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Abstract
Background: Analyses of gene expression data from microarray experiments has become a
central tool for identifying co-regulated, functional gene modules. A crucial aspect of such analysis
is the integration of data from different experiments and different laboratories. How to weigh the
contribution of different experiments is an important point influencing the final outcomes. We have
developed a novel method for this integration, and applied it to genome-wide data from multiple
Arabidopsis microarray experiments performed under a variety of experimental conditions. The
goal of this study is to identify functional globally co-regulated gene modules in the Arabidopsis
genome.

Results: Following the analysis of 21,000 Arabidopsis genes in 43 datasets and about 2 × 108 gene
pairs, we identified a globally co-expressed gene network. We found clusters of globally co-
expressed Arabidopsis genes that are enriched for known Gene Ontology annotations. Two types
of modules were identified in the regulatory network that differed in their sensitivity to the node-
scoring parameter; we further showed these two pertain to general and specialized modules. Some
of these modules were further investigated using the Genevestigator compendium of microarray
experiments. Analyses of smaller subsets of data lead to the identification of condition-specific
modules.

Conclusion: Our method for identification of gene clusters allows the integration of diverse
microarray experiments from many sources. The analysis reveals that part of the Arabidopsis
transcriptome is globally co-expressed, and can be further divided into known as well as novel
functional gene modules. Our methodology is general enough to apply to any set of microarray
experiments, using any scoring function.

Background
Experimental microarray gene expression data is analyzed
by a variety of bioinformatic techniques. In addition to
detecting common gene-specific expression patterns,
some methods for gene expression analysis are designed

to elucidate module- and system-level organization of the
transcriptome. One such highly popular method is gene
clustering, based on similarity of expression levels. Many
different clustering algorithms have been developed for
this purpose [1-5]. Clustering of gene expression data
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serves as a basis for functional annotations of genes, rely-
ing on the notion that genes with a similar expression pat-
tern often share a similar function (reviewed in [6]).

The use of networks in computational biology has greatly
enhanced analytical capabilities. Methods for inferring
network properties can generally be divided into direct vs.
module-assisted methods (reviewed in [7]). Direct meth-
ods assign properties to nodes, based on prior knowledge
of properties of their direct neighbours. In contrast, mod-
ule-assisted methods first try to identify clusters of nodes
that are highly connected to one another, as inferred from
the network topology. These clusters are viewed as mod-
ules, which are sets of objects that share some biological
identity. Thus, any properties attributed to part of the
module are assumed to hold for the entire module. Sev-
eral studies have utilized gene module detection in gene
co-expression networks [8-12]. In this type of biological
networks, nodes correspond to genes, and edges connect
genes that are co-expressed across a certain set of condi-
tions. A highly-interconnected sub-graph in the network
corresponds to a set of genes that are highly co-expressed.
Such sets of genes can also be defined as a transcriptional
module. Several algorithms have been developed for the
detection of such sub-graphs in gene co-expression net-
works, or other network types [5,13-15].

While graph-based algorithms for module detection are
generally applied to data from a single microarray experi-
ment, integration from multiple data sources enhances
the predictive power of co-expression analysis. Integration
can be made across different types of data from a single
species. For example, Gunsalus and colleagues [16] inte-
grated three data sets, microarray, protein interaction and
phenotypic signatures, to a single network to describe C.
elegans embryogenesis. In other works, expression data
from several species is combined. For example, a study by
Stuart and colleagues [17] integrated expression data from
H. sapiens, C. elegans, D. melanogaster and S. cerevisiae into
a single network, and used network visualization methods
to detect functional modules.

Another case of data integration is the detection of gene
co-expression across different microarray experiments of
the same organism. In a study of human transcriptome,
Lee and colleagues [18] collected a set of microarray
experiments originating in different labs, and analyzed
each of those for gene co-expression. Then they integrated
the results into a single network, in which gene modules
were detected by clustering. A different approach was
taken by Yan and colleagues [19], who formulated a pro-
cedure to find co-expressed modules that re-occur in a
large number of co-expression networks. They, too,
applied their method on human data. Integration of co-
expression data from different Arabidopsis experiments

was performed by Wei and colleagues [20]. However, this
study concentrated on the analysis of only 1330 meta-
bolic genes. An Arabidopsis full genome analysis using a
large collection of microarray experiments was performed
by Ma and colleagues [21]. In this research the authors
used graphical Gaussian models (GGM) for assessing
dependencies between expression levels of genes and con-
structing a gene network whose edges connected any pair
of genes whose partial correlation exceeded a certain
value. Detected sub-networks were identified as biologi-
cally meaningful gene modules.

Here we use a method similar to Lee and colleagues [18]
to analyze transcription data of Arabidopsis thaliana. Our
overriding goal is to provide a comprehensive general
map of Arabidopsis transcription modules that is inde-
pendent of experimental conditions. Towards this end, we
analyzed data from 43 microarray experiments, for about
21,000 Arabidopsis genes. Our method principally differs
from that of Ma and colleagues [21] in how gene co-
expression is determined. We, too, employ the Pearson
correlation coefficient as a similarity measure. But we first
calculate co-expression within each experiment sepa-
rately, and not across all microarrays simultaneously. We
developed a novel scoring method that integrates co-
expression data from different experiments, which is
based on the frequency of co-expressed genes in each data-
set. We show that our methodology identifies biologically
relevant modules, and therefore can serve as a basis for
functional annotation of genes and for a better under-
standing of the Arabidopsis transcriptional regulation
machinery.

Results
Building a Network of Globally Co-Expressed Genes
We have analyzed 43 Arabidopsis thaliana microarray
experiments, encompassing 857 hybridization samples,
performed in a variety of experimental conditions in 37
different labs (Table 1). The expression data was filtered as
described in Materials and Methods to increase the accuracy
of the analysis, resulting in expression measurements for
about 21,000 Arabidopsis genes across the 43 datasets.
After filtering, each dataset individually contained expres-
sion values of about 17,300 genes, in an average of 20
hybridization samples. Within each dataset we calculated
the Pearson correlation coefficients between all gene
pairs, as a measure of co-expression between the genes,
leading to an analysis of about 2 × 108 gene pairs.

Given the co-expression data from all 43 datasets, our goal
was to integrate this information into a single network.
We found that many gene pairs appear simultaneously
only in a small number of datasets (Additional data file
1). To ensure that our analysis will detect genes that are
co-expressed across a large variety of conditions, we took
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into account only gene pairs that appear simultaneously
in at least 20 out of the 43 experiments. This threshold
allowed for about 50% of all the gene pairs to be consid-
ered for further analysis.

We also considered how to weigh the contribution of dif-
ferent datasets to co-expression. The difference in dataset
sample size is accounted for by the p-value assigned to the
correlation coefficients, as smaller datasets would require
a higher correlation coefficient between a pair of genes to

match the p-value of lower coefficients in big datasets.
However, we found another significant difference
between datasets: the percentage of significantly corre-
lated gene pairs is highly variable (see Methods below and
figures therein). We argue that it is necessary to compen-
sate for this difference, and therefore devised a suitable
scoring function, used to integrate co-expression data
from multiple datasets and produce a score for each gene
pair, signifying how well the two genes are co-expressed
across all datasets. A further discussion of the scoring

Table 1: List of experiments used in the global co-expression analysis

Accession Number Number of Samples Experimental Setup Sampled Tissue Lab

E-TABM-63 20 Mutant, Loss of Function Various Weigel, D
E-NASC-75 12 Mutant, Hormone Response Seedling Sakakibara, H
E-NASC-74 12 Mutant Seedling Coates, J
E-NASC-31 12 Mutant Seedling Hampton, C
E-NASC-29 12 Mutant, Nutrient Stress Seedling Greville, K
E-NASC-1 12 Mutant Seedling Cornah, J
E-MEXP-449 12 Loss of Function, Radiation Stress Leaf Van Breusegem, F
E-MEXP-444 12 Mutant, Radiation Stress Seedling Ruberti, I
E-MEXP-1094 12 Over Expression, Pathogen Stress Leaf Tang, Y
E-MEXP-547 14 Mutant, Pathogen Stress Seedling Felix, G
E-MEXP-300 15 Mutant Various Van Lijsebettens, M
E-MEXP-557 16 Mutant, Radiation Stress Seedling Ulm, R
E-GEOD-431 16 Mutant, Pathogen Stress Unknown Somerville, S
E-ATMX-3 16 Hormone Response, Over Expression Unknown Kim, J
E-TABM-21 18 Mutant, Light Conditions Various Weigel, D
E-NASC-76 18 Pathogen Stress Seedling Dewdney, J
E-NASC-61 18 Nutrient Stress Various Hammond, J
E-NASC-20 18 Mutant, Hormone Response Whole Plant De Grauwe, L
E-MEXP-265 18 Tissue Comparison Various Turner, SR
E-MEXP-550 20 Radiation Stress Seedling Ulm, R
E-MEXP-546 21 Mutant, Pathogen Stress Leaf Parker, JE
E-NASC-49 22 Light Conditions Leaf Smith, S
E-MEXP-475 23 Hormone Response, Nutrient Stress Seedling Bevan, MW
E-MEXP-791 24 Nutrient Stress Various Thibaud, MC
E-MEXP-739 24 Pathogen Stress Leaf Dudler, R
E-MEXP-509 24 Pathogen Stress Leaf Yang, C
E-NASC-77 27 Tissue Comparison Root Birnbaum, K
E-MEXP-728 28 Light Conditions, Temperature Conditions, Time 

Course
Shoot Apex Weigel, D

E-MEXP-1138 28 Mutant Pollen Munster, T
E-MEXP-828 34 Nutrient Stress Root Coruzzi, GM
E-TABM-19 36 Mutant Apex Weigel, D
E-TABM-18 55 Ecotype Comparison Seedling Weigel, D
E-GEOD-911 12 Chemical Stress, Fusion Protein, Over Expression Seedling Wagner, D
E-GEOD-3454 12 Mutant, Hormone Response Seedling Zheng, ZL
E-GEOD-2848 12 Mutant, Time Course Flower Reed, JW
E-GEOD-991 14 Loss of Function, Gain of Function Seedling Bergmann, D
E-GEOD-3350 14 Mutant, Hormone Response Root Beeckman, T
E-GEOD-3326 16 Mutant, Temperature Conditions Seedling Zhu, JK
E-GEOD-3416 18 Light Conditions Leaf Stitt, M
E-GEOD-1110 22 Hormone Response Seedling Town, CD
E-GEOD-3220 24 Mutant, Pathogen Stress Leaf Somerville, S
E-GEOD-4733 27 Mutant, Hormone Response Stamen Browse, J
E-GEOD-3709 37 Temperature Conditions, Chemical Stress, Hormone 

Response
Cell culture Whelan, J

(*) The accession number refers to the corresponding ArrayExpress repository ID.
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function and the reasons it was chosen are available in the
Methods section.

Scores assigned to the chosen gene pairs were in turn used
to build networks, in which nodes represent Arabidopsis
genes, and an edge in the network connects any two genes
whose score exceeds a given threshold, denoted by tscore.
These networks were searched for clusters of highly intra-
connected nodes using the MCODE algorithm [13]. The
resulting clusters are candidates for functional gene mod-

ules that share a common expression regulation across the
datasets we have used.

To select a threshold for tscore, we took into account net-
work size, as well as the number of clusters detected by
MCODE for different threshold values (Figure 1). We
chose to further explore the networks built using the
thresholds 0.3 and 0.4 as a good compromise between
compact network size and a relatively large number of
clusters (Figure 2 and Table 2). We compared these results
to those obtained from randomized networks, produced

Affects of score thresholds on the co-expression networksFigure 1
Affects of score thresholds on the co-expression networks. Different score thresholds were used to construct net-
works as described in the text. For each network tested, several parameters were tested: (A) Number of edges, plotted on a 
logarithmic scale, (B) Number of nodes, (C) Number of clusters found by the MCODE algorithm. The dashed lines mark the 
chosen 0.3 and 0.4 thresholds chosen.
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by two different methods, as follows. First, scores calcu-
lated for each gene pair were randomly shuffled, and a
new network was built using either the 0.3 or the 0.4
thresholds. This procedure was repeated 10 times, and no
clusters were detected by MCODE in these randomized
networks, indicating that the scores calculated using our
method represent meaningful interactions between the
genes. As a second verification, we randomly shuffled the
edges of the 0.3 and of the 0.4 networks, which were cre-
ated using the correct scores. This procedure was inde-
pendently repeated 10 times for each threshold, and each
random network was searched for clusters using MCODE.
Results summarized in Table 3 show that the shuffled ran-
dom networks have significantly fewer clusters than the
real ones. Average cluster size in the random networks was
4-5 times larger than that of the real network, which
tended to be smaller and denser than those detected in the
random networks (Figure 3). This indicates that the exper-
imental networks have a rich topology, which may repre-
sent biological meaning.

To verify that our scoring system and threshold selection
indeed produce gene pairs that are co-expressed across a
large number of conditions, we further analyzed the edges
that appear in the 0.3 and 0.4 networks. For each edge that
connects a pair of genes in the network, we calculated the

number of datasets, out of the 43 possible, in which the
two genes are significantly co-expressed. On average, each
edge in the networks was detected in 20-25 datasets
(Additional data file 2), indicating that high scoring edges
indeed integrate co-expression data from multiple experi-
ments.

We provide lists of the genes and edges in the networks
built using the 0.3 and 0.4 thresholds (Additional data
files 3, 4 and 5).

GO Enrichment Analysis of Network Clusters
To test the biological significance of the two networks, we
checked for enrichment of gene ontology (GO) annota-
tions in the clusters found (Tables 4 and 5). 58% of the
clusters in the 0.3 network and 60% of the clusters in the
0.4 network had some degree of GO enrichment. Both of
these networks contained large clusters, highly enriched
in ribosomal or chloroplast genes, as can be expected
when searching for modules of globally co-expressed
plant genes. Additional enriched clusters appeared in
both networks, for example the proteasome core, glyco-
side biosynthesis, stress response, and more. The two net-
works are neither identical nor redundant, meaning that
some enriched clusters appear in one but not the other,
for example, "nucleotide binding" in the 0.3 network, and

Networks of globally co-expressed genesFigure 2
Networks of globally co-expressed genes. The network of globally expressed Arabidopsis genes is shown, where the blue 
nodes are genes and edges connect genes with a co-expression tscore threshold of 0.4. The network is comprised of a highly 
interconnected network on the left and isolated sub-networks on the right. A network based on the tscore threshold of 0.3 was 
too crowded to show.
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"response to auxin" in the 0.4 network. Therefore, we con-
tinued our investigation with both networks.

Investigating the Gene Clusters Using the MCODE 
Algorithm
The cluster detection algorithm used, MCODE, relies on a
major parameter called the "node score cutoff", which
influences size of the detected clusters and their intra-con-
nectivity. In our initial analysis we have used the default
"node score cutoff" value of 0.2 for both the 0.3 and 0.4
networks. However, many of the large clusters in the net-
works are enriched for multiple and/or general GO terms
(Tables 4 and 5), indicating that these clusters are not
homogeneous. We suspected that this result would
change for different "node score cutoff" values, so we
repeated the analysis described above, including testing
for enriched GO terms, for decreasing "node score cutoff"
values (i.e. stricter clustering parameters). Additional data
file 6 lists the genes comprising the clusters found with
each tested value, in both the 0.3 and 0.4 networks, and
Additional data file 7 lists the enriched GO terms for each

cluster. The different cutoff values produce different clus-
ters, including some with new GO terms. As can be
expected, there is still significant overlap between clusters
found using different cutoff values in the same network.
We visualized our results in a hierarchical graph shown in
Figure 4, in which nodes represent clusters and each level
of the graph shows all clusters found using a particular
node score cutoff as a parameter for MCODE. Edges con-
nect overlapping clusters from consecutive levels. When
comparing the 0.3 and 0.4 networks, the 0.4 network
seems to break into more integral parts, with less overlap
between clusters. This is expected, as the 0.4 network is a
sub-network of the 0.3 network, containing only those
edges representing a higher confidence of co-expression
between the genes they connect. Although many of the
0.3 clusters overlap each other, this connectivity still
allows for a fairly planar graph, without many intersecting
edges. We find that in this near-planar representation,
overlapping clusters tend to share similar GO terms (Fig-
ure 4A).

Comparison between experimental and random networksFigure 3
Comparison between experimental and random networks. Each cluster found in the 0.3 (A) or 0.4 (B) networks was 
plotted as a dot according to cluster size and clustering coefficient. Red dots represent clusters in the experimental networks. 
Blue dots represent clusters found in 10 different random networks, created by random shuffling of edges in the experimental 
networks.
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Table 2: Properties of the networks constructed for the analysis

Network tscore threshold Number of nodes Number of Edges Number of clusters

0.3 5438 98984 38
0.4 2212 17788 35
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Two types of modules that differed in their sensitivity to
the node-score cutoff parameter were identified in the reg-
ulatory networks. The first type, shown in the top rows in
Figure 4A and 4B, is comprised of a large number of clus-
ters that are highly interconnected; clusters found using a
less restricted (larger) node score cutoff were generally
large, and these clusters broke down into two or more
smaller clusters when using a more restricted (lower)
node score cutoff. Many of these lower tier modules
shared genes with more than one larger precedent cluster.
This cluster-instability shows the dynamics of the
MCODE algorithm when finding clusters in large, highly
connected networks. The bottom rows in the Figure 4A
and 4B show the second type of clusters in the networks:
in this type, lowering the node score cutoff had little effect
of cluster size or stability.

We hypothesized that these two types of clusters found
using the same algorithm may be, apart from a property
of the network analyzed and of the algorithm itself, a rep-
resentation of a meaningful biological distinction
between the two types of clusters. Specifically, we conjec-
ture that the first type of highly overlapping clusters may
be part of larger general regulatory networks, whereas the
clusters of the second type represent groups of genes with
a specific and specialized regulation pathway.

To test this hypothesis, we checked for the most abundant
GO term in each of the clusters in the 0.3 network, and
compared between the two types - the interconnected
clusters in the top row of Figure 4A, and the more distinct
clusters in the bottom row of Figure 4A. Overall, our
hypothesis was born out. As a measure of GO term gener-
ality, we determined the number of GO term children for
the most highly enriched GO term for each cluster. While
the average number of children was not statistically differ-
ent between the two types of clusters (169 for the node-
score-dependent group versus 186 for node-score-inde-
pendent group, p-value of 0.745), the median number of
children was statistically different between the two types
of clusters (71 for the node-score-dependent group versus
14 for node-score-independent group, p-value of 0.017).

To summarize, we believe that both networks contain val-
uable information, as the 0.4 clusters reveal more specific

gene modules, while the much larger 0.3 network con-
tains more gene modules.

Investigation of the Results Using Genevestigator
The globally co-expressed gene modules detected in the
networks may serve as a basis for more extensive studies
of genes and modules of interest. A simple, straightfor-
ward analysis can be done using Genevestigator [22], a
gene expression analysis tool for Arabidopsis and other
organisms. Here we show selected examples of some of
the analysis we were able to perform using this tool. For
the analysis, we have chosen 2788 samples available in
the Genevestigator database that encompass all high qual-
ity experiments performed using the 22k Arabidopsis
Affymetrix chip. Experiments already used in our co-
expression analysis were excluded from the comparison,
to limit bias. Using the Genevestigator Analysis tool, we
compared the expression levels of the genes in four of our
clusters, two from each of the two networks (Figure 5A).
These four clusters are all classified as node-score-inde-
pendent clusters, and were identified as enriched for spe-
cific GO terms (Table 6). As seen in Figure 5, the modules
we identified contain genes which also appear co-
expressed in Genevestigator. For example, the genes in
these four modules behave as four unique clusters in both
the plant anatomy (Figure 5B) and plant development
(Figure 5C) analyses. This provides a verification of our
results with regard to these clusters, as well as an initial
insight into the anatomical and developmental condi-
tions under which the modules are likely to be biologi-
cally relevant. For example, the cluster marked as #2 is
functional in cell wall structure (see Table 6), and accord-
ing to the Genevestigator data is preferentially expressed in
seedling roots.

Table 7 provides more details about the genes appearing
in the four clusters. Each of these clusters contains both
known as well as putative, not well characterized genes.
For example, cluster 1 (defense response) contains a
number of genes previously known to be expressed in
response to wounding [23,24]. In some cases, clusters
appear to contain genes that have undergone duplication,
which may explain their co-expression (e.g., genes
AT1G29500 and AT1G29510 in cluster 3, response to
auxin stimulus). In other cases, further biological tests are

Table 3: Comparison of clusters found in experimental and randomly generated networks

Threshold Network Type Number of clusters (*) Average cluster size (*)

0.3 Experimental 38 36
Random 7 (6, 8) 147 (120, 161)

0.4 Experimental 35 16
Random 6 (5, 7) 83 (63, 112)

(*) For "random", results show the average number of clusters, or cluster size, found in 10 random networks, with the minimal and maximal results 
shown in parenthesis.
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required to establish what transcriptional regulation net-
works connect the clustered genes.

Clusters of Unknown Function
We next examined clusters that had no detected GO
enrichment. Careful manual curation of some of these
clusters identified new regulation networks. For example,
within the list of genes of cluster ID 7 in the 0.3 network
using the 0.2 node score cutoff, we noticed several genes
that appear to be related to cell cycle control, even though
this cluster had no enriched GO term detected (see Table

4 and Table 8 for the list of genes in this cluster). This clus-
ter was found to be co-expressed using the data from Gen-
evestigator in different tissues (Figure 6B) and different
developmental times (Figure 6C). In the former, high
expression of module genes is detected primarily in highly
dividing tissues. To further substantiate our hypothesis
that this is a cell-cycle regulated module, we also exam-
ined the expression of the genes in the cluster in different
mutants (Figure 6D). In support of our hypothesis, we
found that all the genes in the cluster are highly down-reg-
ulated in the hub1 mutant. HUB1 (also known as ANG4)

Table 4: GO Enrichment of clusters found in the 0.3 co-expression network

Network tscore threshold Cluster ID Cluster Size Enriched GO Terms Percent of Genes with Enriched 
GO Terms

0.3 1 126 ribosome 91.26%
2 150 chloroplast; photosynthesis; structural 

constituent of ribosome
73.33%; 23.33%; 8.66%

3 143 plastid; ribosome 48.25%; 13.98%
4 34 None None
5 34 nucleotide binding 32.35%
6 39 ribonucleoprotein complex; protein 

targeting to mitochondrion
51.28%; 10.25%

7 14 None None
8 118 plastid; organelle lumen 48.3%; 9.32%
9 101 plastid 32.67%
10 68 plastid 45.58%
11 39 glycoside biosynthesis 10.25%
12 27 None None
13 83 plastid; plastid organization and biogenesis 63.85%; 6.02%
14 82 plastid; mitocohndrion; response to stress; 

ER; response to temperature stimulus
32.92%; 17.07%; 14.63%; 13.41%; 
8.53%

15 9 None None
16 32 None None
17 78 plastid; isoprenoid biosynthesis; carotenoid 

biosynthesis
44.87%; 7.69%; 5.12%

18 8 phenylpropanoid metabolic process; 
flavonoid biosynthesis; response to UV

75%; 62.5%; 50%

19 7 proteasome core complex 100%
20 10 None None
21 9 response to stress; defense response 55.55%; 44.44%
22 30 plastid 66.66%
23 11 None None
24 8 None None
25 28 plastid; cellular carbohydrate metabolism 39.28%; 21.42%
26 9 None None
27 6 DNA metabolic process; nucleosome 

assembly
100%; 83.33%

28 6 None None
29 8 None None
30 7 mitochondrion 71.42%
31 6 ATP Binding; response to heat 66.66%; 66.66%
32 5 None None
33 15 response to heat 46.66%
34 6 None None
35 4 None None
36 4 None None
37 4 None None
38 4 structural constituent of cell wall 100%
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is a histone monoubiquitinase, and the hub1 mutant has
increased cell cycle duration in young leaves [25].

Clusters that are Co-expressed in Specific Conditions
Our analysis was aimed at detecting gene modules that are
co-expressed in a wide variety of experimental conditions,
therefore we have used a set of diverse microarray experi-
ments for our analysis. However, restricting experimental
samples to a certain subset with a common theme may
reveal information that is undetected using a variable set
of experiments [26]. To check how the experiments used
affect the outcome of our analysis, we selected eight exper-
iments out of the 43 used, which were all performed in an

experimental setup in which plants were subjected to
pathogens. Using only these experiments, we recalculated
scores for gene pairs and built new networks using the
same method as before, using only gene pairs that appear
simultaneously in at least five out of the eight datasets
(similar to our threshold of 20 out of 43 datasets used in
our previously analysis). Additionally, we chose a tscore
threshold of 0.7 to build the network. We then searched
the network for clusters using MCODE default parame-
ters, and analyzed the clusters for enriched GO terms.
Tables 9 and 10 show the experiments used for the analy-
sis and the calculated gene clusters, respectively. Addi-
tional data file 6 lists the genes in each cluster.

Table 5: GO Enrichment of clusters found in the 0.4 co-expression network

Network tscore threshold Cluster ID Cluster Size Enriched GO Terms Percent of Genes with Enriched 
GO Terms

0.4 1 69 ribonucleoprotein complex 94.2%
2 43 chloroplast; photosynthesis 95.34%; 62.79%
3 25 mitochondrial part 16%
4 38 plastid; structural constituent of ribosome; 

peptydil-prolil cis-trans isoemerase activity
68.42%; 23.68%; 10.52%

5 13 None None
6 25 structural constituent of ribosome 84%
7 27 chloroplast; photosynthesis 74.04%; 14.81%
8 14 None None
9 19 nuclear part 26.31%
10 13 plastid; photosynthesis 84.61%; 30.76%
11 8 ER 87.5%
12 13 chloroplast; plastid 76.92%; 61.53%
13 8 glycoside biosynthetic process 50%
14 14 None None
15 8 None None
16 24 chloroplast; plastid 66.66%; 41.66%
17 11 chloroplast 72.72%
18 26 chloroplast; ribosome 65.38%; 26.92%
19 19 structural constituent of ribosome 89.47%
20 9 None None
21 22 chloroplast; oxidoreductase activity; structural 

constituent of ribosome
45.45%; 40.9%; 31.81%

22 6 None None
23 7 None None
24 11 None None
25 5 structural constituent of cell wall; cellulose 

and pectin-containing cell wall organization 
and biogenesis

100%; 100%

26 5 None None
27 8 None None
28 10 structural constituent of ribosome 80%
29 15 ribosome biogenesis and assembly 33.33%
30 5 None None
31 10 None None
32 4 response to auxin stimulus 100%
33 4 None None
34 4 nucleosome assembly 100%
35 4 None None

Close or overlapping GO terms were not listed in the table. A complete list is available in Additional data file 7. Corrected p-values for all GO 
enrichments are lower than 0.002. Comment applies to both Table 4 and Table 5.
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Genes clusters found using MCODEFigure 4
Genes clusters found using MCODE. Clusters found using MCODE are visualized as nodes arranged in four levels of 
decreasing node score cutoff (0.2-0.05) as a parameter for MCODE. Node size corresponds to the number of genes in the clus-
ter. Overlapping clusters (that share genes) are connected by an edge, with edge thickness corresponding to overlap size, with 
the thickest lines indicating that 100% of the child cluster is present in the parent cluster. Node colour intensity corresponds 
to GO enrichment. Clusters that have no GO enrichment are brightest, while red clusters have close to 100% of the genes 
sharing an enriched GO term. For clusters with more then one enriched GO term, color intensity shows the percent of genes 
having the most abundant term. A green asterisk appears above GO-enriched clusters that were used for further analysis. The 
number besides the asterisk corresponds to the cluster number given in Tables 4 and 5, and in Figure 5. A green plus sign 
appears above a non GO-enriched cluster that is assigned a putative cell cycle regulation role (see Results and Figure 6).
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Interestingly, the clusters scored highly by MCODE in the
pathogen response network were associated with unique
and specific GO terms, such as protein phosphorylation
and defense response. This is unlike the general GO terms
for modules that had the highest MCODE scores in all the
networks that were built using the all 43 experiments. This
indicates that using experiments with specific conditions
with our analysis methods leads to detection of specific
and condition-related gene modules.

As before, we compared our results for the first cluster
detected in the pathogen response network (cluster ID 1)
using the Genevestigator data. Figures 7B and 7C show that
limited overall co-expression is detected within the genes
of this cluster. On the other hand, we found that all genes
in the cluster are up-regulated in at least one of the cpr5
mutant lines (Figure 7D). CPR5 is a known major regula-
tor of pathogenesis-related (PR) genes [27,28], indicating

Analysis of gene modules using GenevestigatorFigure 5
Analysis of gene modules using Genevestigator. Expression of four clusters (see Tables 6 and 7, Figure 4) was analyzed 
using Genevestigator. (A) Graph showing the genes in the clusters and the edges that exist between them in the 0.3 and 0.4 
networks (each cluster shows edges from the network it was detected in). Expression according to (B) anatomical tissues or 
(C) developmental stages, is shown. Expression levels are shown in heat maps, where dark blue indicates maximal expression. 
Figures in B and C were generated using Genevestigator.
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that this cluster is indeed highly specific for pathogen
response.

In short, using our method with a specific set of experi-
ments can lead to detection of gene modules that are co-
expressed in specific conditions.

Discussion
A Method for Detection of Globally Co-regulated Gene 
Modules
We have presented a general method for detection of gene
modules that share a similar regulation pattern across a
given set of conditions. The method is based on five main
steps: 1) Gathering a set of microarray experiments; 2)
Identifying pairs of genes that are significantly co-
expressed in individual experiments; 3) Scoring gene pairs
for global co-expression, across all experiments; 4) Gener-

ating a network of gene co-expression; and 5) Detecting
gene clusters. Specific components of the method, such as
the scoring function or the cluster-detection algorithm,
are easily interchangeable and can be adapted to the task
at hand.

While co-expression across a large set of microarray exper-
iments has been previously used in bioinformatic studies
[17-20], the method presented here differs from other
approaches. As opposed to Stuart [17], Ma [21] and Berg-
mann [29], and similarly to the works of Lee [18] and Yan
[19], we do not calculate co-expression by "concatenat-
ing" all hybridization samples from different sources.
Instead, co-expression is determined separately per exper-
iment, and the scoring function integrates information
from the full data set. As a consequence, experiments with
a larger set of hybridization samples do not necessarily

Table 6: GO-Enriched clusters that were analyzed using Genevestigator

Cluster number Network threshold Node score cutoff Cluster ID (*) Enriched GO terms

1 0.3 0.1 26 defense response
2 0.3 0.2 38 structural constituent of cell wall
3 0.4 0.2 32 response to auxin stimulus
4 0.4 0.2 34 nucleosome assembly

(*) Cluster ID as given in Additional data files 6 and 7.

Table 7: List of genes appearing in the four GO-Enriched clusters analyzed using Genevestigator

Cluster Gene ID Gene name Description

1 AT2G43530 Encodes a defensin-like (DEFL) family protein.
defense response AT4G23600 CORI3 Encodes cystine lyase which is expected to be involved in amino acid metabolism, 

providing the plant with cysteine and the generation of precursors of ethylene 
biosynthesis. mRNA levels are elevated in response to wounding

AT5G02940 similar to phosphotransferase-related [Arabidopsis thaliana]
AT1G53310 ATPPC1 Encodes one of four Arabidopsis phosphoenolpyruvate carboxylase proteins
AT5G42650 AOS Encodes a member of the cytochrome p450 CYP74 gene family that functions as 

an allene oxide synthase.
AT1G19670 CORI1 Chlorophyllase is the first enzyme involved in chlorophyll degradation.
AT3G45140 LOX2 Chloroplast lipoxygenase required for wound-induced jasmonic acid 

accumulation in Arabidopsis. Mutants are resistant to Staphylococcus aureus and 
accumulate salicylic acid upon infection.

AT2G43550 Encodes a defensin-like (DEFL) family protein.
2 AT5G06640 proline-rich extensin-like family protein

structural constituent of cell wall AT3G54590 AthRGP1 Encodes a hydroxyproline-rich glycoprotein
AT4G08410 proline-rich extensin-like family protein
AT2G24980 proline-rich extensin-like family protein; Identical to Extensin-2 precursor (EXT2)

3 AT1G29440 auxin-responsive family protein
response to auxin stimulus AT1G29500 auxin-responsive protein, putative

AT1G29510 SAUR68 SAUR68 (SMALL AUXIN UPREGULATED 68)
AT1G29460 auxin-responsive protein, putative

4 AT5G65360 histone H3; Identical to Histone H3.2 (HTR1) [Arabidopsis Thaliana]
nucleosome assembly AT1G09200 histone H3; Identical to Histone H3.2 (HTR1) [Arabidopsis Thaliana]

AT5G10390 histone H3; Identical to Histone H3.2 (HTR1) [Arabidopsis Thaliana]
AT5G59870 HTA6 Encodes HTA6, a histone H2A protein.
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have more influence on the result. The approach we have
chosen requires the choice of a suitable scoring function,
which allows separate treatment of experimental data
from different sources. For example, the scoring is inde-
pendent of the microarray technology used (although we
have used data only from Affymetrix chips), and thus data
obtained through different technologies could be com-
pared in the same analysis. Along the same lines, our
method also allows controlling for differences between
experiments from different labs or conditions. For exam-
ple, we have shown large differences in the proportion of

co-expressed genes between different experiments, and
could address this issue by adding appropriate weights to
the scoring function. Indeed, different labs may produce
different results in microarray experiments [30,31], prob-
ably due to different lab protocols, analysis methods, and
work patterns. Treating each experiment separately and
adjusting the scoring function accordingly allows integrat-
ing such diverse results. Moreover, using an appropriate
scoring function, data can in principle be integrated not
just from microarray experiments, but from other sources
as well.

Genevestigator analysis of a putative cell-cycle regulated clusterFigure 6
Genevestigator analysis of a putative cell-cycle regulated cluster. Cluster 7 from the 0.3 network, detected using the 
0.2 node score cutoff, (see gene list at Table 7, Figure 4) was analyzed using Genevestigator. (A) Graph showing the genes in 
the cluster and the edges that exist between them in the 0.3 network. Expression according to (B) anatomical tissues or (C) 
developmental stages, is shown. Expression levels in B and C are shown in heat maps, where dark blue indicates maximal 
expression. (D) Gene expression in different mutants. Expression levels are shown in a heat map in which intense green and 
red indicate down- or up-regulation in comparison to wild type, respectively. The red rectangle emphasizes the genes expres-
sion in the hub1 mutant (see text for details). Figures in B, C and D were generated using Genevestigator.
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Improving the accuracy of the results obtained using this
approach may be accomplished in several ways. First, an
improved scoring function could be devised that will
account for more parameters in the integration of data
from different sources. For example, a parameter differen-
tiating between positive and negative co-regulation could
be developed (as opposed to our function, which used
absolute values and thus did not differentiate between
positive and negative co-regulation). Parameters for
weighting of experiments to accommodate for experi-
ment-specific factors such as experimental platform, or a
parameter for a probabilistic model may also be used to
account for random noise in the data set. A second
improvement to our method may be obtained by chang-
ing the way the network is built. Instead of choosing an
arbitrary score threshold, a threshold learning mechanism
based on criteria such as coherence of GO term could be
incorporated, or an edge-weighted network may be used.

Specific and Non-Specific Clusters
A few interesting observations are evident by changing the
"node score cutoff" parameter of the MCODE algorithm,

used to detect gene clusters in our networks. Obviously,
changes in this parameter lead to detection of different
clusters, demonstrating the high dependence of large-
scale data analyses on parameter selection. However, as
the "node score cutoff" parameter conveys no direct bio-
logical meaning, it may not be necessary to choose a given
or solitary value for it. Indeed, our analysis shows that
exploration of the parameter space instead provides new
insights. In our analyses, it separates between two distinct
types of clusters, "unstable", node-score-dependent clus-
ters, whose size and gene composition is highly depend-
ent on this parameter, and "stable" node-score-
independent clusters, which retain their size and gene
composition across different parameter values. We posit
that the division into these two groupings is not merely a
consequence of our analysis method, but rather a mani-
festation of the transcription regulatory pathways that
define these clusters. Indeed, GO analyses provided some
support for this claim, as the node-score-dependent clus-
ters are enriched for highly general cellular pathways, such
as involving the ribosome or chloroplast. Accordingly,
their transcriptional regulation is expected to be diverse

Table 8: List of genes appearing in the putative cell cycle regulated cluster

Gene ID Gene name Description

AT1G44110 CYCA1 CYCA1;1 (CYCLIN A1;1); cyclin-dependent protein kinase regulator
AT1G08560 KNOLLE member of SYP11 Gene Family
AT1G18370 HINKEL Mutant has cytokinesis defects; seedling lethal
AT5G47500 pectinesterase family protein
AT5G67270 ATEB1C encodes a homolog of animal microtubule-end-binding protein. There are two other members of this family. EB1 

forms foci at regions where the minus ends of microtubules are gathered during mitosis and early cytokinesis.
AT4G31840 plastocyanin-like domain-containing protein
AT1G50490 UBC20 Encodes one of two ubiquitin-conjugating enzymes belonging to the E2-C gene family (the other being UBC19). 

Transcript is always found in diving cells, but also in other non-dividing cells.
AT1G02730 CSLD5 Encodes a gene similar to cellulose synthase. Knock-out mutant has reduced growth, reduced xylan level and 

reduced xylan synthase activity in stems.
AT1G76540 CDKB2 Encodes a cyclin-dependent protein kinase involved in regulation of the G2/M transition of the mitotic cell cycle.
AT1G76310 CYCB2 core cell cycle genes
AT3G51280 male sterility MS5, putative
AT4G23800 high mobility group (HMG1/2) family protein
AT5G13840 WD-40 repeat family protein
AT3G02640 similar to unknown protein [Arabidopsis thaliana]

Table 9: List of experiments used in the pathogen stress analysis

Accession Number (*) Number of Samples Experimental Setup Sampled Tissue

E-MEXP-1094 12 Over Expression, Pathogen Stress Leaf
E-MEXP-547 14 Mutant, Pathogen Stress Seedling
E-GEOD-431 16 Mutant, Pathogen Stress Unknown
E-NASC-76 18 Pathogen Stress Seedling
E-MEXP-546 21 Mutant, Pathogen Stress Leaf
E-MEXP-739 24 Pathogen Stress Leaf
E-MEXP-509 24 Pathogen Stress Leaf
E-GEOD-3220 24 Mutant, Pathogen Stress Leaf

(*) The accession number refers to the corresponding ArrayExpress repository ID.
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and highly interconnected. On the other hand, node-
score-independent clusters correspond to focused, specific
pathways that are likely to be regulated by separate, spe-
cific mechanisms.

Biological Relevance of Our Results
Our method identifies a global co-regulation network,
containing thousands of genes, as well as clusters of genes
found within the network. The network and component
clusters identified represent the minimal gene network
that is globally co-expressed in Arabidopsis, irrespective of
specific growth conditions.

Investigation of the network and the clusters found within
it reveals many genes with no or incomplete annotation.
Indeed, a large proportion of the Arabidopsis genome is
under-annotated. The function of such genes can be pre-
dicted based on close proximity to well annotated genes
in the network. For example, we identified a cluster of 14
cell cycle regulated genes, where only 6 genes are anno-
tated as involved in the cell cycle. Standard GO enrich-
ment analyses were not successful in identifying this
function, highlighting the importance of manual cura-
tion. That all 14 of these genes are down-regulated in the
hub1 mutant gave further credence to both our manual

curation of the cluster as cell cycle regulated, and to our
methodology of network and cluster identification.

Many of the GO-enriched gene clusters in our networks
are expected to be globally co-expressed as they pertain to
general plant metabolism. These include ribosome, chlo-
roplast and DNA metabolism related clusters. Stress and
defense-enriched clusters, and an auxin-response cluster
were also identified, emphasizing the importance of these
mechanisms in maintaining plant homeostasis. As plant
cells are specifically characterized by cell walls, it is also
not surprising that a cell wall specific cluster was also
identified. Relatively specific modules such as the cell
wall, auxin or cell cycle modules are good candidates for
further investigation, as they can easily be used to generate
specific hypotheses.

More specific modules are most likely to be found by
applying our method using different, specific sets of
experiments. For example, we detected defense-response
specific modules after analyzing a subset of experiments
dealing with pathogen stress. Such an approach would
extend our results from global transcriptional regulation
to tissue-, developmental- or condition-specific networks.

Table 10: GO Enrichment of clusters found in the pathogen stress network

Cluster ID Cluster Size Enriched GO Terms Percent of Genes with Enriched 
GO Terms

Corrected Pvalue

1 45 protein amino acid phosphorylation; 
cell communication; defense 
response; response to biotic 
stimulus; protein serine/threonine 
kinase activity; plasma membrane

24.44%; 22.22%; 17.77%; 17.77%; 
13.33%; 13.33%

0.005; 0.01; 0.01; 0.002; 0.023; 0.047;

2 72 kinase activity; plasma membrane 20.83%; 11.11% 0.01; 0.017;
3 61 kinase activity 21.31% 0.014;
4 94 plastid; P-P-bond-hydrolysis-driven 

transmembrane transporter activity; 
cation-transporting ATPase activity

28.72%; 7.44%; 4.25% 0.002; 0.025; 0.026;

5 117 chloroplast; protein complex; 
cytosolic part; systemic acquired 
resistance

31.62%; 17.94%; 5.98%; 4.27% 0.001; 0.001; 0.014; 0.002;

6 83 ribosome; organelle 
subcompartment; ribosome 
biogenesis and assembly; 
photosynthesis

20.48%; 18.07%; 10.84%; 9.63% 0.001; 0.001; 0.002; 0.001;

7 84 plastid; ribosome; cytosolic part 38.09%; 14.28%; 9.52% 0.001; 0.001; 0.002;
8 54 chloroplast; protein complex; 

photosynthesis; small ribosomal 
subunit

44.44%; 25.92%; 16.66%; 7.4% 0.001; 0.002; 0.001; 0.029;

9 6 None None None
10 25 None None None
11 11 structural constituent of ribosome; 

cytosolic part
81.81%; 54.54% 0.001; 0.001;

12 26 plastid part; organelle membrane 30.76%; 30.76% 0.002; 0.002;
13 6 None None None
14 5 None None None
15 4 None None None
Page 15 of 22
(page number not for citation purposes)



BMC Systems Biology 2009, 3:86 http://www.biomedcentral.com/1752-0509/3/86
We provide a website [32] holding the co-expression net-
works and gene modules data, including a gene query
interface.

Conclusion
Using the Arabidopsis genome as a model system, we pre-
sented a method for identification of gene modules from
diverse microarray experiments. Our method differs from

others by the use of a novel scoring function that takes
into account the frequency of co-expression in each indi-
vidual microarray experiment. The analysis reveals that at
least a fraction of the Arabidopsis transcriptome is globally
co-expressed, and can be further divided into functional
gene modules. Variation of the parameters employed
affects the topology of the networks, allowing for a differ-
entiation between node-score-dependent and node-score-

Genevestigator analysis of a pathogen response cluster from the pathogen response networkFigure 7
Genevestigator analysis of a pathogen response cluster from the pathogen response network. Expression of a 
cluster found using pathogen stress experiments was analyzed using Genevestigator. (A) Graph showing the genes in the clus-
ter and the edges that exist between them in the pathogen stress network. Expression according to (B) anatomical tissues or 
(C) developmental stages, is shown. Expression levels are shown in heat maps, where dark blue indicates maximal expression. 
Expression levels in B and C are shown in heat maps, where dark blue indicates maximal expression. (D) Gene expression in 
different cpr5 mutants. Expression levels are shown in a heat map in which intense green and red indicate down- or up-regula-
tion in comparison to wild type, respectively. Figures in B, C and D were generated using Genevestigator.
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independent modules. By changing the subset of microar-
ray experiments analyzed, condition-specific gene mod-
ules are identified as well. This approach is used to
provide a comprehensive map of global expression pat-
terns in the Arabidopsis transcriptome, including the iden-
tification of novel gene modules and assignment of new
functions to under-annotated genes. This approach is
applicable to any model system.

Methods
Data Collection and Filtering
We downloaded Arabidopsis gene expression data from
the ArrayExpress website [33]. All experiments available at
the time (December 2007), which conformed to the fol-
lowing conditions, were downloaded. First, experiments
were required to have statistically processed data available
for download, as we wished to avoid analyzing raw data.
Second, to minimize the affects of data variability arising
from technical issues, we chose a single microarray plat-
form on which all downloaded experiments were per-
formed. The platform chosen was Affymetrix GeneChip
Arabidopsis ATH1 Genome array, since it covers most of
the Arabidopsis genome (about 24,000 genes, out of
about 26,000 known genes), and because it has the largest
selection of experiments in the database. Third, as the
accuracy of gene expression correlation analysis increases
with the number of data points, we used only experiments
that contained at least 12 hybridization samples. Out of
61 experiments that passed the above criteria, we manu-
ally selected 43 having a complete annotation of the
experimental procedures and detailing of statistical meth-
ods used for analyzing the raw data. The list of 43 experi-
ments used in our study, including metadata for this set of
experiments, is available in Table 1.

We applied mild filtering to the expression data of each
downloaded experiment. Probe IDs were converted to
gene IDs, using a conversion table built on the basis of the
ATH1 array annotation files provided by Affymetrix. We
removed single probes that match more than one gene, as
well as sets of multiple probes that match a single gene.
This filtering reduced the number of probes from 22,810
present on the array, to 20,852 probes that have a one-to-
one mapping to Arabidopsis genes. The conversion table
constructed is available for download as Additional data
file 8. Finally, we reasoned that genes with a low expres-
sion value across all samples of a dataset would produce
unreliable correlation measurements. Therefore, we calcu-
lated for each dataset the lower 25th percentile of the gene
expression values of all of its genes and samples, and
removed from each dataset genes whose maximal expres-
sion across all samples did not exceed this value. About
17,300 genes have passed this criterion in each of the 43
datasets.

Calculation of Pairwise Correlations
In each dataset, the Pearson correlation coefficient was
calculated for all possible gene pairs using the corr func-
tion in Matlab (version 7.2.0.283). Absent and marginal
calls in the gene expression measurements were consid-
ered as missing values, therefore different gene pairs had
different samples from which a joint correlation can be
calculated. To answer this problem we used the pairwise
option for the rows parameter of the corr function, which
determines, for each gene pair separately, which data
points should be used for calculation. Samples for which
a missing value appears for any of the two genes in ques-
tion are not considered when calculating the correlation
between the genes. We disregarded correlation coeffi-
cients whose calculation was based on fewer than five data
points. Since on average each dataset contains expression
values for 17,300 genes (see explanation above), correla-
tion coefficients were calculated for more than 1.5 × 108

gene pairs in each of the 43 datasets. These massive calcu-
lations were performed on a 64 GB RAM, four Intel Xeon
2.33 GHz CPU machine, as processing of a single dataset
required about 15 GB of main memory.

In addition to calculating the correlation coefficient, the
Matlab corr function was used to output a p-value for each
coefficient, testing the null hypothesis of no correlation
against the alternative of a non-zero correlation. Within
each dataset, the p-values were corrected for multiple test-
ing using the Benjamini and Hochberg method [34]. Cor-
relation coefficients with a corrected p-value that is lower
than 0.05 were considered to be statistically significant.

Edge Scoring and Network Building
We sought to integrate the expression correlation data
into a network, in which nodes represent genes and edges
connect pairs of genes whose expression levels are corre-
lated across a given set of experiments. This raises the
question of how to take into consideration different
experiments when deciding if an edge should appear in
the network. Initially, it may seem appropriate to assign
each experiment an equal weight when considering the
appearance of an edge. However, we chose not to use this
naïve approach, for a number of reasons. First, the
number of samples contained in each experiment varies,
so correlation coefficients from different datasets cannot
be compared directly. To avoid this problem, we did not
compare the correlation coefficient themselves, but rather
the corrected p-values assigned to each coefficient, as their
calculation does incorporate the number of data points
used for calculating the coefficients. We considered as sta-
tistically significant any correlation coefficient whose cor-
rected p-value was lower than 0.05. Second, the
distribution of correlation coefficients in each dataset is
often very different from the normal distribution (selected
examples are available in Figure 8). Furthermore, the
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number of statistically significant correlation coefficients
observed in different datasets highly varies (Figure 9). For
some datasets, out of all correlation coefficients calculated
for the dataset, less than 1% are statistically significant,
while for others datasets, more than 40% of the correla-
tion coefficients are statistically significant. On average,
across all datasets, about 10% of the correlation coeffi-
cients are statistically significant. This variation and its
possible relation to the underlying biological conditions
of each experiment are of interest, and are worth studying
in their own right.

Our weighting scheme is inspired by the measure of infor-
mation of random variables by means of entropy. The
more surprising, or unexpected, an event is, the larger is its
entropy, and the relative contribution is exactly the log of
its inverse probability. In an analog manner, we reasoned
that a significant correlation between the expression val-
ues of two genes is more informative when it appears in a
dataset that has a low rate of significant correlations than
in a dataset with a high rate of significant correlations. We
therefore devised a function that incorporates this infor-
mation and computes a score for a pair of genes. A high
score signifies that the two genes are highly correlated
across a given set of experiments, where experiments with
fewer significant correlations are weighted more heavily.

Possibly the most notable difference between our
weighted contribution method and the standard, non
weighted version, is with respect to "small" datasets -
those having few significant correlations. Such datasets
will have very little effect on the network produced by an
un-weighted method, as very few pairs of genes are taken,
and they have to "compete" with larger (more significant
correlations) datasets. This would not be a problem if all
datasets would give rise to about the same number of sig-
nificant pairs. However, as pointed out above (Figure 9),
this is far from being the case in reality.

Formally, let D be a collection of n datasets. For each data-
set Dk in D, define pk as the percent of statistically signifi-
cant correlation coefficients in the dataset. Let <gi, gj> be a
pair of genes, and let xi, j

k be an indicator such that xi, j
k

equals 1 if both gi and gj appear in dataset Dk, and 0 other-
wise. Due to our filtering, not all datasets have the same
genes, but there is a large overlap. Let yi, j

k be an indicator
of the correlation between gi and gj in dataset Dk. Namely,
yi, j

k equals 1 if gi and gj have a statistically significant cor-
relation (with a corrected p-value of less than 0.05) in Dk,
and 0 otherwise. Then the score for the pair <gi, gj> over D
is defined as:

In the nominator, we weight the contribution of Dk to the
scoring of gi and gj by ln(1/pk). The lower pk is, the higher
the contribution of the statistically significant correlation
observed between gi and gj in dataset Dk. Within the set D,
different datasets may be relevant to different gene pairs,
as not all genes appear in all datasets. We therefore nor-
malize the contribution of datasets in which gi and gj are
significantly correlated, by the contribution of all datasets
in which the two genes appear simultaneously. The
denominator is actually the maximal sum that can be
achieved for the given gene pair with the set D, so the final
score is a real number in the range [0, 1].

We remark that the expected value of ln(1/pk) (for a varia-
ble taking on value xk with probability pk) equals the
entropy of that random variable, a central notion in infor-
mation theory. Entropy-based measurements were used
before for analyses of gene expression data [35,36]. In the
case where all pk are the same, our measure simply counts
the number of datasets where the correlation between gi
and gj is significant.

Next, we build a network whose nodes are the 20,852
genes in our datasets. We place an edge between any two
genes whose score exceeds a given threshold, which we
call tscore. This network describes co-expression interac-
tions between gene pairs, based on the set D of gene
expression datasets used to calculate the scores. In our
analysis, we used two sets of datasets (experiments), for
each of those the scores are recalculated and a new net-
work is built. As some gene pairs appear simultaneously
in only a small number of datasets, we introduced a sec-
ond threshold called tdatasets. An edge that passed the tscore
threshold is added to the network only when the number
of datasets in which the pair appears exceeds the tdatasets
threshold. In our analysis the effective threshold chosen
was 20, meaning that only gene pairs that appeared in
almost 50% of our 43 datasets were considered as candi-
dates for globally co-expressed genes.

Module Finding and GO Enrichment
Our next step was to employ the networks, constructed
using different sets of experiments and different threshold
values, to find sets of genes that are significantly correlated
across different datasets. These sets of genes are candidates
for functional gene modules with a common regulatory
network, which is active under the experimental condi-
tions of the datasets used for the analysis. Such gene sets
would appear as highly intra-connected node clusters in
the co-expression networks. We used the MCODE v1.2
plugin in Cytoscape 2.4.1 [13] to detect such clusters,
under the following default parameters: No loops
included, degree cutoff is 2, haircut is on, no fluff, k-core
is 3 and max depth is 100. We have changed the node
score cutoff between different runs, as shown in the results
section. The clusters outputted by the MCODE algorithm
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Distribution of Pearson correlation coefficients in selected datasetsFigure 8
Distribution of Pearson correlation coefficients in selected datasets. The two datasets with the highest rate of signif-
icant correlation coefficients, two with an average rate and the two with the lowest rate are shown. The ID of the dataset and 
the percent of significantly correlated gene pairs are shown above each graph. N denotes the number of microarrays used in 
the experiment and a short description of experimental conditions is included.
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were tested for GO annotation enrichment using the
TANGO algorithm in Expander 4.0 [37].

Robustness Analysis
To validate that the gene sets found by our procedure are
meaningful and not random or sporadic, we performed
two robustness tests on the network built using all availa-
ble 43 datasets. First, to check whether the scoring func-
tion imposes a network topology that is prone to having
spurious intra-connected node clusters, we calculated
scores for all gene pairs as explained above, and then ran-
domly shuffled the scores, so that almost all gene pairs
were assigned a score that was not originally their own.
The procedure for building a network and finding gene
clusters was performed as before, using the same thresh-
olds that were used for the experimental network.

Second, to check whether clusters similar to those found
in the experimental network appear in a random network
with the same degree distribution, a network was built
according to the regular procedure, but before searching
for gene clusters, the edges were shuffled in a degree-pre-
serving fashion. Shuffling is performed by randomly
selecting two edges (gk, gl) and (gm, gn) that do not share
any nodes. The selected edges are removed from the graph
and the edges (gk, gm) and (gl, gn) are added, as long as the
newly added edges do not exist in the graph. This step is
repeated for 4 times the number of nodes in the graph.

Differences between general and specific GO terms
To check for GO term difference between node-score-
dependant and node-score-independent clusters we
downloaded the full GO ontology, and parsed it in order

Percent of significantly co-expressed gene pairs the experiments usedFigure 9
Percent of significantly co-expressed gene pairs the experiments used. For each experiment we calculated the 
number of significantly co-expressed gene pairs that were included in the analysis. The data is presented as a proportion out of 
all possible gene pairs. Co-expression between a pair of genes is considered as significant if the p-value calculated for the Pear-
son correlation coefficient is below 0.05.
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to find the number of children of each node in the GO
acyclic graph. A node in the graph is considered a child of
another node if there is a directed path leading from the
latter to the former. Each cluster with enriched GO terms
was assigned the number of children of its most abundant
term. To determine significance of the difference between
means of each group of clusters we used a two-tailed t-test.
To determine significance of the difference between medi-
ans of each group of clusters we used a one-tailed Mann-
Whitney test.
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GGM: Graphical Gaussian Models; GO: Gene Ontology.
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