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Abstract
Background: Analysis and design of complex systems benefit from mathematically tractable
models, which are often derived by approximating a nonlinear system with an effective equivalent
linear system. Biological oscillators with coupled positive and negative feedback loops, termed
hysteresis or relaxation oscillators, are an important class of nonlinear systems and have been the
subject of comprehensive computational studies. Analytical approximations have identified criteria
for sustained oscillations, but have not linked the observed period and phase to compact formulas
involving underlying molecular parameters.

Results: We present, to our knowledge, the first analytical expressions for the period and
amplitude of a classic model for the animal circadian clock oscillator. These compact expressions
are in good agreement with numerical solutions of corresponding continuous ODEs and for
stochastic simulations executed at literature parameter values. The formulas are shown to be
useful by permitting quick comparisons relative to a negative-feedback represillator oscillator for
noise (10× less sensitive to protein decay rates), efficiency (2× more efficient), and dynamic range
(30 to 60 decibel increase). The dynamic range is enhanced at its lower end by a new concentration
scale defined by the crossing point of the activator and repressor, rather than from a steady-state
expression level.

Conclusion: Analytical expressions for oscillator dynamics provide a physical understanding for
the observations from numerical simulations and suggest additional properties not readily apparent
or as yet unexplored. The methods described here may be applied to other nonlinear oscillator
designs and biological circuits.

Background
Analytical expressions for dynamical systems are useful
for mapping underlying parameters to observed proper-
ties. For many mechanical, electrical, and atomic systems,
analysis proceeds by reducing a complicated system to

tractable linear system, more often than not involving
coupled harmonic oscillators. The effective analytical
dynamics then provide valuable intuition even when
exact results are eventually obtained using numerical
methods.
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For dynamics of many biological networks [1], a basic
tractable component is a simple switch, with effective
dynamics

The symbol X represents the concentration of a molecule,
for example a transcript, its encoded protein, or a specific
protein modification state; β(t) is a time-dependent pro-
duction rate, and α is a time-independent decay rate cor-
responding to a lifetime of α-1. The dynamics of X can be
obtained by convolution of the input β(t) with the
response function e-αt.

For gene regulatory networks, the input β(t) can often be
modeled as an on-off toggle, β(t) = 0 in the repressed state
and β(t) = β for full activation. This behavior arises natu-
rally from multimeric binding of transcription factors, giv-
ing a sigmoidal Hill function as a function of transcription
factor concentration.

The equilibrium behavior of this model is X = 0 for the
repressed state and X = β/α for the activated state. Tran-
sients are also readily calculated. If X is itself a transcrip-
tion factor, the relevant transient time is the delay
between a change in the regulation of X and the subse-
quent change in regulation of its target genes. This intro-
duces a second concentration, K, representing the
concentration of X for half response of its target genes. For
a switch from β(t) = 0 for t < 0 to β(t) = β for t ≥ 0, the tran-
sient time is α-1 ln [1 - K/(β/α)], which approaches K/(β/
α) when the threshold K is a fraction of the full response
β/α. For a switch from β(t) = β for t < 0 to β = 0 for t ≥ 0,
the transient time for decay from β/α to K is α-1 ln [(β/α)/
K], dominated by the protein lifetime α-1 and more
weakly dependent on the ratio of maximum to threshold
concentration.

These basic equations can be used to predict the dynamics
of bistable systems, such as metabolic switches [2]. Serial
chains can give developmental progressions, such as the
bacterial flagella gene network [3]. Negative feedback
between simple switches can lead to bistable response, as
observed in Delta-Notch signaling [4] and used to create a
synthetic toggle switch [5].

Sustained oscillations can by created by coupling simple
switches in a cycle, with each switch negatively regulating
its successor, termed a repressilator [6]. The repressilator's
amplitude and period can be estimated with good accu-
racy using the dynamics of each switch, giving an ampli-
tude of β/α and a period of roughly 3α-1 ln [(β/α)/K] for
the three-component repressilator. Although numerical
simulations are essential for a full quantitative under-
standing, the analytical results clearly provide intuition

regarding the parameters and parameter ratios that define
the oscillator behavior. For example, a stronger promoter
will increase β, increasing the amplitude proportionally
and increasing the period with much weaker logarithmic
dependence. This insight can aid in understanding the dif-
ferences between observed gene and protein circuits, and
knowing which knobs to tweak when designing synthetic
circuits. This direct connection also enables design of
oscillators with desired period and amplitude, an impor-
tant prerequisite for standardizing synthetic biology [7].

Although built in the laboratory, repressilators do not
seem to be common in nature. Instead, hysteresis oscilla-
tors are thought to provide biological clocks for processes
as diverse as neural signaling, basic metabolism, and
development [8]. The best studied examples may be circa-
dian clocks responsible for synchronizing living systems
with day/night cycles, which are thought to have evolved
independently in prokaryotes, cyanobacteria, fungi,
plants, and animals [9]. A reduced model for the animal
clock was introduced by Barkai and Leibler [10] (Fig. 1).
Unfortunately, until now, no simple scaling rules have yet
been provided oscillations arising from relaxation or hys-
teresis from coupled positive and negative feedback loops.

In this oscillator, an activator protein, A, activates tran-
scription of both itself and a repressor, R. The repressor
achieves its effect by forming a complex, C, with A, that
does not activate transcription. Activation of A can gener-
ate a reservoir of C that serves as a continuing source of R
in the absence of A, which reduces the level of A back to
baseline. Once the R molecules have degraded, A can reac-
tivate transcription and initiate a new cycle. These dynam-
ics exhibit hysteresis when projected onto the A-R plane.

Numerical simulations indicate that hysteresis oscillators
have less noisy periods than delay oscillators; in fact,
noise can actually serve to prevent the clock from falling
into a stable attractor, making it more robust [11]. Intrac-
ellular communication can also improve robustness [12].
Numerical models have been used to compare clocks
using transcriptional versus post-translational repression
elements [13]. Clocks based on the the positive-negative
feedback design have been observed computationally to
be more easily tuned to desired frequencies [14].

The key parameters of the hysteresis clock model are αA

and αR, the decay rates of the activator and repressor pro-

teins; βA and βR, the fully activated production rates; βa,

the baseline production rate of the activator, and k is the

bimolecular rate constant for . The following

scaling rules and approximations are developed:

X t t X t( ) ( ) ( ).= −β α (1)

A R C
k

+ →
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1. The maximum concentration of each component is
approximately proportional to βA/αA, the ratio of the pro-
duction rate to the decay rate of the activator.

2. A second important concentration scale is the reset

point  when the activator and repressor concen-

trations cross, rather than a nominal steady-state baseline

concentration of βa/α.

3. The period is roughly divided into two phases, activa-
tion and recovery. The activation phase has duration (βA/
αA)/βR, equivalent to the time required for repressor to
titrate the equilibrium concentration of activator.

4. The recovery phase has duration

, equivalent for the time for

repressor to decay from its maximum concentration to the
reset point.

This preview of the full results is accurate in the limit that
production and decay rates are faster for the activator than
the repressor. More accurate (but slightly more compli-
cated) expressions are derived in the Methods. The strat-
egy is to separate the oscillator into fast and slow
subsystems that depend on the oscillator phase: during
activation, A and C are fast and R is slow, and during
recovery, C and R are fast and A is slow. This strategy is dis-
tinct from treatments that identify the activator as the fast
subsystem throughout the entire cycle [11].

The Results show that the analytical results are accurate
over a wide range of parameter space, compared with the
numerical solutions to corresponding ODEs and also a
stochastic simulation at the original literature values [10].
More detailed comparisons across parameters are done
using ODEs alone, as the focus of this work is obtaining
tractable analytics for a nonlinear system rather than
investigating important known differences between ODEs
and stochastic systems for small particle counts [15], or

βa k/

α β α βR A A a k−1 ln[( / ) / / ]

Schematic oscillator designsFigure 1
Schematic oscillator designs. (Left) The repressilator is a delay oscillator here idealized as three symmetric 
repressive components, P1, P2, and P3, with identical production rates, β, and decay rates, α. (Right) The hystere-
sis oscillator has interlocked feedback loops involving an activator, A, and a repressor, R, which form a complex, C, with a bimo-
lecular rate constant k. The activator and repressor have baseline production rates βa and βa, with total production rising to βA 
and βR when the concentration of free activator is high. The activator degrades at rate αA whether free or complexed; the 
repressor degrades at rate αR but only when free.
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for systems where stochastic dynamics are essential for
generating oscillations [16].

The value of the analytical expressions is then demon-
strated through a comparison of operating characteristics:
the noise, quantified as the variance of the period due to
variance in production and decay rates; the cost or inverse
efficiency, defined as the rate of protein production aver-
aged over a cycle; and the dynamic range, quantified in
decibels as the log-ratio of the concentration of the acti-
vating component at its maximum and minimum values.
We conclude with a physical interpretation of the clock
formulas and use these formulas to interpret results of
computational studies.

Results and discussion
Hysteresis oscillator model
The protein concentrations [A], [R], and [C] of the activa-
tor, repressor, and complex are in units of molecules/cell
and are denoted A, R, and C when the meaning is clear by
context. The terms A and R refer only to free molecules
and do not include those contained in complex C. The
corresponding mRNA concentrations for activator and
repressor are Am and Rm. Continuous concentrations are
assumed throughout. The mathematical model is

The parameters  and  are baseline transcriptional

rates for Am and Rm;  and  are the fully activated

transcriptional rates. Transcriptional activation is repre-
sented by Hill functions with half-response at A = KA for

the activator and A = KR for the repressor. The same Hill

exponent n is used for both activator and repressor. This
exponent is related to the number of activator proteins
that form a transcriptional complex, and cooperative
binding can result in Hill coefficients larger than 1.
Although n = 1 was used in the original model [10], tran-
scriptional activation in the metazoan clock is thought to
be due to (hetero)dimers [9]. If binding is cooperative, n
= 2 may be more appropriate.

Because mRNA decay rates  and  are fast compared

to protein decay rates, min-1 compared to hr-1, mRNA
transients are brief compared to protein response. Taking
the limit of fast mRNA response is equivalent to employ-

ing steady-state approximations for mRNA levels,  ≈ 0

and  ≈ 0 (see Methods).

The steady-state approximation incorporates mRNA
dynamics implicitly through effective protein synthesis
rates,

and effective equations

For notational clarity, subscripted values of t are used to
denote times relative to the start of the cycle, and sub-
scripted values of τ refer to time intervals.

Central parameter values, presented in Table 1, were
based on Ref. [11]. Trajectories generated using exactly
these values, except with the Hill coefficient changed from
1 to 2 to reflect cooperative binding of transcription fac-
tors as dimers, are similar whether from the analytical
approximate solutions to Eq. 5 derived below, the contin-
uous-time ODE solution, or the corresponding stochastic
dynamics for discrete particle numbers (Fig. 2).

Unlike other studies that focus on the differences between
deterministic ODEs and stochastic simulations, our aim is
to develop analytical expressions that reproduce ODE
behavior. For this purpose, we scaled the concentration
parameters so that the concentration KA of A giving half-
maximum self-activation occurs at 1 molecule per cell,
compared with 50 molecules per cell from Ref. [11]. This
rescaling gives a bimolecular rate constant k of 100 (mol/
cell)-1 hr-1 for a pair of molecules, close to a first-principles
estimate of the diffusion-limited bimolecular collision
rate within the nuclear volume (see Methods). In addition
to the Hill coefficient of 2 mentioned above, we also set
the baseline production rate of repressor, βr, to zero, as
opposed to the value of 0.002 that would be obtained
from concentration scaling. Results using βr = 0 and βr =
0.002 are virtually identical (see Results, Comparison
with ODE solutions).
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Analytical expressions for period and phase
Here we provide an overview of the method based on two
assumptions:

1. Bimolecular collisions are fast compared to protein syn-
thesis and decay rates.

2. Fast collisions between activator and repressor mole-
cules means that the A + R → C reaction effectively goes to
completion, with either A ≈ 0 or R ≈ 0 at all times.

The second assumption permits A, R, and C to be calcu-
lated from pairwise combinations that eliminate the non-
linear bimolecular term. The Methods uses an expansion
of the Hill functions to derive tractable dynamical equa-
tions, with summary analytical expressions provided in
Table 2. The main results are sketched here using a simpli-
fied logic approximation, replacing the Hill functions
with step functions [1]. These results are accurate when A
passes quickly through its threshold value, which occurs
for much of parameter space.

The start of the cycle, t = 0, is defined to occur when A and
R are both low with A increasing just past R. From the

dynamics of A,  ≈ βa - αAA - kAR, and the nullcline  =

0 crosses A = R at the value . In the

limit of a fast bimolecular reaction, , the

crossing point is at A = R = . The first phase of

dynamics ('activation phase') ends when A has risen to its
maximum and then returned to a low value, with C high
and R still small. The end of this first phase, with duration

τ1, is defined when C is at its maximum. In the second

phase ('recovery phase'), C declines to a baseline value

and R rises and falls. The end of the second phase, with

duration τ2, is defined when R has just crossed below A.

During the activation phase,

where Θ(u) is the unit step function. Starting from A = R

= , A rises quickly to KA. The time required is

approximately KA/βa (see Methods for a more accurate

expression). The subsequent dynamics are

neglecting βr relative to βR. Since R ≈ 0 in the activation
phase, R + C ≈ C, and (A + C) - (R + C) > KA is required to
maintain activation. Assuming that A + C is close to its
asymptotic value of βA/αA at this point implies R + C = βA/
αA - KA, or

t = (βA - αAKA)/αA βR + (KR - KA)/βA (8)

for the elapsed time.

There is another brief transient in which A decays to 0,
described using the combinations

A A

β αa Ak k/ ( / )+ 2 2

k A a> α β2 4/

βa k/
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( / )( ) (
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[ ( ) / ],

(7)

( / )( )

( / )( ) ( ) .

d dt C R R C

d dt A R A C R A
R

a A R a A

+ ≈ − ≈ ≈
− ≈ − + − ≈ − ≈

α
β α α β β

0

(9)

Table 1: Circadian clock parameter values

Parameter Units Vilar et al. (Ref. [11]) This Work Default Valuea This Work Range

αA hr-1 1 1 10-1 .. 100.5

βa (mol/cell) hr-1 250 5 1 .. 10
βA (mol/cell) hr-1 2500 50 10 .. 102

KA (mol/cell) 50 1 1 .. 100.3

αR hr-1 0.2 0.2 10-1 .. 100.5

βr (mol/cell) hr-1 0.1 0.0 0.001 .. 0.01
βR (mol/cell) hr-1 500 10 100.5 .. 101.5

KR (mol/cell) 100 2 100.2..100.5

n Hill exponent 1 2 1 .. 10

k (mol/cell)-1 hr-1 2 100 20 .. 200

a Default values are based on Ref. [11] but with concentrations rescaled by a factor of 50, corresponding to half activation of A at one molecule per 
cell. The two values in bold, βr and n, differ from Ref. [11].
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Trajectories of activator, repressor, and complex concentrations are displayed for dynamics from analytical expressions (top panel), continuous ODEs (middle), and stochastic simulations (bottom)Figure 2
Trajectories of activator, repressor, and complex concentrations are displayed for dynamics from analytical 
expressions (top panel), continuous ODEs (middle), and stochastic simulations (bottom). Parameter values are 
exactly as in Ref. [11], provided in Table 1, except with Hill coefficient = 2 to reflect cooperative dimer binding.
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The second equation uses C ≈ βA/αA during this interval.
The time for this transient is approximately KA/(βA - β0).

The total time for the activation phase is therefore

τ1 = (βA - αAKA)/αA βR + (KR - KA)/βA + KA/(βA - βa) ≈ (βA/
αA)/βR (10)

This value can be rationalized as the amount of time
required for enough repressor to be produced, at rate βR,
to neutralize the total amount of activator both free and
in complex, βA/αA.

At the start of the recovery phase, the complex is at its
maximum concentration of approximately (βA/αA) - KA ≈
βA/αA. Here A ≈ 0 and it is convenient to examine the com-
binations C + A and R – A with

For αA ≠ αR, these equations give the dynamics

( / )( ) ( )

( / )( ) ( )

d dt C A C A C C

d dt R A C A
a A a A

a A R

+ = − + ≈ − ≈
− = − + + −

β α β α
β α α RR R≈ .

(11)

C t t

R t
a a A a A A

A A R R

( ) / [( ) / ]exp( )

( ) [ /( )] [exp(

= + − −
= − ⋅ −

β α β β α α
β α α α tt tA) exp( )],− −α

(12)

Table 2: Analytical results for oscillator period and phase

Times Hysteresisa Delayb

τ1 (A > R)
n = 1: (βA/αA βR) + KA/βA +(KA/βA) ln(KA/ )

α-1 ln [(β1 - β0)/(β1 - αK)]

n ≠ 1: (βA/αA βR) + KA/βA+ [βA(n- 1)]-1 (βa/k)1-n

τ2 (A <R)
αA = αR: α-1 ln [(βA/α)/ ]

α-1 ln [(β1 - αK - β0)/(αK - β0)]

αA ≠ αR:  ln [(βA/|αA - αR|)/ ]

τtot τ1 + τ2 3(τ1 + τ2)
τtot, limiting

α-1 [βA/βR + ln(βA/α )]
3α-1 ln [β1/αK]

Concentrations
Amax (βA/αA)- (βR/αA) ln(βA/βR) (β1/α) - K
Rmax αA = αR: [(βA - βa)/α-KA]/e

Cmax βA/αA
Amin βa/(αA + kRmax) β0/α

Amin, limiting βa/(kβA/αe) β0/α

a Limiting expressions for the hysteresis oscillator are for αA = αR = α, βA > βR, βA > αKA.
b Limiting expressions for the delay oscillator are for β1/α > K > β0/α.

βa k/

K A
n

βa k/

αmin
−1 βa k/

βa k/

α α β α α α α α
A R A A R A

R A≠ : ( / )( / ) /

Limit cycle from analytical expressions (circles) and numeri-cal calculations (triangles) are displayed in three dimensionsFigure 3
Limit cycle from analytical expressions (circles) and 
numerical calculations (triangles) are displayed in 
three dimensions. Parameter values are from Table 1. 
Points are spaced at 200 equal time increments along the tra-
jectory, and colors of points represent time progression in 
ROYGBIV order. The total period is 27.4 hr from the 
numerical ODE solution and 32.0 hr from the analytical 
expression.
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which continue until the concentration of R dips below A
to trigger a new cycle. The concentrations cross at

, and the duration of the recovery phase is

Comparison with the ODE solutions
A three-dimensional visualization of the dynamics (Fig.
3) demonstrates that the analytical expressions are in
excellent agreement with numerical results from ODEs.
For a more complete examination of agreement across
parameter space, parameters representing decay rates (Fig.
4), activated production rates (Fig. 5), and baseline pro-
duction rates (Fig. 6) were scanned over an order of mag-
nitude. The period and the time for the individual phases
are compared with numerical ODE results using 4D con-
tour plots [17,18].

Decay rates have a strong influence on the period (Fig. 4).
The activation phase depends almost entirely on αA, with
virtually no dependence on αR; the recovery phase
depends on the smaller of the two. The parameter space
searched is symmetric about αA = αR, with αA/αR ranging
from 1/30 to 30. Robust oscillations are still observed
even when αR >> αA, demonstrating that oscillations do
not require that A is the faster subsystem.

The dependence of the full period on the activated pro-
duction rates scales roughly as βA/βR (Fig. 5). Most of this
dependence arises from the activation phase. For the
recovery phase, both the analytical and the numerical esti-
mates suggest very little effect. This result is consistent
with a low level of activator during the recovery phase.
The baseline production rate of the activator does affect
the time for the recovery phase, as well as the activation
phase (Fig. 6). The production rate of the repressor is gen-
erally taken to be low in clock models, and over two
orders of magnitude has virtually no effect on the dynam-
ics.

Delay oscillator
The first well-known engineered biological clock was a
delay oscillator termed the repressilator [6]. Equations for
a standard simplified continuous, symmetric three-com-
ponent model are presented (see Methods), again using
the approximation that mRNA levels decay faster than
protein levels. Repressilator dynamics, periods, and
amplitudes are reviewed in the Methods and included in
Table 2.

In the comparisons that follow for noise (defined by vari-
ance in the period), efficiency, and dynamic range, it is
necessary to introduce a correspondence between param-

eters of the delay oscillator and hysteresis oscillator. We
assume that production rates, variance in production
rates, and decay rates are equivalent in the two systems.

Variance of the period
The noise in the oscillator period is analyzed here through
the variance, Var(τtot), providing an analytical route to
sensitivity analysis of robustness [19]. Assuming that pro-
duction events of A and R are correlated but uncorrelated
with decay events, and that both A and R decay at the
same rate α, this variance is

Using the limiting form for the hysteresis oscillator
period, Table 2,

To simplify this expression, we designated the correlation
between βA and βR as r and assume that the coefficient of
variation is roughly uniform for each component,

The corresponding variance for the limiting form of the
delay oscillator period is

For purposes of comparison, we assume that

 as well, and that the decay rate α is also

the same for the hysteresis and delay designs.

Consider separately the variance due to transcriptional
noise, scaling as σ2, and variance due to decay noise, scal-
ing as Var(α). The variance due to transcriptional noise
will be smaller for the hysteresis oscillator than the delay
oscillator when

r ≥ 1 – 31/[8(βA/βR)(1 + βA/βR)]. (18)

The parameters in Table 1 suggest βA/βR ≈ 5, and noise
reduction for the hysteresis oscillator requires a rather
large correlation in transcription rates, r ≥ 7/8. A smaller
ratio gives a smaller correlation required for noise reduc-

βa k/
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1= −−[min( , )] ln[( / | |) / / ].A R A A R a k
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Analytic and numeric periods for αA and αRFigure 4
Analytic and numeric periods for αA and αR. Other parameter values are set to defaults from Table 1. The background is 
colored according to periods calculated from numerical solutions of the ODE model, and black contour lines are from analyti-
cal expressions in Table 2. (A) Full period, τtot. (B) Activation phase, τ1. (C) Recovery phase, τ2. In this and subsequent figures, 
contour lines are estimated from values calculated on a grid indicated by light background lines. A finer grid would yield 
smoother contours. The general agreement of the colored contours (ODEs) and the thick contour lines (analytic) indicates an 
accurate model for the dependence of the period on specific parameters. For example, the time τ1 for the activation phase 
depends only on αA and not αR, while the recovery phase depends on both. As the degradation rates decrease, the period 
increases rapidly. Decreasing the degradation rates further can eliminate oscillations.

0

20

40

60

80

100

Numeric

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

Black contours: Analytic Period, Total

log10((ααA))

01gol
((αα

R
))

0

20

40

60

80

100

Numeric

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

Black contours: Analytic Period, Phase 1

log10((ααA))

01gol
((αα

R
))

0

20

40

60

80

100

Numeric

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

Black contours: Analytic Period, Phase 2

log10((ααA))

01gol
((αα

R
))

A

B

C



BMC Systems Biology 2009, 3:6 http://www.biomedcentral.com/1752-0509/3/6

Page 10 of 20
(page number not for citation purposes)

Analytic and numeric periods for βA and βRFigure 5
Analytic and numeric periods for βA and βR. Other parameter values are from Table 1, except that βa is set to 0.1βA. Plots 
are as in Fig. 4. The dependence on production rates is primarily in the activation phase, not the recovery phase.
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Analytic and numeric periods for βa and βrFigure 6
Analytic and numeric periods for βa and βr. Plots are as in Fig. 4. The period depends primarily on βa and is insensitive to 
βr.
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tion. For example, βA/βR = 2 gives r ≥ 1/3. Correlation
arises naturally because production rates of both the acti-
vator and the repressor depend on the concentration of
free activator. For the true biological system, correlation
would also arise from fluctuations in the concentrations
of polymerase and ribosomes.

Variation in the period due to decay noise is always larger
for the delay oscillator compared to the hysteresis oscilla-
tor. Assuming a period of 24 hours and a protein lifetime
of 0.5 to 5 hours, the delay oscillator has 8% to 80%
higher variance in its period than the hysteresis oscillator.

Efficiency
The efficiency of an oscillator is defined here as the inverse
of its power requirements, where power is the rate of pro-
tein production averaged over a period. For the hysteresis
oscillator, activator and represser molecules are produced
at rates βA and βR during the activation phase, and are not
produced during the recovery phase, yielding the power
requirement (βA + βR)τ1/τtot. For the delay oscillator, the
synthesis rate during phase 1 is β0 + 2β1, and the synthesis
rate during phase 2 is 2β0 + β1, with power requirement β0
+ β1 + (β1τ1 + β0τ2)/τtot.

Assuming that baseline synthesis rates are small relative to
activated synthesis rates and βR/βA is no greater than 0.5
suggests these costs:

If the activated production rates are similar, β1 ≈ βA, then
the hysteresis oscillator will have a cost of (3/2)τ1/τtot rel-
ative to the delay oscillator, giving a cost advantage when
τ1/τtot < 2/3. Using typical parameters, the activation
phase is faster than the recovery phase, with τ1/τtot ≈ 1/3.
This gives the hysteresis oscillator a two-fold cost reduc-
tion, or equivalently a two-fold efficiency increase relative
to the delay oscillator.

Dynamic range
To be functional, an oscillator must couple to other bio-
logical components. The most straightforward coupling is
for the activator molecule to serve as a transcription factor
for output elements. These elements may have varying
binding affinities for the activator, and it may therefore be
advantageous for the activator to have a large dynamic
range during a cycle. The dynamic range is quantified as
decibels (dB) as 10 log10(Amax/Amin).

Using the limiting forms from Table 2, the dynamic
ranges of the oscillators are

For the delay oscillator, the ratio of activated to baseline
production rates is typically a factor of 10 to 100, yielding
a 10 to 20 dB dynamic range. The hysteresis oscillator has
a similar contribution of 10 dB from the ratio βA/βa. The
hysteresis oscillator has an additional contribution, how-
ever, because the minimum concentration of A is much
lower than the conventional steady-state baseline βa/α.
Again using typical values, kβA/eα2 ≈ 7000 to 8000, and
the effect is a boost of about 40 dB to the dynamic range.

Conclusion
This work provides a physical interpretation for the period
and dynamic range of a model for a hysteresis oscillator.
The period has a first phase whose duration, approxi-

mately (βA/αA)/βR, can be interpreted as the time required

to synthesize sufficient repressor molecules at rate βR to

titrate an equilibrium concentration of activator mole-

cules, βA/αA. The second phase has duration approxi-

mately equal to . This has the

familiar form of a protein lifetime, α-1, multiplied by the
log-ratio of an initial concentration to a final concentra-

tion. The initial concentration, βA/αA, corresponds to the

same equilibrium concentration as before. The final con-

centration, , is the value when the activator and

repressor concentrations cross.

It is intriguing that the critical step triggering the start of a
new phase is the crossing of the activator and repressor
concentrations. In the context of gene expression, predic-
tors based on crossing of mRNA abundances have been
remarkably powerful for classification problems [20]. The
results generated here for a particular nonlinear system
show that such crossings can be important in marking the
transition between distinct states.

The signal that oscillations are not supported is that the
time for the second phase of the cycle, τ2, becomes long.
This is apparent in the contour plots showing the time for
each phase. For example, in Fig. 4, when the decay con-
stants become small, the period becomes rapidly larger. In
this region, both A and R are small, and C is close to the
value βa/αA. An expansion of the dynamical equations in
this region could provide and analytically tractable
expression for stability analysis.

Hysteresis

Delay
tot: ( / ) /

: .

3 2 1

1

β τ τ
β
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Our results agree with numerical simulations that have
found the hysteresis design to be more robust with respect
to noise, but permit the ability to ascribe variance inde-
pendently to production and decay sources. The hysteresis
oscillator period is estimated to be roughly ten times more
robust to fluctuations in decay rates. Reduction of noise
from production rates requires positive correlations of at
least 35% between activator and repressor production
fluctuations. This observation is interesting because the
hysteresis model explicitly couples the synthesis of these
components during a single phase of the cycle, whereas
the delay oscillator produces components continuously
throughout the cycle. Same-time production of activator
and repressor molecules should naturally introduce corre-
lations in production rates because both depend on the
same fluctuating concentration of activator molecules for
transcriptional activation.

Our results also provide an intuitive explanation for a
recent observation that coupled positive-negative feed-
back oscillators can cover a wider frequency spectrum
than pure negative feedback oscillators [14]. For the
period of the negative feedback oscillator considered here,
the protein production rate appears inside a logarithm,
giving it only weak influence on the period. For the hys-
teresis oscillator, however, protein production rates
appear to linear order, with a much stronger ability to
influence the period. Moreover, activator and repressor
production rates appear as a ratio, permitting greater lev-
erage for changing the period.

The analytical expressions also permit easy examination
of other oscillator properties. Sustaining oscillations
requires a cost that can be measured in the biomolecules
that must be synthesized and then degraded over the
course of a period. We estimate that the energetic cost of
the hysteresis oscillator is about half that of delay oscilla-
tor. Our results suggest that efficiency may be an impor-
tant oscillator property; to our knowledge, it has yet to be
studied in computational models.

The output of an oscillator should have a large dynamic
range to maximize its ability to couple to output systems.
While the dynamic range of a delay oscillator is 10 to 20
dB, the dynamic range of a hysteresis oscillator with simi-
lar transcription and decay rates is 50 to 60 dB, an impres-
sive gain. The large dynamic range arises from a state
where all concentrations are close to 0. This does not nec-
essarily make stochastic behavior important, however: the
relevant count is the number of particles required to acti-
vate transcription, KA or KR, rather than the small value

 marking the start of a new cycle. As seen in Fig. 2

with KA = 50, trajectories from ODEs, analytical approxi-

mations, and stochastic simulations are quite similar.
When stochastic simulations are run using parameters
scaled by a factor of 50 to give KA = 1, however, the period

is shorter and more variable than continuous ODEs or the
analytical formulas (Fig. 7). For the analytical and ODE
trajectories, the only difference is a 50× scaling in the out-
put amplitudes.

In summary, these results provide a direct connection
between parameters and observed properties of a circa-
dian clock model. By showing how period and amplitude
scale with parameters, these results help explain results
observed in numerical simulations and suggest oscillator
efficiency as an area where additional computational
analysis may be valuable. The analysis strategy is to con-
vert a nonlinear system into a series of linear systems con-
nected at their boundaries, with a key transition marked
by the crossing of activator and repressor concentrations.
While the analysis here is for a particular clock model, the
analysis strategy is general and should be applicable to
other nonlinear biological systems.

Methods
Parameter values
All concentration parameters have units (number of mol-
ecules per cell), and all time units are (hours) or (per
hour) for rates. A summary of default parameter values for
the core circadian oscillator, based on Ref. [11], is pro-
vided (Table 1). The default parameters are generally con-
sistent with full production response with a few activator
proteins per cell, activated mRNA production rates of
about one per five minutes, mRNA lifetimes of about 10
minutes, and translation rates of 5 proteins per transcript
per hour.

The parameter KA, with units of molecules per cell, pro-
vides a concentration scale. Concentration and produc-
tion-rate parameters from Ref. [11] were reduced by a
factor of 50 to give KA = 1, corresponding to half activation
at one transcription factor protein per cell. The product of
the bimolecular rate constant k and a concentration yields
a rate. Since concentrations were reduced by a factor of 50,
the bimolecular rate constant was increased by a factor of
50 to yield an identical effective rate, maintaining exactly
the same balance between bimolecular collision rates and
protein decay rates.

Other than the concentration scaling, two other changes
were made relative to Ref. [11]. First, the baseline repres-
sor production rate was set to 0 mol/hr, compared to 0.1
mol/hr previously, or 0.002 mol/hr after the 50× concen-
tration scaling. Second, the Hill exponent was set to 2
rather than 1, reflecting that the transcription factors inβa k/
Page 13 of 20
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Trajectories of activator, repressor, and complex concentrations are displayed for dynamics from analytical expressions (top panel), continuous ODEs (middle), and stochastic simulations (bottom)Figure 7
Trajectories of activator, repressor, and complex concentrations are displayed for dynamics from analytical 
expressions (top panel), continuous ODEs (middle), and stochastic simulations (bottom). Parameter values are 
the default values from Table 1, essentially identical to those in Ref. [11] but with Hill coefficient = 2 and concentrations 
reduced by 50×.
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this system may bind cooperatively as dimers rather than
monomers [9].

Several other parameter sets for more complete models of
the circadian clock in Drosophila and mammalian sys-
tems are available [21-25]. These parameter sets are quite
different, and rather than attempting to reconcile them we
scanned parameters over a range of values.

A first-principles route to estimating the value of the
bimolecular rate constant is to calculate a diffusion-lim-
ited reaction rate for proteins. The bimolecular rate con-
stant for two proteins with diffusion constants D1 and D2
and effective radius h is

k = 4π(D1 + D2)h/V, (21)

where V corresponds to a spherical volume in which dif-
fusion occurs [26], which we take as the nuclear diameter.
Typical diffusion constants for proteins are in the range of
10-6 to 10-7 cm2/sec. Using a nuclear diameter of roughly
7 μm (volume = 1.8 × 10-16 m3) and an effective protein
radius of 1 nm gives a bimolecular rate constant k ~150 to
165/(molecule-hr) when A and R have units (molecules)/
(nuclear volume).

We followed the Barkai-Leibler model in assuming that
the activator molecule can be degraded while free and in
a complex, while the repressor can only be degraded when
free and is protected in the complex. We also assumed, as
in the original model, that the activator decay rate is the
same for free and bound molecules.

Justification of steady-state approximations for mRNA
Consider a protein X with mRNA Xm with dynamics

where β'(t) is an mRNA synthesis rate that has explicit
time dependence, for example due to fluctuating concen-
trations of a transcription factor. The protein synthesis

rate, β"Xm, has time dependence through the mRNA con-

centration Xm with a constant coefficient β". Using the

notation that (s) is the Laplace transform of f(t),

The transfer function relating protein output to mRNA
production input is β"(s + α')-1(s + α")-1. When mRNA
decay rates are fast compared to protein decay rates, the

ratio α"/α' can be used as a small expansion parameter,
yielding

The notation O(...) indicates asymptotic order. Trans-
forming back to the time domain yields

with effective initial conditions

Xeff(0) = X(0) + (β"/α')Xm(0) + O(α"/α'). (26)

In the model presented here, protein and mRNA concen-
trations are both close to 0 at time 0, and the offset to X(0)
due to mRNA may be ignored.

ODE calculations
Solutions to ODEs were obtained with R [27] using the
interface to lsoda [28,29].

Stochastic simulations
Stochastic simulations were performed using the Gillespie
stochastic simulation algorithm [30,31] as implemented
in R by the GillespieSSA package [32]. Simulations with a
maximum particle count below 1000 used the direct
method. Simulations with a maximum count of 1000 or
more were accelerated using the binomial tau-leap
method [33,34]. Six equations define the stochastic
dynamics:

Separating fast and slow subsystems can improve the per-
formance of stochastic simulations [35].

Analytical approximations

The analytical approximations are motivated by the times-
cale separation between fast diffusion-limited bimolecu-
lar collisions between A and R, and the remaining slow
timescales in the system. When the concentrations A and
R are each 1 molecule/cell, for example, and k is the diffu-
sion-limited rate constant 100/(molecule × hr), the for-

mation rate of C is  = 100 molecules/hr. In comparison,
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the maximum production rates of A and R are expected to
be only 10 to 20 molecules/hr for typical parameters, and
decay rates are slower still.

With this timescale separation, the bimolecular reaction
effectively goes to completion: all available molecules of

A and R are paired into complexes, until either A ≈ 0 or R

≈ 0. Depending on whether A or R is limiting, this leads to

the approximation that  ≈ 0 or  ≈ 0. These approxima-
tions lead to analytical expressions, as detailed below.

Recovery from time 0 to full activation at time tK

The start of the cycle, time 0, is defined when A and R are

small, with A just crossing above R, and  = kAR - αAC ≈

0. In this regime, (d/dt)(C + A) = βa - αA(A + C) + (βA -

βa)An/[An + ], which is approximately equal to βa -

αA(A + C) for A <<KA. At the end of the previous cycle, the

sum A + C therefore approached an equilibrium value of

βa/αA with transient time on the order of . As A is

small, the concentration C at time 0 is approximately βa/

αA. Using  ≈ 0 and A = R,

defines the crossing value X.

As A becomes activated but is still below KA and KR, the
Hill functions are approximated to yield the equations

During this phase, A is much smaller than KA and KR,  is

small, and αRR and βr are small relative to activated tran-

scription of R, yielding the approximate dynamics

Recovery of A implies  > 0 and βX > 0. The decay term

αAA is assumed to be small compared to the production

rate, which will be seen in the results to be a good approx-
imation.

The dynamics of Eq. 30 continue until the turning point
of the Hill function, which occurs at A ≈ KA.

Terming tK as the time when A = KA in this regime, Eq. 30
is integrated implicitly to yield

In the case that n = 1, it is possible to retain the term αAA
in the analytical solution, and the corresponding equa-
tions are

With typical parameters, βX ≈ βA/KA > αA, and αA can be
ignored as with the n > 1 case. This approximation ignores
the very short transient in which A is between KA and KR.
As will be seen from the results, very little error is made.

The activator makes a round trip

The next analytical regime begins with A = KA and rising

rapidly, C ≈ βa/αA, and R ≈ 0. Here full transcriptional acti-

vation is a good approximation, A >> KA and A >> KR, and

the Hill functions become 1. The dynamics for R are  =

βR - αRR - kAR + αAC. Since  and R are both small, kAR

≈ βR + αAC. The dynamics for C are therefore  = βR, or

C(t) = (βa/αA) + βR(t - tK). (33)

An interpretation of this equation is that every new mole-
cule of R, produced at rate βR, is converted immediately to
a complex, adding to the baseline amount of complex at
time tK.

The trajectory for A using Eq. 33 is
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The time when A reaches its maximum and the maximum
value are

These equations continue to hold until A returns to value
KA. The time t'K when this occurs is obtained from Eq. 34
using the approximation that the exponential transient
has decayed and that βr is negligible,

from Eq. 33. The complex will be seen to have obtained its
maximum value Cmax at this time.

Once A falls below the threshold KA, it continues to fall

rapidly and the Hill functions are approximately 0. The

conditions that  ≈ 0 and R ≈ 0 yield kAR = αAC, giving

 ≈ 0 as well. The dynamics for A in this regime are

These dynamics continue until A = 0, at which point C is
still equal to Cmax. Defining this time as tC,

The repressor makes a round trip

In this phase of the cycle, A becomes the slow subsystem

because A and hence  are small, while R and C change

more rapidly. The approximations  = 0 with αAA = 0

yield kAR = βa, and

The trajectories are

in the case that αA = αR = α.

Ignoring the small contribution from the baseline produc-
tion rate βr, the time tR for the maximum of R and its max-
imum value are

in the case that αA = αR = α.

An improved approximation for A in this region, again

from  = 0, is A(t) ≈ βa/[αA + kR(t)]. According to this

expression, A has its minimum value when R is at its max-

imum. These dynamics continue until R = X = , at

which point R ≈ A and the cycle restarts. For convenience,

let αmin = min(αA, αR) and Δα = |αA - αR|. Again ignoring

the small contribution from βr, the crossing time tX is cal-

culated as

The final term in tX is a perturbative estimate of the correc-

tion due to the faster transient. When αA = αR = α, an iter-

ative solution is used for τX = tX - tC. Denoting Δβ = βA - βa

- αAKA and , and assuming that

βr/α <<βAτX,

where in the last equation the term τX on the right-hand
side has been replaced by its leading order value α-1 ln
[Δβ/αΔX] to terminate the expansion.
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Time intervals
For convenience, time intervals are denoted with symbol
τ as

Simplified formulas for the intervals are obtained by
using leading-order contributions based on biologically
reasonable assumptions that threshold values (KA and KR)
are small compared to the activated level of A, and that the
fully activated production rate for A, βA is much larger
than the baseline rate βa or the fully activated production
rate βR of repressor, and that βr is 0.

In these limits,

Both τK and τC are fast, scaling as inverse production rates,

while τ'K and τX are slow, scaling as inverse decay rates. To

compare with numeric simulation results, we break the

entire cycle into two phases with times τ1 and τ2. The first

phase begins at the start of the cycle with A = R and  >
0 and ends when C is at its maximum. The second phase
begins when C is at its maximum and ends at the start of
the next cycle:

Energy cost
The energy cost of sustaining oscillations is estimated as
the number of protein molecules synthesized per cycle,
giving equal weight to activator and repressor proteins.
During the first phase, activator proteins are synthesized
at rate βA and repressor proteins at rate βR. During the sec-
ond phase, synthesis rates are βa and βr. The cost per cycle
is

Cost = (βA + βR)τ1/τtot + (βa + βr)τ2/τtot. (48)

Repressilator dynamics
The repressilator is a synthetic oscillator constructed from
an odd cycle of negative feedback loops [6].

Again using a steady-state approximation for mRNA lev-
els, the dynamics for the standard three-component sym-
metric continuous repressilator are

where Pi represents one of i = 1 to 3 components, and Pi-1
= P3 when i = 1.

Using the same approximations as for the hysteresis oscil-
lator, the repressilator cycle starts when P3 falls just below
K, with P1 at its baseline level β0/α and P2 roughly equal to
(β1/α) - K. In this regime,

These dynamics continue until P1(t) = K, defined to occur
after an interval τ1,

τ1 = α-1 ln [(β1 - β0)/(β1 - αK)] ≈ K/β1, (51)

where the approximation holds when β1/α >> K > β0/α. At
this point,

with dynamics

These dynamics continue until time τ1 + τ2 when P2(τ1 +
τ2) = K,

τ2 = α-1 ln [(β1 - αK - β0)/(αK - β0)] ≈ α-1 ln(β1/αK).
(54)

This pattern repeats three times for a total period τtot of

τtot = 3(τ1 + τ2) = (3/α) ln [(β1 - β0)(β1 - αK - β0)/(β1 - 
αK)(αK - β0)]. (55)
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Energy cost
During the τ+ phase, components 1 and 2 are synthesized
at rate β1, while component 3 is synthesized at rate β0.
During the τ _ phase, only component 1 is synthesized at
the higher rate. The energy consumption, in terms of pro-
teins per cycle, is
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