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Abstract
Background: The architectural structure of cellular networks provides a framework for
innovations as well as constraints for protein evolution. This issue has previously been studied
extensively by analyzing protein interaction networks. However, it is unclear how signaling
networks influence and constrain protein evolution and conversely, how protein evolution modifies
and shapes the functional consequences of signaling networks. In this study, we constructed a
human signaling network containing more than 1,600 nodes and 5,000 links through manual
curation of signaling pathways, and analyzed the dN/dS values of human-mouse orthologues on the
network.

Results: We revealed that the protein dN/dS value decreases along the signal information flow from
the extracellular space to nucleus. In the network, neighbor proteins tend to have similar dN/dS
ratios, indicating neighbor proteins have similar evolutionary rates: co-fast or co-slow. However,
different types of relationships (activating, inhibitory and neutral) between proteins have different
effects on protein evolutionary rates, i.e., physically interacting protein pairs have the closest
evolutionary rates. Furthermore, for directed shortest paths, the more distant two proteins are,
the less chance they share similar evolutionary rates. However, such behavior was not observed
for neutral shortest paths. Fast evolving signaling proteins have two modes of evolution:
immunological proteins evolve more independently, while apoptotic proteins tend to form
network components with other signaling proteins and share more similar evolutionary rates,
possibly enhancing rapid information exchange between apoptotic and other signaling pathways.

Conclusion: Major network constraints on protein evolution in protein interaction networks
previously described have been found for signaling networks. We further uncovered how network
characteristics affect the evolutionary and co-evolutionary behavior of proteins and how protein
evolution can modify the existing functionalities of signaling networks. These new insights provide
some general principles for understanding protein evolution in the context of signaling networks.

Background
Proteins in cells tend to form a complex cellular signaling
network that responds to various signals, ranging from

environmental conditions, hormones or neurotransmit-
ters to ions, and perform a series of tasks such as cell
growth, maintenance of cell survival, proliferation, differ-
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entiation, development and apoptosis [1-4]. Cellular sig-
naling networks are ubiquitous in various prokaryotes
and eukaryotes and play pivotal roles in fundamental
processes. Most studies on signaling have so far focused
on certain particular signaling pathways or cascades,
which represent a family of genes or specific biological
processes. However, signaling pathways normally cross
talk, branch out, form loops and are linked together to
form a complex network. Therefore, it is necessary to
study biological questions in a broader network context
[5-7]. At present, one of the obstacles to performing large-
scale analysis of signaling networks is the lack of a com-
prehensive signaling network dataset, because cellular sig-
naling information is scattered in literature. So far only a
few studies have been conducted for understanding topo-
logical organization, cancer signaling and microRNA reg-
ulation on literature-mined signaling networks [2,8-10].

At the molecular level, the architectural structure of cellu-
lar networks could provide constraints and functional
innovations for protein evolution. Using protein interac-
tion networks, previous studies addressing this question
analyzed the conservation of network motifs [11,12], link
numbers, interacting partners and functional modules of
the network proteins [13-15] and regions of network
topology [16]. Although cellular signaling is one of the
most important biological processes, how signaling net-
works provide constraints on protein evolution and what
functional consequences of signaling networks are caused
by protein evolution have not been studied. To address
these questions, we used our previously literature-mined
human cellular signaling network which contains more
than 1,600 nodes and 5,000 interactions [8,10] to system-
atically analyze the dN/dS of human-mouse orthologues
on the human signaling network.

Results
To understand how the architectural structure of signaling
networks provides constraints for protein evolution, we
first constructed a human signal transduction network by
manually curating signaling pathways [8,10]. We merged
the curated data with other literature-mined human cellu-
lar signaling pathways such as a small signaling network
containing ~500 genes [2]. As a result, the signaling net-
work contains ~1,600 nodes and ~5,000 interactions [10].
In the network, nodes represent proteins/genes, while

neutral and directed links represent physical interactions
and activating/inhibitory relations between proteins,
respectively. Directed links have two types: positive links
(an upstream protein activates a downstream protein)
and negative links (an upstream protein inhibits a down-
stream protein). The network contains 2,403, 741, 1,915
and 30 links with positive, negative, neutral and unknown
type, respectively. To study the evolutionary rate of the
proteins in the network, we mapped the dN/dS values of
human and mouse orthologues onto the network pro-
teins. The value of dN/dS is the ratio of the rate of DNA sub-
stitutions affecting the amino-acid composition of the
gene product (dN) to the rate of DNA substitutions that are
silent at the amino-acid level (dS). The value of dN/dS can
be used to measure the rate of protein evolution after con-
trolling for mutation rate [17]. Therefore, in this study, we
used dN/dS as a metric to measure the rate of protein evo-
lution. The dN/dS values were calculated based on the dN
and dS values which have been deposited in the database
H-InvDB (see Methods).

Protein evolutionary rates differ along the signaling 
information flow
Normally, cellular signaling information flow propagates
from the extracellular space to the nucleus. Therefore, we
asked how protein evolutionary rates vary along the sign-
aling information flow. To answer this question, we first
sorted the network proteins into four groups: extracellular
space, membrane, intracellular space, and nucleus, based
on their cellular locations in the signaling information
flow. We then calculated the average dN/dS in each group.
We found that the average dN/dS are different for each
group along the signal information flow (Table 1). These
results suggest that proteins in different stages of the sign-
aling information flow (different cellular locations)
evolve at different rates, and further indicate that different
cellular compartments have different protein evolution-
ary rate. Proteins in extracellular space and cellular mem-
brane account for the fastest evolving proteins, while
proteins in intracellular space and nucleus account for the
slowest evolving proteins. Proteins in these two groups
show significantly different evolutionary rates (median
dN/dS: 0.124 vs. 0.088, 2.5% and 97.5% percentage quan-
tiles, [0.007, 0.668] and [0.000, 0.463], respectively, P =
3.36 × 10-7).

Table 1: Protein evolutionary rates distribution along the signaling information flow

Cellular location Extracellular Membrane Cytoplasm Nucleus

dN/dS (median) 0.220 0.108 0.086 0.094
P value* 1.36 × 10-5 0.01 0.04 0.13

*The P values were calculated by Wilcoxon test by comparing the protein evolutionary rates in each group with the evolutionary rates of the whole 
network proteins.
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Protein evolutionary rates are associated with network 
features
We performed a detailed analysis of the protein evolu-
tionary rate on the network using several network fea-
tures. Let Δij(dN/dS) represent the difference in dN/dS for a
pair of genes. We calculated Δij(dN/dS) for all the pairs of
genes (network nodes), which are connected by either a
directed or neutral link. Directed links are signaling inter-
actions that activate or inhibit while neutral links are just
physical interactions. We also did the same for an equal
number of random gene pairs in the network. We found
that Δij(dN/dS) is significantly smaller for connected pairs
of genes than that of random pairs (median value 0.072
vs. 0.092, 2.5% and 97.5% percentage quantiles, [0.002,
0.506] and [0.004, 0.536], respectively, P = 5.66 × 10-13,
Wilcoxon Test). This result indicates that interacting pro-
teins in the network tend to evolve together: co-fast or co-
slow. In signaling networks, proteins have different rela-
tionships. We asked whether different types of interac-
tions have different constraints on protein evolution in
the network. To address this question, we classified the
links into three groups according to their link types: neu-
tral link, positive (activating) link, and negative (inhibit-
ing) link groups. We calculated the average Δij(dN/dS) for
protein pairs in each group, respectively. We found that
these three types of links act differently on protein co-evo-
lution. The median values for neutral, positive and nega-
tive link groups are: 0.067, 0.072, and 0.088, respectively.
The 2.5% and 97.5% percentage quantiles are [0.003,
0.359], [0.002, 0.601] and [0.003, 0.507], respectively (P
= 0.02, Kruskal-Wallis test). Negative links account for the
highest median Δij(dN/dS), followed by the positive links
and neutral links (P = 0.02, P = 0.003, respectively). It is
also clear that the signaling link group (combining the
positive and negative link groups) has a higher median
Δij(dN/dS) value than the neutral link group (median value
0.075 vs. 0.067, 2.5% and 97.5% percentage quantiles,
[0.002, 0.601] and [0.003, 0.359], respectively, P = 0.04,
Wilcoxon test). These results hint that the types of interac-
tions between proteins in the network can have different
effects on the co-evolution of the proteins. Neutral links
representing protein-protein interactions within protein
complexes in the signaling network tend to have more
similar evolutionary rates and might be more co-evolved.
Physically interacting proteins in signaling networks often
form protein complexes that are used for isolating certain
signaling cascades from other reactions, or for signaling
protein translocations. Therefore, co-evolution of the
physically interacting proteins could enhance the coordi-
nation of these processes. Positive and negative links rep-
resent the reactions exerted by signaling enzymes, i.e.,
kinases and phosphatases. Unlike neutral links, these
appear to co-evolve less and might have different evolu-
tionary mechanisms (see more in Discussion).

To further differentiate the evolutionary behavior of
directed and neutral links, we investigated the association
of the distance between two proteins in the network with
their evolution rate. In the network, signals can be trans-
duced from one node to another through many different
cascades, one of which contains the least number of links
and is called the shortest path. We defined the network
distance to be the shortest path between two nodes. We
first sorted the shortest paths between any two nodes in
the network using Dijkstra's algorithm. The shortest paths
consisting of directed and neutral links were examined
independently. We calculated the Δij(dN/dS) between all
pairs of nodes having either a directed or neutral shortest
path. For either path type, we grouped the pairs of pro-
teins according to the length of their shortest paths (net-
work distances) and calculated the average Δij(dN/dS) in
each group. As shown in Figure 1, Δij(dN/dS) increases as
the network distance increases when the directed shortest
path was examined (Spearman's correlation R = 0.83, P =
0.005). These results indicate that for the directed shortest
paths, the more distant two proteins are, the less chance
they share similar evolutionary rates. The same could not
be said with statistical confidence for the neutral shortest
path (Spearman's correlation R = 0.61, P = 0.063). How-
ever, as shown in Figure 1, when the length of their short-
est paths is greater than 7, the average Δij(dN/dS) starts to
decrease. To understand this observation, we defined the
types of node pairs and calculated the fractions of node-
pair-types for each group. We defined node-pair-types
based on the cellular locations (i.e., extracellular space,
membrane, intracellular space, and nucleus) of the nodes
in each pair [see Additional file 1], i.e., for a node pair, if

Correlation between network distance and Δij(dN/dS)Figure 1
Correlation between network distance and Δij(dN/dS). 
Δij(dN/dS), the absolute difference of dN/dS was calculated for 
all pairs of genes, and plotted against the network distance, 
defined by the shortest directed path between them.

1.15E-01

1.20E-01

1.25E-01

1.30E-01

1.35E-01

1.40E-01

0 2 4 6 8 10 12

Network Distance

ij
(d

N
/d

S)
Page 3 of 8
(page number not for citation purposes)



BMC Systems Biology 2009, 3:21 http://www.biomedcentral.com/1752-0509/3/21
one node is located in intracellular space and the other is
located in nucleus, we defined this pair as a Cy (intracel-
lular space)-Nu (nucleus) type. As shown in Additional
file 1, the group average Δij(dN/dS) is affected by the frac-
tions of the node-pair-types. In particular, two types of the
node pairs in each group, Cy-Cy and Ex-Cy might play
important roles for the group average Δij(dN/dS) [see Addi-
tional file 1].

As we uncovered above, interacting proteins in the net-
work show similar evolutionary rates. To understand this
phenomenon in more detail quantitatively, we extracted
the network components in which the proteins have sim-
ilar dN/dS. A network component is a connected sub-net-
work. Two nodes are in a same network component if
there is a path between them. We identified network com-
ponents formed by proteins with dN/dS values in the top
10% (dN/dS > 0.316) and the bottom 10% (dN/dS < 0.016),
respectively. We found that both groups of proteins tend
to form bigger network components than a randomly
selected of proteins consisting of 10% of the network
nodes (P = 0.004 and 0.0002, respectively, randomization
tests).

To understand the functional consequences of the low
and fast evolving network proteins, we analyzed the
enrichment of biological functions of the proteins in the
highest and lowest 10% of dN/dS proteins, respectively,
using FatiGO software tool [18]. The analysis revealed
that high dN/dS proteins are significantly enriched with
apoptotic signaling (P = 8.9 × 10-7) and immunological
signaling (P = 9.6 × 10-6), while low dN/dS proteins (dN/dS
< 0.016) are significantly enriched with GTP binding (P =
1.0 × 10-7) and hydrolase activity (P = 3.3 × 10-6). Because
a higher dN/dS value represents fast evolution of a protein,
these results suggest that the proteins of apoptotic signal-
ing and immunological signaling are highly divergent.
Although both apoptotic and immunological signaling
are intensively involved in host defense responses, they
evolve in different ways. More specifically, among pro-
teins in the highest 10% dN/dS, apoptotic signaling pro-
teins preferentially form network components with other
proteins, i.e., 18 out of 28 proteins in the largest network
component (which we called it 28-cluster) are signaling
proteins. In contrast, immunological signaling proteins
(antigens) in the same top 10%dN/dS group, were isolated
and were not part of large network components. Inde-
pendently fast-evolving antigens will increase the diverse

responses of the host cells. On the other hand, interde-
pendently fast-evolving apoptotic signaling proteins (i.e.,
the 28-cluster) might enhance coordinated responses
from the host cells and the rapid information transfer
needed for survival of the organisms.

We further catalogued the orthologues of the 28-cluster
proteins across several model organisms such as
Escherichia coli, yeast (Saccharomyces cerevisiae), worm
(Caenorhabditis elegans), fly (Drosophila melanogaster) and
zebrafish (Danio rerio). A similar analysis was also
extended to whole network genes. Not surprisingly, the
28-cluster proteins have much fewer orthologues in the
model organisms than the network proteins (Table 2).
These results indicate that high dN/dS apoptotic signaling
proteins (dN/dS > 0.316) lead to multiple and more flexi-
ble and adaptive cell death signaling pathways in human.
Indeed, only one primitive dedicated apoptotic signaling
pathway is known in C. elegans [19], while several cell
death signaling pathways have evolved in human and
mouse genomes. Extensive expansion of apoptotic signal-
ing proteins in human leads to the integration of a signif-
icant portion of apoptotic proteins into the signaling
processes that are used in normal physiological condi-
tions. For example, apoptotic proteins such as caspases are
involved in many non-apototic signaling processes in
human and mouse, i.e., cell proliferation and differentia-
tion [20,21]. In mice, caspase-9 is involved in both apop-
tosis and inner ear epithelium development [22], while
caspase-8 is involved in critical signaling for cardiac and
neural development during early embryogenesis [23].
Conversely, multiple normal signaling mechanisms have
been recruited to cell death either as backups or parallel
mechanisms of apoptosis. For example, cytochrome c is a
key electron carrier of mitochondrial complex III for res-
piration. However, in mammals cytochrome c is involved
in apoptosis when mitochondria are damaged [24]. As a
result, the mammalian cell death machinery is inter-
twined with multiple cellular signaling processes that are
part of normal cellular physiological signaling processes,
providing backups and flexible signaling mechanisms to
cell death signaling. We found that ten out of the 28-clus-
ter proteins are not apoptotic proteins. Fast co-evolution
of apoptotic proteins with other proteins would enhance
the rapid information transfer between apoptotic signal-
ing pathways and other pathways. These diverse and flex-
ible apoptotic signaling makes possible a rapid response
to a variety of complex internal and external stress signals.

Table 2: Percentage of orthologues of the human signaling network proteins across species

E. coli S. cerevisiae C. elagans D. melanogaster D. rerio

28-cluster protein 0 0 0 25% 64%
Network protein 5% 11% 26% 61% 68%
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Finally, the co-evolution of network components signifi-
cantly promotes new functionalities arising from the inte-
gration of diverse signaling cascades in signaling
networks.

Sensitivity analysis
The human signaling network is incomplete and contains
errors. In order to investigate the potential effects of data
incompleteness and possible errors, we performed a sen-
sitivity analysis by randomly removing 10% of the links
and adding the same number of random links into the
network. By doing so, we have artificially introduced
approximately 10% false negatives and 10% false posi-
tives into the network. We examined the effect on the
main results described in the previous sections. For pro-
tein co-evolution, we found that Δij(dN/dS) is still signifi-
cantly less than for a random pair (median value 0.074 vs.
0.081, 2.5% and 97.5% percentage quantiles, [0.002,
0.507] and [0.004, 0.580], respectively, P = 2.5 × 10-9, Wil-
coxon Test). We found that the three types of links still
contribute differently to protein co-evolution (median:
0.069, 0.076, 0.084, 2.5% and 97.5% percentage quan-
tiles, [0.003, 0.384], [0.002, 0.586] and [0.004, 0.495],
respectively, P = 0.09, Kruskal-Wallis test). As before, neg-
ative links account for the highest Δij(dN/dS), followed by
the positive links and neutral links (P = 0.06, P = 0.01,
respectively). It is also clear that the signal link group
(combining the positive link and negative link groups)
has higher Δij(dN/dS) than the neutral link group (median
value 0.078 vs. 0.069, 2.5% and 97.5% percentage quan-
tiles, [0.002, 0.573] and [0.003, 0.384], respectively, P =
0.06, Wilcoxon test). The Δij(dN/dS) increases as the net-
work distance increases (Spearman's correlation R =
0.636, P = 0.05 for the directed path). We found that pro-
teins belonging to network components with the highest
and lowest 10% dN/dS values still tend to form bigger net-
work components than a randomly selected set of 10% of
the proteins in the network (P = 0.004 and 0.0002, respec-
tively, randomization tests). These results indicate that
most of the major conclusions in this study remain
unchanged by the addition of a moderate amount of false
positives and false negatives. Therefore, the results we
obtained are fairly robust.

Discussion
Previous studies in protein interaction network evolution
have made several major conclusions: (a) hub proteins or
proteins having more interacting links tend to be more
conserved [25]; (b) proteins in the network periphery
undergo positive selection while those in the network
center are more conserved [16]; (c) network proteins
appear to be co-evolved with their neighbors [25]; (d)
interacting proteins with high local clustering tend to be
more conserved [26].

In this study, we constructed a human signaling network
and analyzed the protein evolutionary rate on the net-
work. Consistent with the studies of protein interaction
networks, we find that proteins appear to be co-evolved
with their neighbors in the signaling network. However,
in our analysis, we further found that in signaling net-
works different types of interactions have different
strength of constraints on protein co-evolution, in which
proteins linked by physical interactions tend to be more
co-evolved. Furthermore, for directed shortest paths, the
more distant two proteins have, the less chance they share
similar evolutionary rates. However, such a correlation
was not observed with respect to the neutral shortest path.
Positive and negative links in signaling networks include
the major signaling regulatory mechanism: protein phos-
phorylation and dephosphorylation, which are exerted by
kinases and phosphatases. Both types of signaling
enzymes are multiple domain proteins which often con-
tain, in addition to their core catalytic function, multiple
independently folding domains or motifs that mediate
connectivity by interacting with other signaling elements
[27]. Therefore, signaling enzymes are known to have
high modular strategies for controlling their input and
output connectivities: the core catalytic activity of a sign-
aling protein is physically and functionally separable
from molecular domains or motifs that determine its link-
age to both inputs and outputs. These features of signaling
enzymes suggest that they have distinct evolutionary
mechanisms from other proteins, i.e., insertion and
recombination of modules are suggested to be a common
mechanism of the evolution of new proteins and connec-
tions [27,28]. Collectively, these features of signaling
enzymes might explain the evolutionary rates differences
between the signaling enzymes and their connecting part-
ners. Furthermore, negative regulators such as phos-
phatases are more promiscuous in their selectivity for
their targets/substrates. This fact might explain why phos-
phatases (forming negative links in the network) have
even weaker co-evolution rates with their connecting part-
ners. On the other hand, neutral links represent physical
protein interactions in the signaling network. Physically
interacting proteins in signaling networks often form pro-
tein complexes that are used for isolating certain signaling
cascades from other reactions, or signaling protein trans-
locations. Therefore, co-evolution of the physically inter-
acting proteins will enhance the coordination of the
processes mentioned above.

In this study we showed that extracellular proteins are
evolving faster, which is in agreement with several previ-
ous studies [16,29]. Signaling proteins in the extracellular
space are the stimuli of intra- and inter-cell signaling. Fast
evolving proteins in the extracellular space allow cells to
explore various responses to new stimuli and might estab-
lish novel communications between cells. This would
Page 5 of 8
(page number not for citation purposes)



BMC Systems Biology 2009, 3:21 http://www.biomedcentral.com/1752-0509/3/21
promote the cell's capability to respond and adapt to envi-
ronmental changes and explore new environmental
niches. Recently, Kim et al. showed that proteins in the
peripheral regions (i.e., extracellular and membrane pro-
teins) of protein interaction networks undergo positive
selection, while proteins in the center of the protein inter-
action networks are conserved [16]. Protein interaction
networks collect the global protein interactions in the cell
while signaling networks represent a part of cell activities
(i.e., cell signaling) [3]. The extracellular components of
the signaling network are similar to the peripheral regions
of protein interaction and gene regulatory networks,
which count for many adaptive properties of the organism
[16,30]. Consistently, both Kim et al. [16] and our studies
show that proteins in this region are fast evolving. In this
study, we further showed that evolutionary rates of pro-
teins decrease along the signaling information flow from
extracellular space (input layer), intracellular space to
nucleus (output layer). The downstream portion of the
signaling network evolves more conservatively. This is
understandable given that the downstream segment of the
signaling network ultimately governs cellular behavior
and activities. It is therefore not surprising to find that
tumor driver mutating genes, even highly mutated ones,
are enriched in the downstream portion of human signal-
ing network [8,10]. The existence of fast and slowly evolv-
ing proteins in the signaling network upstream and
downstream portions, respectively, suggests that proteins
in the upstream portion of the signaling flow are more
adaptable and could be more easily rewired to generate
different combinatory regulation mechanisms for the
downstream portion of the signaling flows. Thus, it would
be more critical to regulate the genes in the downstream
portion of the network. Indeed, we do find that the genes
in the downstream portion of the signaling network are
more significantly regulated by microRNAs than the
upper portion of the signaling information flow [9].

It is known that apoptotic and immunological signaling
proteins are fast evolving. However, using a network
approach, we found that both signaling processes have
different modes of evolution: fast evolving immunologi-
cal signaling proteins are more independent, while fast
evolving apoptotic signaling proteins tend to form net-
work components and co-evolve with other signaling pro-
teins. Apoptotic signaling proteins are extensively
expanded in mammalian genomes in comparison to
other genomes such as those of yeast and fly. The diverse
and flexible apoptotic signaling makes it possible for
mammals to rapidly respond to a variety of complex inter-
nal and external stress signals. Finally, the functional con-
sequences of co-evolution of the apoptotic proteins by
forming network components significantly enhance the
integration of diverse signaling cascades to cell death sig-
naling and make the information transfer more efficient

between apoptotic signaling and other signaling path-
ways. Our findings will improve our understanding of sig-
naling protein evolution and the mechanism of signal
integration in signaling networks caused by protein evolu-
tion.

Conclusion
Several major conclusions on protein evolution in protein
interaction networks have been previously described. In
this work, we further uncovered how network characteris-
tics affect the evolutionary and co-evolutionary behavior
of proteins. For example, we showed that in signaling net-
works different types of interactions have different
strength of constraints on protein co-evolution, in which
proteins linked by physical interactions tend to be more
co-evolved. Furthermore, for directed shortest paths, the
more distant two proteins have, the less chance they share
similar evolutionary rates. However, such a correlation
was not observed with respect to the neutral shortest path.
We further showed that evolutionary rates of proteins
decrease along the signaling information flow from extra-
cellular space (input layer), intracellular space to nucleus
(output layer). The downstream portion of the signaling
network evolves more conservatively.

Our analysis further suggested how protein evolution
could modify the existing functionalities of signaling net-
works. For example, we showed that fast evolving apop-
totic signaling proteins tend to form network components
and co-evolve with other signaling proteins. The diverse
and flexible apoptotic signaling makes it possible for
mammals to rapidly respond to a variety of complex inter-
nal and external stress signals. Finally, the functional con-
sequences of co-evolution of the apoptotic proteins by
forming network components significantly enhance the
integration of diverse signaling cascades to cell death sig-
naling and make the information transfer more efficient
between apoptotic signaling and other signaling path-
ways. These new insights provide some general principles
for understanding protein evolution in the context of sig-
naling networks.

Methods
Datasets
The human-mouse protein dN and dS data were down-
loaded from H-InvDB http://jbirc.jbic.or.jp/hinv/dataset/
download.cgi. We calculated the dN/dS value for each pro-
tein [see Additional file 2]. We extracted human-mouse
orthologues from a database, Inparanoid
(hsamus_ortholog.txt, http://inparanoid.sbc.su.se/).

Signaling network construction
To construct the human cellular signaling network, we
manually curated signaling pathways from the BioCarta
database http://www.biocarta.com/genes/allpath
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ways.asp, which so far is the most comprehensive data-
base for cellular signaling pathways. The curated pathway
dataset recorded gene names and functions, cellular loca-
tions of each gene and relationships between the genes.
We merged these genes and their interactions with
another literature-mined signaling network that contains
~500 proteins [2]. To ensure the accuracy and the consist-
ency of the data, each referenced pathway was cross-
checked by different researchers and finally all the docu-
mented pathways were checked by one researcher. As a
result, the merged signaling network contains more than
1,600 nodes and 5, 000 links [8,10]. The human signaling
network data are accessible from Cui et al [10].

Gene Ontology analysis
To examine the enrichment of biological processes for a
set of genes, we used FatiGO tool [18] and the default
parameters. The whole network genes were used as a back-
ground gene set.

Statistical analysis
We performed Wilcoxon tests, Kruskal-Wallis tests, and
Spearman's correlation using R, a software environment
for statistical computing http://www.r-project.org/.
Details for randomization tests of cellular networks have
been described previously [31]. Briefly, randomization
tests of the network components formed by a set of genes
were conducted by taking the same number of genes ran-
domly from the network for 5,000 times and calculating
its network components each time.
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