process, which only partially overlap with the
stress-associated processes that are negatively coordinated
with the Met metabolism group of HCGs of this network.
In addition, the catabolic group was negatively coordi-
nated with various growth promoting processes, which
was only partially overlap with the growth promoting
processes positively coordinated with the Met metabolism
group of the same network (Table 2). Hence, the Met
metabolism and the catabolic groups of the Asp-family
network partially negatively interact with each other in
respect to their cooperation with other genome-wide
genes associated with various physiological processes.

The AAA group of HCGs of the AAA network was essen-
tially positively coordinated with genome-wide genes

associated with various stresses as well as the production
of phenylpropanoids, including the biosynthesis of the
cell wall phenylpropanoid lignin, while it was essentially
negatively coordinated with various growth-promoting
processes, such as water transport, photosynthesis and
various biosynthetic processes. Notably, there was a rela-
tively small overlap between the biological processes
linked to the Asp-family and AAA networks (Table 2).

Discussion
Gene coordination: a new bioinformatics approach to 
discover genes whose expression pattern exhibits both 
negative and positive interactions under different 
biological conditions
Pearson correction is a common bioinformatics approach
to search for genes with harmonized expression patterns
over a wide range of biological conditions. Yet, in some
biological networks, such as networks of amino acid
metabolism, some metabolites can serve as substrates to
multiple metabolic pathways, leading to the synthesis of
different metabolites with differential functions. Due to a
potential biological need to channel a given branch point
metabolite to different pathways under given growth con-
ditions or to two or more pathways together under other
growth conditions, it is expected that expression of given
genes encoding enzymes of different pathways may be
both positively correlated under some biological pertur-
bations while negatively correlated or not correlated at all
under other biological perturbations. In the present report
we describe the development of "Gene coordination" as a
novel bioinformatics approach to address this issue. This
approach takes advantage on the ability to detect positive
and negative coordination patterns between gene pairs
under multiple biological perturbations by comparing
changes in the intensities of expression signals of treat-
ment versus control in several repeated experiments for
each biological perturbation. Genes whose expression is
either negatively or positively coordinated in a statistical
significant manner under a selected set of biological per-
turbations are defined as highly coordinated genes
(HCGs). Using the Asp-family and AAA metabolic net-
works of amino acid metabolism as model systems, we
also provide evidence indicating that HCGs are central
regulatory genes within specific biological networks, as
evident from their tight negatively or positively coordi-
nated expression with other genome-wide genes under
different biological perturbations. Moreover, our results
showing high positive coordination with no negative
coordination among HCGs of the same group and high
negative coordination with no positive coordination
between HCGs of different groups within the same net-
work imply that our Gene Coordination approach can
identify HCGs groups and networks without any prior
experimental knowledge for their existence.
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Table 2: A list and additional relevant information of all the gene ontology terms that present a significant enrichment in one of the six 
groups of genome-wide gene coordinated to one of three groups of highly coordinated genes (HCGs).

Coordination Enrichment
(Log2)

# of genes in a group # of genes in the genome Biological process (GO)

Asp-family Met met. Group
Positive (920 genes) 3.04 4 10 syncytium formation

2.88 5 14 protein targeting to mitochondrion
2.86 6 17 microtubule-based process
2.77 31 94 ribosome biogenesis and assembly
2.69 5 16 cellular protein metabolic process
2.67 4 13 nucleocytoplasmic transport
2.56 12 42 chromosome organization and biogenesis
2.47 91 340 translation
2.44 5 19 response to UV
2.42 7 27 translational elongation
2.31 13 54 nucleosome assembly
2.23 5 22 sterol biosynthetic process
1.73 9 56 fatty acid biosynthetic process
1.44 17 129 transmembrane receptor protein tyrosine kinase 

signaling pathway
-1.62 12 762 regulation of transcription, DNA-dependent

Negative (1780 genes) 2.76 7 11 heat acclimation
2.66 16 27 response to hydrogen peroxide
2.57 5 9 response to water
2.51 15 28 response to high light intensity
2.41 9 18 cold acclimation
2.26 9 20 trehalose biosynthetic process
2.24 8 18 response to desiccation
2.05 19 49 response to osmotic stress
2.03 33 86 response to heat
1.98 36 97 response to water deprivation
1.9 55 157 response to abscisic acid stimulus
1.89 8 23 fatty acid beta-oxidation
1.87 25 73 response to wounding
1.86 16 47 response to cadmium ion
1.79 11 34 abscisic acid mediated signaling
1.76 14 44 toxin catabolic process
1.68 47 156 response to salt stress
1.57 25 90 response to ethylene stimulus
1.47 36 139 response to cold
1.34 19 80 response to stress
1.29 23 100 response to jasmonic acid stimulus
1.26 20 89 response to salicylic acid stimulus

Asp-family Catabolic group
Positive (536 genes) 3.21 6 23 fatty acid beta-oxidation

2.75 4 21 tryptophan biosynthetic process
2.71 5 27 response to hydrogen peroxide
2.66 13 73 response to wounding
2.27 6 44 toxin catabolic process
2.27 6 44 aging
2.15 6 48 defense response to fungus
2.13 12 97 response to water deprivation
2.1 19 157 response to abscisic acid stimulus
1.92 13 122 multicellular organismal development
1.89 9 86 response to heat
1.77 15 156 response to salt stress
1.62 13 150 response to oxidative stress
1.61 12 139 response to cold

Negative (2451 genes) 2.69 5 6 purine nucleotide biosynthetic process
2.54 6 8 pentose-phosphate shunt, non-oxidative branch
2.44 66 94 ribosome biogenesis and assembly
2.18 199 340 translation
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The Asp-family network is principally regulated by two 
negatively coordinated transcriptional programs of its HCGs
Our results exposing two negatively coordinated groups of
HCGs within the Asp-family network imply that this net-

work is regulated by two opposing transcription pro-
grams, namely, when the first program is active the second
is repressed and vice versa. The enzymatic steps controlled
by the HCGs belonging to these two programs are

2.04 9 17 microtubule-based process
2.01 14 27 translational elongation
1.95 8 16 cellular protein metabolic process
1.95 21 42 chromosome organization and biogenesis
1.89 11 23 tRNA aminoacylation for protein translation
1.83 11 24 chlorophyll biosynthetic process
1.72 23 54 nucleosome assembly
1.32 18 56 fatty acid biosynthetic process
1.11 36 129 transmembrane receptor protein tyrosine kinase 

signaling pathway
1.02 52 199 protein folding
-0.74 66 851 protein amino acid phosphorylation
-0.93 36 530 regulation of transcription
-1.08 22 359 N-terminal protein myristoylation
-1.19 43 762 regulation of transcription, DNA-dependent
-1.82 12 329 defense response
-2.37 5 200 ubiquitin-dependent protein catabolic process

Aromatic amino acids (AAA) group
Positive (498 genes) 4.96 4 5 negative regulation of programmed cell death

4.14 5 11 phenylpropanoid biosynthetic process
4.11 4 9 phenylpropanoid metabolic process
3.47 4 14 aromatic amino acid family biosynthetic process
3.35 5 19 response to fungus
3.21 5 21 tryptophan biosynthetic process
3.14 5 22 cell wall catabolic process

3 15 73 response to wounding
2.86 9 48 defense response to fungus
2.65 5 31 lignin biosynthetic process
2.37 6 45 defense response to bacterium
2.14 5 44 toxin catabolic process
1.86 14 150 response to oxidative stress
1.74 12 139 response to cold
1.3 54 851 protein amino acid phosphorylation

Negative (2466 genes) 2.94 6 6 glycine decarboxylation via glycine cleavage system
2.94 5 5 protein import into chloroplast thylakoid membrane
2.94 4 4 water transport
2.94 4 4 photosynthesis, light harvesting
2.94 4 4 cellulose and pectin-containing primary cell wall 

biogenesis
2.94 4 4 amylopectin biosynthetic process
2.75 7 8 photosystem II assembly
2.68 5 6 protein import into chloroplast stroma
2.68 5 6 isopentenyl diphosphate biosynthetic process, 

mevalonate-independent pathway
2.68 5 6 carotene biosynthetic process
2.65 9 11 starch catabolic process
2.53 6 8 thylakoid membrane organization and biogenesis
2.48 8 11 reductive pentose-phosphate cycle
2.36 16 24 chlorophyll biosynthetic process
1.88 11 23 ATP-dependent proteolysis
1.77 12 27 chloroplast organization and biogenesis
1.51 20 54 photosynthesis
1.31 18 56 fatty acid biosynthetic process
-0.62 72 851 protein amino acid phosphorylation
-0.99 50 762 regulation of transcription, DNA-dependent
-1.22 20 359 N-terminal protein myristoylation
-1.72 13 329 defense response

Table 2: A list and additional relevant information of all the gene ontology terms that present a significant enrichment in one of the six 
groups of genome-wide gene coordinated to one of three groups of highly coordinated genes (HCGs). (Continued)
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depicted by blue and red arrows in Additional file 1. The
first transcription program (termed Met metabolism pro-
gram; blue arrows) includes coordinated expression of
genes controlling: (i) the entry point into this network
(AK); (ii) the conversion of Asp into Lys (DAPD) and Met
(CGS); (iii) catabolism of Met via SAM into multiple
growth-associated metabolites [3]; and (iv) catabolism
Met into multiple glucosinolates (BCAT4, MAM1 and
MAML). The second transcription program (termed the
catabolic program; red arrows) includes coordinated
expression of genes encoding the catabolic enzymes LKR/
SDH (catabolizes Lys into Glu and acetyl CoA), THA-1
(catabolizes Thr into Gly) and MGL (Met catabolism into
methanethiol as well as to 2-oxobutyrate, an intermediate
metabolites of Ile biosynthesis). Each of these two oppos-
ing transcription programs also contains a gene encoding
a distinct isozyme controlling Ile catabolism into energy
production (see Additional file 1; BACT2 in the biosyn-
thesis program and BACT3 in the catabolic program). The
biological significance of this observation is still not clear.
Notably, even though the Asp-family network also leads
to the synthesis of Thr and Ile, genes encoding enzymes of
these two branches are not included in the group of HCGs
that participate in the transcriptional regulation of this
network (see Additional file 1). Yet, the last enzyme of Thr
biosynthesis, namely Thr synthase, is regulated by a post-
transcriptional control (see [3] and references therein),
implying that the principal transcription programs
exposed in this report operate in concert with other post-
transcriptional programs and covers all branches of the
Asp-family network (see next section).

Concerted transcriptional and post-transcriptional 
controls of the Asp-family network
Previous studies showed that the Asp-family network is
regulated by multiple post-transcriptional controls
including: (i) feedback inhibition of the different AK iso-
zymes, controlling the entry point into this network, by
Thr, Lys and SAM, feedback inhibition of homoserine
dehydrogenase by Thr, feedback inhibition of Thr deami-
nase by Ile and feedback inhibition of dihydrodipicoli-
nate synthase by Lys (Fig. 1) [3]; (ii) post-transcriptional
inhibition of the mRNA level of CGS, the central regula-
tory enzyme of Met biosynthesis, by SAM via a highly
complex post-transcriptional regulation [3]; (iii) stimula-
tion of the activity of Thr synthase, the terminal enzyme
of Thr biosynthesis by SAM [3]; and (iv) regulation of
LKR/SDH activity by protein phosphorylation [21-23].
Our present results thus add another dimension to the
above extensive regulatory programs, implying that the
Asp-family network is also regulated by two opposing
transcription programs encoding either the "catabolic" or
the "Met biosynthesis" groups of HCGs. The participation
of the DAPD gene of Lys biosynthesis in the HCGs com-
prising the biosynthesis program is also particularly inter-

esting, taking into account that a mutation in this enzyme
was recently found to play an important regulatory role in
the response of Arabidopsis plants to pseudomonas infec-
tion, apparently via modulating the regulation of the
biotic stress-associated hormone salicylic acid [14,15].

Interaction of the Asp-family network with genome-wide 
genes
Our study showed that the Met metabolism and catabolic
groups of HCGs of the Asp-family network exhibit: (i)
positive coordinated expression patterns with 920 and
536 genome-wide genes, respectively; and (ii) negative
coordinated expression patterns with other 1780 and
2451 genome wide genes, respectively (see Additional file
3). Division of these genome-wide genes into functional
groups implied the following: (i) the biosynthesis pro-
gram of the Asp-family network (Met metabolism group)
is positively associated with genome-wide growth pro-
moting process (enrichment of genes belonging to
growth-associated process including nucleosome assem-
bly, transcription, ribosome assembly and mRNA transla-
tion, various biosynthetic processes, microtubule
function and intracellular protein targeting), while nega-
tively associated with genome-wide stress-associated proc-
ess (exposure to various stresses and stress-associated
hormones); and (ii) the catabolic program (catabolic
group) of the Asp-family pathways is positively associated
with genome-wide stress-associated programs (response
to various stresses and biosynthesis of stress associated
secondary metabolites derived from Trp) and negatively
associates with genome-wide growth associated processes
(such as nucleotide biosynthesis, ribosome biosynthesis
and translation, microtubule function, and biosynthetic
processes). Thus, our results suggest that: (i) active growth
under favorable growth conditions essentially triggers the
biosynthesis of the Asp-family amino acids for their incor-
poration into proteins and also for the catabolism of Met
via SAM towards the synthesis of growth promoting hor-
mones as well for donation of methyl groups for DNA
replication and for the synthesis of a large array of growth-
associated metabolites; and (ii) exposure to stress condi-
tions stimulates rapid metabolic switches within the Asp-
family pathway, shifting fluxes from the Met branch, to
the Lys and Thr branches on route towards their catabo-
lism into other metabolites, such as Glu and acetyl CoA
(via the LKR/SDH enzyme of Lys catabolism), Ile-medi-
ated energy production (via BACT2) and Gly production
(via THA-1), which are apparently needed to support met-
abolic adaptation to stress conditions. It is also interesting
to note that in the Met metabolism group of the Asp-fam-
ily network, the ratio between the number of genome-
wide genes that are significantly positively coordinated to
those that were significantly negatively coordinated is
much higher than in the catabolic group of the Asp-family
network as well as in the AAA group of the AAA network
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(ratios of 0.52, 0.22 and 0.20 respectively). We hypothe-
size that this reflects the centrality of the Met metabolism
group of the Asp-family network in the physiology of
plant growth under favorable, non-stress conditions, an
hypothesis that is also in accord with extensive previous
literature [3-8]. These observations also support the
notion that gene expression networks in plants (like in
many other organisms) operate in a modular fashion
through interactions of multiple modules, which in the
present report are represented by the three HCGs groups
of the Asp-family and AAA networks. We also assume that
under the majority of growth conditions, most of the
modules are relatively inactive, an assumption that is sup-
ported by the observation that in most arrays, about half
of the genes are not express (data not shown). The out-
come of such an assumption is that most modules are
expected to be much more often negatively coordinated
rather than positively coordinated with other modules,
while only central modules, such as the Met metabolism
module, which are needed in a wide range of growth con-
ditions, will deviate in respect to their more profound
operation.

The AAA network is principally regulated by a single 
transcriptional program of its HCGs
Our results imply that the regulation of the AAA network
is principally significantly simpler than that of the Asp-
family network, including only a single dominant tran-
scription program of 10 HCGs. This transcription pro-
gram comprises genes controlling the first catabolic steps
of Phe, Tyr and Trp and also genes controlling biosyn-
thetic enzymes of Trp (see Additional file 1, enzymatic
steps marked with blue arrows). These genes are princi-
pally stimulated in response to biotic and abiotic stresses,
but the combinations of specific genes within this group
of HCGs vary between the different stress conditions.
Responses to biotic stresses and also relatively early
responses (generally up to 12 hours) to several abiotic
stresses, such as UV-B, stimulate the expression of most of
the HCGs of the AAA network, while stimulation of only
different combinations of the catabolic genes of the differ-
ent amino acids of this network is principally needed dur-
ing the late response to various abiotic stresses. As
depicted in Table 2, the functions of the genome-wide
genes exhibiting positive coordinated expression patterns
with the HCGs of the AAA network essentially include: (i)
negative regulation of programmed cell death; (ii) facilita-
tion of production of secondary metabolites derived from
the aromatic amino acids for various physiological needs,
including lignin production for cell wall biosynthesis; and
(iii) defence against various biotic and abiotic stresses.
The genome-wide genes exhibiting negative coordinated
expression patterns with the HCGs of the AAA network
generally function in various processes associated with
plant growth under favourable growth conditions.

Regulatory transcriptional interaction between the Asp-
family and AAA metabolic networks
The considerable variation in Euclidian distance between
many pairs of biological perturbations (mostly stress con-
ditions) when calculated based on their effects on the
HCGs of the Asp-family and AAA metabolic networks
(Figs. 4, 5 and Additional file 3) has two major implica-
tions. The first is that some biological perturbations affect
one, but not the second network. For example, both UV-B
stress after one hour in shoots and drought stress after one
hour in roots stimulate only mildly if at all the HCGs of
the Asp-family network (Fig. 4), while stimulating much
stronger the HCGs of the AAA network (Fig. 5). Yet, these
UV-B and drought stresses seems to differentially affect
the AAA network, the first stimulating Phe and Trp catab-
olism by up regulating PAL3, PD and CYP79B2 and down
regulating the TAT3 gene of Tyr catabolism, while the sec-
ond stimulate only Tyr catabolism by up regulating TAT3
(Fig. 5). The second implication is that some biological
perturbations affect both networks, but having different
effects on each one of them. For example, UV-B stress after
six hours in shoots and low light for 3 h hours in petioles
similarly shift the conversion of Met into glucosinolates
towards energy biosynthesis by repressing MAM1, MAML
and BCAT4 of glucosinolates biosynthesis and up regulat-
ing MGL and BCAT2 of Ile-derived energy biosynthesis.
Yet these same stresses have differential effect on the AAA
network, the first (UV-B after six hours in shoot) highly
stimulates Trp synthesis and catabolism (needed to pro-
duce sun block metabolites and Trp derived glucosi-
nolate) by up regulation of most of the relevant HCGs,
while the second (low light) suppresses the AAA network
probably as results of a lower growth rate. An opposite sit-
uation is observed in the response to wounding after 12
hours in shoots and the response to salt stress after 12
hours in roots. Both of these stresses promote Tyr catabo-
lism in the AAA network by strongly up regulating TAT3
expression, but having differential effects on the Asp-fam-
ily network with wounding affecting promoting the catab-
olism of Thr, Lys and Ile (possibly to enable a short term
reduction in Met metabolism), while salt seems to shut
down the entire network by down regulating the entire set
of biosynthetic HCGs.

Conclusion
In the present report, we have developed a novel gene
coordination approach, which enables the simultaneous
identification of positive and negative expression relation-
ships between genes over a wide range of biological per-
turbations. This approach is particularly important in
cases where both positive and negative expression rela-
tionships are expected as in genes controlling competing
branches in metabolic networks. This approach was cen-
tral to the identification of HCGs with the Asp-family and
AAA metabolic networks of Arabidopsis plants and is
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likely also to enable the identification of HCGS in other
complex biological networks of higher organisms in
which only genes encoding a small fraction of the enzy-
matic steps play a key regulatory role. Notably, our gene
coordination approach also revealed that pairs of environ-
mental cues can have a similar effect on one network,
while having a differential effect on another network. This
implies that when plants are exposed to two or more
simultaneous stresses, there may be an override of one
stress over the other in its effect on one network, but not
the other. Our present report also provides an approach to
elucidate such complex relationships.

Methods
Data Source and gene expression analysis
Genes encoding enzymes belonging to the Asp-family and
AAA metabolic networks were identified and collected
using TAIR database http://www.arabidopsis.org and Ara-
Cyc database http://www.arabidopsis.org/biocyc/
index.jsp supplemented with extensive literature confir-
mation to avoid false annotations. Gene ontology (GO)
annotations were obtained from the TAIR database http:/
/www.arabidopsis.org. Expression data was obtained
from the Nottingham Arabidopsis Stock Centre (NASC)
http://affymetrix.arabidopsis.info/AffyWatch.html, which
contains hundreds of publicly available expression pro-
files. In this study we focused on well documented exper-
iments containing at least two replicate for both treatment
and control in which the treatment could be describe as
short term response to some external cues. Overall, we
selected datasets of 11 different experiments (see Addi-
tional file 4). These experiments include 776 microarrays
representing 211 different biological perturbations. Gene
expression raw data analysis was performed as previously
described [19].

Metabolic network gene coordination calculation & 
statistical analysis
The first step in the calculation of coordination between
each pair of genes was to determine in which biological
perturbation each one of the genes has a statistically sig-
nificant response. In this study we used a standard T-test
to calculate the statistical significant of the expression
changes in each biological perturbation and used the Ben-
jamini and Hochberg correction procedure to control the
false discovery rate (FDR) [24]. The FDR procedure was
applied to the group of interest (either genes belonging to
the Asp-family or to the AAA metabolic networks) and not
to the entire set of genes that were monitored by the
microarrays. The out come of this procedure is discrete
matrix with 1, 0 and -1 values representing a significant up
regulation, no significant change and a significant down
regulation, respectively in this matrix which we will name
the response matrix each value represent the response of
one gene in one biological perturbation. Next, we counted

the number of perturbations in which each pair of genes
had a similar statistical significant response (both having
the value of 1 or -1, positive coordination) and the
number of perturbations in which each pair of genes had
an opposite, but statistically significant response (one
having a value of 1 and the other having a value of -1, neg-
ative coordination). Our reason to score significant
expression changes with values of 1 or -1 rather than
weighting them according to the magnitude of the expres-
sion differences, was due to our particular aim to elucidate
regulatory coordination maintained over diverse biologi-
cal conditions that would be masked by weighting accord-
ing to expression changes. For example, a pair of genes
that are significantly coordinated over 10 different biolog-
ical conditions with a relatively small magnitude of
expression change should be, according to our approach,
5-fold more coordinated than a pair of genes that are
coordinated over two different biological perturbations
with a relatively larger expression change. In order to eval-
uate the level of significant coordination in each meta-
bolic network, we used the following approach. First, we
simulated a response matrix in which there is no coordi-
nation between the different genes by randomly swapping
the perturbations for each gene separately and recalculat-
ing the entire coordination matrix. This process was then
repeated 25 times and the positive and negative coordina-
tion values were used to estimate the mean and standard
deviation of positive and negative coordination for each
network. We considered genes as HCGs if they exhibit
either negative or positive coordination, which was more
then six standard deviation above the background coordi-
nation. This stringent value was chosen to ensure that all
the selected genes are truly HCGs. The random distribu-
tions of positive and negative coordination along with the
boundaries values are illustrated in Additional file 5.

Calculating the distance between biological perturbations
To define the distance between any two biological pertur-
bations, according to either the reaction of the HCGs of
the Asp-family or the AAA metabolic networks, we did the
following. For each two perturbations we calculated the
Euclidian distance using the selected group of HCGs. This
analysis with performed using the Matlab function pdist.
Since in each biological perturbation the values of the dif-
ferent genes are represented as log ratio of treatment vs.
control, no "between studies" normalization was
required.

Identification of genome-wide gene coordination groups
To identify genome wide gene coordination groups for
each one of the three groups of HCGs (Met metabolism,
Catabolic and AAA groups), we defined that for each gene
in each perturbation a P value of less then 0.05 will be
considered as a statistically significant response. Next, we
calculated positive and negative coordination values
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between each HCG and the entire set of genes in the
genome. Next, we used the background model of coordi-
nation, which was calculated separately for each meta-
bolic network, to identify the statistically significant
coordination values. Last, we considered a gene to be
highly positively or negatively coordinated with a given
group of the HCGs if it had a statistically significant posi-
tive or negative coordination with all members of that
HCGs group.

Test for gene ontology annotation (GO) enrichment of 
genome-wide gene coordination groups
Since we were interested in the biological processes that
are either positively or negatively coordinated with our
HCGs groups, we only tested the enrichment of the bio-
logical processes categories in the GO database. For each
one of the six groups of genome-wide genes, we counted
the number of genes that meet each GO term, and then we
applied the Chi2 test to check if this observation is statis-
tically different from the expected number, assuming no
enrichment. We only tested terms to which at least four
genes were assigned, and we also corrected our P value
using the Benjamini and Hochberg correction procedure
to control our false discovery rate (FDR). We considered a
significant enrichment if the corrected P value was less
then 0.05.
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