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Abstract
Background: Bistability underlies basic biological phenomena, such as cell division, differentiation,
cancer onset, and apoptosis. So far biologists identified two necessary conditions for bistability:
positive feedback and ultrasensitivity.

Results: Biological systems are based upon elementary mono- and bimolecular chemical reactions.
In order to definitely clarify all necessary conditions for bistability we here present the
corresponding minimal system. According to our definition, it contains the minimal number of (i)
reactants, (ii) reactions, and (iii) terms in the corresponding ordinary differential equations
(decreasing importance from i-iii). The minimal bistable system contains two reactants and four
irreversible reactions (three bimolecular, one monomolecular).

We discuss the roles of the reactions with respect to the necessary conditions for bistability: two
reactions comprise the positive feedback loop, a third reaction filters out small stimuli thus enabling
a stable 'off' state, and the fourth reaction prevents explosions. We argue that prevention of
explosion is a third general necessary condition for bistability, which is so far lacking discussion in
the literature.

Moreover, in addition to proving that in two-component systems three steady states are necessary
for bistability (five for tristability, etc.), we also present a simple general method to design such
systems: one just needs one production and three different degradation mechanisms (one
production, five degradations for tristability, etc.). This helps modelling multistable systems and it
is important for corresponding synthetic biology projects.

Conclusion: The presented minimal bistable system finally clarifies the often discussed question
for the necessary conditions for bistability. The three necessary conditions are: positive feedback,
a mechanism to filter out small stimuli and a mechanism to prevent explosions. This is important
for modelling bistability with simple systems and for synthetically designing new bistable systems.
Our simple model system is also well suited for corresponding teaching purposes.

Background
Bistability is key for understanding basic phenomena of
cellular functioning, such as decision-making processes in
cell cycle progression, cell differentiation, and apoptosis
[1]. It is also involved in loss of cellular homeostasis asso-

ciated with early events in cancer onset [2] and in prion
diseases [3]. A recent review discussed different bistability
phenomena in bacteria, such as different phenotypes in
clonal populations being important for the origin of new
species [4].

Published: 8 September 2009

BMC Systems Biology 2009, 3:90 doi:10.1186/1752-0509-3-90

Received: 13 May 2009
Accepted: 8 September 2009

This article is available from: http://www.biomedcentral.com/1752-0509/3/90

© 2009 Wilhelm; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/1752-0509/3/90
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19737387
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Systems Biology 2009, 3:90 http://www.biomedcentral.com/1752-0509/3/90
Bistable switches are typically enabled by positive feed-
back loops in signal transduction networks. Here a suffi-
ciently strong (external) signal switches on a self-
amplifying process leading to expression of the corre-
sponding target genes. Due to the corresponding hystere-
sis effect this process can retain its activity without a
persistent signal. Such switches are therefore called 'deci-
sion-making'. One often discussed example is the restric-
tion point control for the regulation of G1-S transition of
the mammalian cell cycle, where recently a detailed small
ordinary differential equation (ODE) model was pre-
sented [5]. The G2-M transition was also described as a
toggle-switch [6]. Oocyte maturation is an example for the
involvement of a bistable system in cell differentiation
[7,8]. Biochemical switches have also been found in nutri-
ent utilization in bacteria [9], mating response in yeast
[10], and synaptic memory processing [11]. Interestingly,
just quite small parts of the large signal transduction sys-
tems (for instance a single layer of a MAPK cascade) can
already induce bistability. This was demonstrated for the
epidermal growth factor receptor system [12] and other
kinase phosphatase systems [13,14].

Given its outstanding biological importance, it is clear
that bistable switches also attracted the attention of theo-
retical biologists. A frequently discussed problem is the
necessary (and/or sufficient) condition for bistability. The
central result goes back to the work of Clarke [15] and
Thomas [16]: autonomous differential systems can pos-
sess multiple steady states only under the presence of pos-
itive feedback loops [17,18]. It was also argued that the
feedback needs 'some type of non-linearity' or 'ultrasensi-
tivity' for inducing bistability [19]. Different types of
ultrasensitivity have been discussed [20], but formulated
in the most general manner that means the system needs
some mechanism for filtering out small stimuli to enable
a stable 'off' state [20-22]. Feinberg's chemical reaction
network theory (CRNT) even gives necessary and suffi-
cient conditions for bistability, by restricting to special
mass-action kinetic (MAK) systems [23]. In a recent appli-
cation example a single layer of a MAPK cascade was stud-
ied and the region in parameter space being relevant for
bistability was analytically described [24]. However, for
larger systems CRNT leads to cumbersome calculations,
but the applicability could recently be improved by just
studying important subnetworks [25] which are based on
the concept of elementary flux modes [26].

Another approach for identifying necessary structural con-
ditions for any dynamic behaviour is the identification of
the corresponding minimal systems. Such systems have
the advantage of being "simple enough to understand at
an intuitive level" [19] and are well suited for different
basic studies. For instance, the Lotka-Volterra system
[27,28], the Higgins-Selkov-oscillator [29-31], and the

"Brusselator" [32] have been studied extensively. Some
years ago we identified the smallest chemical system with
Hopf bifurcation [33]. Minimal MAK systems are summa-
rized in Table 1. Recently, different 'smallest' or 'minimal'
bistable systems for cell polarity [34] and G protein sig-
nalling [35] have been presented, as well as 'the smallest
multistationary mass-preserving chemical reaction net-
work' [36]. However, these systems are still too large to
represent a minimal bistable system according to defini-
tion (1). Many different reaction topologies with 3 and 4
molecules have also been analysed computationally for
the possibility of bistability [37]. Although this type of
bistability detection may miss some bistable systems, the
authors found nevertheless many topologies with switch-
ing behaviour (10% of tested configurations). The identi-
fied 'minimal' system contained 3 variables (5 reactants, 2
conservation relations) and 6 reactions. The bistable one-
dimensional Schloegl system [38] contains trimolecular
reactions and can therefore not represent a realistic ele-
mentary chemical system. Elementary chemical reactions
are at most bimolecular.

Here we present and discuss the smallest bistable chemi-
cal reaction system. Application of our previously pre-
sented Instability Causing Structure Analysis (ICSA [39])
leads to additional insight into system functioning.

Results
The smallest bistable chemical reaction system
We define the smallest chemical system (contains only
mono- and bimolecular reactions, reversible reactions are
considered as two irreversible ones) by the following cri-
teria in decreasing order of importance:

According to this definition, the following bistable system
is unique (Methods section contains the proof for this
statement).

Assuming spatially homogeneous conditions, the system
can be described by the two-component mass-action
kinetic ODE system (S is incorporated into k1):
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Due to its simplicity, the mathematical analysis of the sys-
tem is simple as well. The system has two elementary flux
modes [26], following directly from the two nullspace
vectors of the corresponding stoichiometric matrix

One mode uses reactions 1-3, and the other reactions 1,2,
and 4. Bistability can, of course, only arise if all reactions

are active. Introducing dimensionless quantities (x/c → x,

y/c → y, k1/(k2c) → k1, k3/k2 → k3, k4/(k2c) → k4, tk2c → t),

we set k2 = 1, without restriction of generality (k1, k3, k4 >

0). The system has three steady states:

,

, with the discrimi-

nant D = k1 - 4k3k4. A saddle-node bifurcation occurs at D

= 0, the three steady states are real if D > 0. The second and
third steady state is always positive.

Generally, in two-component systems a steady state is
locally stable if the trace tr and determinant det of the

Jacobian at this point are negative and positive, respec-
tively (node if 4det <tr2, focus otherwise). If the corre-
sponding determinant is negative, the steady state is a
saddle point. It can be seen from the Jacobian

 that its trace is always nega-

tive (phase flow of system (2) is confined to the positive
part of the phase space). This excludes Hopf bifurcations
(arising at tr = 0) and it means the system is dissipative, i.e.
phase-space contracting all over the phase space (trace =
two-dimensional Lyapunov exponent). The determinants
of the Jacobian at the three steady states read k1k4,

, and , respec-

tively. Therefore, the first and third steady state are always
locally stable, the second is always locally unstable, a sad-
dle-point (determinant of Jacobian at second steady state
always negative, cf. point 3 in Methods). Simple calcula-
tion shows further that 4det <tr2 at the first and third
steady state, so these are always stable nodes.

For k1 = 8, k3 = 1, k4 = 1.5 the second and third steady state

are  and , respectively.
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Table 1: Distinguished minimal MAK systems

System Reaction scheme MAK model (ODEs) Ref.

Minimal bistable MAK system [38]

Minimal bistable chemical system This paper

Minimal oscillating MAK system [27,28]

Minimal MAK system with limit cycle [29-31]

Minimal chemical system with limit cycle [33]

S and P denote constant substrates and products.
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Figure 1 shows a corresponding signal-response curve,
also called bifurcation diagram [6]. The signal is the con-
centration of the constant outer substance S (assuming for
the bimolecular rate constant kbi = 1, the concentration S

is identical to the apparent rate constant k1 = kbiS), the

response is the steady state concentration of an internal
reactant, here X. The saddle-node bifurcation occurs at S =
3/4. Beyond that point the system has two stable steady

states. It follows from  that

 (for fixed other parameters), so the real

dynamic behaviour of the system is that of a toggle-switch
(Figure 1): for sufficiently large k1 small fluctuations in the

concentrations would drive the system to the positive
steady state (the 'on' state).

Figure 2 shows rate curves of system (2). It can be seen
that the three crossings of production and degradation

rate (i.e. the three steady states) are due to the different
contributions of the three degradation terms. This implies
a simple general procedure for designing bi- or multista-
ble systems: a bistable system can be created with one
function for production and three different functions for
degradation, e.g. a linear, a quadratic, and a cubic one as
in our simple example system. Accordingly, tristable sys-
tems require 5 different functions to enable 5 crossings
(three stable and two unstable steady states, cf. point 3 in
Methods), and so forth for more steady states. This obser-
vation helps constructing minimal and/or realistic models
of more complicated multistable systems. It can also be a
starting point for the design of real bistable systems, for
instance in synthetic biology. Note that all enzyme kinetic
rate laws can be modelled with polynomial ODEs [40].

The Instability Causing Structure Analysis (ICSA) of system 
(2)
Recently we presented a new method for topological net-
work analysis of dynamical systems, the Instability Causing
Structure Analysis (ICSA [39]). Standard stoichiometric
network analyses (such as elementary flux mode calcula-
tions [26]) are based on the assumption of steady states
and lead to linear constraints in flux space. ICSA is a non-
linear network analysis. It is based on the assumption of
locally stable steady states. The additional demand for

x k k D k2 1 1 32= −( ) /( )

x k2
1

0→∞⎯ →⎯⎯⎯

Signal-response curve (bifurcation diagram) of system (2) for the parameters k1 = 8, k2 = 1, k3 = 1, k4 = 1.5Figure 1
Signal-response curve (bifurcation diagram) of sys-
tem (2) for the parameters k1 = 8, k2 = 1, k3 = 1, k4 = 1.5. 
Solid lines indicate locally stable steady states, the dashed line 
locally unstable steady states. The inset shows the signal-
response curve if an additional small constant influx into X 
(here 0.6) is assumed (enabling a positive 'off' state, leaving 
the 'on' state and bifurcation point nearly unchanged). This is 
the classical toggle switch (terminology of Tyson et al. (6), 
others use the term toggle switch to describe a double nega-
tive (i.e. positive) feedback loop (4)) picture enabling the hys-
teresis cycle: starting with low values and increasing the 
signal continuously increases the response, until the saddle-
node bifurcation at about S = 1.7 is reached. Further increase 
of the signal leads to a sudden jump of the response to the 
upper steady state. Decreasing the signal now leads to a con-
tinuous decrease of the response, the systems stays in the 
upper steady state until the left bifurcation point is reached 
where the response jumps back to the lower steady state.

Rate curves [6] of system (2) for the parameters k1 = 8, k2 = 1, k3 = 1, k4 = 1Figure 2
Rate curves [6] of system (2) for the parameters k1 = 
8, k2 = 1, k3 = 1, k4 = 1.5. The thick solid line is the rate of the 
removal of reactant X (sum of the negative terms in ) and 
the thick dashed line the rate of production (positive term in 

). The three crossings indicate the three steady states 
. The thin lines show the contributions 

of the three degradation terms separately: quadratic term 
k2x2 dashed, the effectively cubic term k3 xy solid, and the lin-
ear term k4 x dotdashed. The inset shows a zoomed version 
for x < 2.1.
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local stability yields additional nonlinear constraints for
the steady state flux space [39].

ICSA needs no knowledge about kinetic details. It can be
applied to (bio)chemical systems where just the stoichio-
metric matrix is known (or even just the signs of its ele-
ments) or to signal transduction/gene regulatory networks
represented by interaction graphs [18] (also called inci-
dence graph [21] or causal influence graph [41]). ICSA
leads to additional insight into system functioning by
identifying all contained feedback loops and all the corre-
sponding instability causing structures (ICS). An ICS is
either a single feedback loop or a special combination of
feedback loops [39]. ICSA yields a necessary condition for
local instability of any steady state of the system: if there
is no ICS all potential steady states are locally stable. For
two-dimensional systems this also implies that the system
has just one steady state (cf. point 3 in Methods).

We apply ICSA for additional analysis of system (2). The
stoichiometric matrix S is given in (2c). Multiplication of
S with the reaction velocity substrates ector (contains the
substrates for each reaction) (v1 (y) v2 (x) v3 (x, y) v4 (x))T

leads to . Differentia-

tion yields the general Jacobian JG (39) of system (2):

where the indices x and y denote the corresponding partial
differentiation. The off-diagonal elements represent the
fundamental activating and inhibiting interactions in the
system: the positive v2x in JG21 shows that x activates y by
the second reaction, and equivalently for the two terms in
JG12 : v1y → y activates x by the first reaction, - v3y → y inhib-
its x by the third reaction. Figure 3 shows the correspond-
ing interaction (incidence) graph summarizing these
interactions. Interaction graphs can often be found in the
biological literature and corresponding databases (KEGG
[42]; BIOBASE [43,44]; Dynamic Signaling Maps http://
vivo.library.cornell.edu/lifesci/individual/vivo/
individual5093. ICSA [39] was developed for structural
analyses of (bio)chemical systems (KEGG [42]; BRENDA
[45]) AND such interaction graphs.

The system contains one positive and one negative feed-
back loop. The positive loop is the necessary structural
condition for bistability [18]. The second often discussed
ingredient for bistability is any mechanism for filtering
out small stimuli to make the off-state stable. Ferrell and
Xiong [20] discussed different such mechanisms, as ultra-
sensitivity and back reaction saturation. Our system has

the simplest mechanism to stabilize the off-state: the
monomolecular efflux reaction 4. Analysis shows that
without this reaction the second (unstable) steady state
merges with the zero off-state making it (weakly) unsta-
ble. In fact, Figure 2 (especially the inset) shows that it is
the linear degradation term that makes the overall degra-
dation rate higher then production for low X concentra-
tions.

System (2) is the minimal chemical reaction system with
bistability. Therefore, any ingredient is essential. That also
means, without the negative loop (without reaction 3
being catalyzed by Y) this system cannot be bistable. In
fact, the negative feedback prevents explosion of the sys-
tem: without reaction 3 the system has just one locally sta-
ble off-state and one unstable positive steady state. Figure
2 shows that without the cubic term there are just two
crossings of the rate curves.

Summarizing, system (2) contains the three different nec-
essary conditions for bistability: (i) a positive feedback
loop, (ii) a mechanism for filtering out small stimuli, and
(iii) a mechanism for preventing explosion. Interestingly,
the third condition lacks discussion in the literature
[19,20,22]. Moreover, these three conditions can be
related to the three degradation terms in the balance equa-
tion of X and so to the last three of the four reactions in
(2). The first reaction represents the production of the sys-
tem, it is the only input. The second reaction closes the
positive feedback cycle. Reactions three and four are deg-
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Interaction graph of system (2)Figure 3
Interaction graph of system (2). It follows directly from 
the off-diagonal elements of the general Jacobian (3). The 
positive feedback loop is the only instability causing structure 
(ICS) in the system, allowing for a locally unstable steady 
state (presupposition for bistability).
Page 5 of 9
(page number not for citation purposes)

http://vivo.library.cornell.edu/lifesci/individual/vivo/individual5093
http://vivo.library.cornell.edu/lifesci/individual/vivo/individual5093
http://vivo.library.cornell.edu/lifesci/individual/vivo/individual5093


BMC Systems Biology 2009, 3:90 http://www.biomedcentral.com/1752-0509/3/90
radation reactions. The third is the main degradation for
higher concentrations, it prevents explosion. The fourth
reaction filters out the small stimuli.

The first step in the general ICSA procedure is the analysis
of feedback cycles resulting from the off-diagonal terms of
the general Jacobian. The second step is the identification
of the topological structures that actually cause instability.
As mentioned above, standard local stability analysis of
two-component systems needs consideration of the Jaco-
bian's trace and determinant det. In ICSA we study the
general Jacobian. It follows from (3) that the trace is
always negative and det = v2x v3y + v1y (v3x + v4x - v2x). The
only negative term in det comprises reactions 1 and 2, so
this positive feedback cycle is the only ICS of the system.
The negative feedback cycle cannot cause any instability
here.

Discussion
The minimal bistable chemical reaction system (2) is
based on definition (1). This definition is based on a
chemical/physical point of view, but other definitions
might also be possible. The definition for the smallest
chemical reaction system with Hopf bifurcation [33], for
instance, was more mathematically motivated: here mini-
mal number of quadratic terms in the ODEs had a higher
priority than minimal number of reactions. So far it has
not been clear whether any at most bimolecular 3-variable
system with only four (irreversible) reactions and Hopf
bifurcation exists. Meanwhile we found a corresponding

system ( , ,

) which has a supercritical Hopf bifurca-

tion (e.g. at k1 = k2 = 1, ). This might

be the minimal chemical reaction system with sustained
oscillations according to definition (1).

Interestingly, system (2) is similar to a previously pre-
sented "minimal reaction network" [12] modelling activa-
tion of the epidermal growth factor receptor (EGFR). Our

 equation resembles the balance equation of the phos-
phorylated receptor tyrosine kinase (this superfamily con-
tains EGFR) and  is similar to the differential equation

for active protein tyrosine phosphatase.

Bistable systems play important roles also beyond biol-
ogy. They are usually depicted by the mechanical example
of a ball rolling into two different valley basins. Bistable
chemical systems, in particular, have been studied exten-
sively to analyse relaxation kinetics [46], non-equilibrium
thermodynamics [47], stochastic resonance [48], as well
as climate change [49].

Positive feedback is clearly associated with bi/multistabil-
ity. Negative feedback, in contrast, is often discussed in
the context of oscillations [6], and we recently conjectured
that this is indeed a necessary condition for (sustained)
oscillations [39]. However, this contradicts statements as
"sustained oscillations can occur in models based on pos-
itive or negative feedback" [50]. Obviously, different
understandings of feedback exist. We suggest to use the
general Jacobian JG (for system (2) it is given in (3)) for a

simple definition of feedback: if the JG terms close any

cycles, then feedback exists (e.g. the positive and negative
feedback cycles of system (2)), otherwise not. Analysis of
JG guarantees a unique identification of all in a system

contained feedback cycles. Goldbeter [50] mentioned dif-
ferent examples where the oscillations should be based on
a positive feedback, such as glycolytic, Ca2+, and cAMP
oscillations. However, a more detailed analysis of these
systems shows that a negative feedback (according to our
definition) is always contained (results unpublished). An
example is the simplest model for glycolytic oscillations,
the Higgins-Selkov oscillator ([29-31], Table 1): the corre-

sponding general Jacobian is . Its

trace and determinant are v2y - v2x - v3y and v2xv3y, respec-

tively. Obviously, v2y in JG22 is the only instability causing

term (a positive feedback), so the second reaction is the
only ICS in the system. However, inspection of the off-
diagonal elements of JG reveals a negative feedback as

well: the larger x, the larger becomes y, but the larger y, the
smaller becomes x. The same is realised in the bistable sys-
tem (2), where the positive feedback is the only ICS and
another negative feedback is contained. These examples
show how the analysis of the general Jacobian helps clar-
ifying the discussion of feedback loops.

We have shown that a mechanism for preventing explo-
sions is a third necessary condition for bistability (com-
plementing the previously discussed two other conditions
positive feedback and filtering out of small stimuli). In
system (2) this is achieved by a negative feedback. Other
bistable systems contain negative feedbacks as well (e.g.
ERK pathway [2]), so we hypothesize that this is indeed a
typical feature of bistable systems. Interestingly, also oscil-
lating systems typically contain (besides the necessary
negative feedback) a positive feedback (for better tunable
frequency, evolvability and robustness [51]). Thus, oscil-
lating and bistable systems are practically based on the
same set of feedback cycles.
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Conclusion
Bi/multistability and oscillations are the two most impor-
tant dynamic phenomena in biology. Limit cycle oscilla-
tions are associated with biological clocks and cell
signalling [52], and spatial oscillations with proper cell
division [53]. The fundamental importance of bistability
is discussed in the introduction. Some years ago we pre-
sented the smallest chemical system with limit cycles [33].
Here we have derived the smallest chemical system with
bistability (2).

Minimal systems are well suited for basic studies and for
teaching purposes. This explains the great success of, for
instance, the Lotka-Volterra [27,28] and the Higgins-
Selkov system [30]. We have demonstrated for the mini-
mal chemical reaction system with Hopf bifurcation [33]
that it is accessible for detailed mathematic-analytical
examination [54] and a good example system for thermo-
dynamic considerations [55]. We hope that also the min-
imal chemical system with bistability will serve for such
purposes in the future.

Methods
System (2) is the smallest bistable chemical reaction sys-
tem according to definition (1) - proof (inductive proof
systematically considering all possibilities):

1. The Schloegl system (Table 1) is the smallest bista-
ble one-variable (1d) system: 1d systems need an
unstable steady state to separate the attractor regions
of two stable steady states, so we need at least three
steady states to realize a bistable system. The simplest
function (which is realizable as a MAK system) f(x)
with three zeros is the cubic polynomial. To realize a
stable 'on' state the sign of the cubic term needs to be

"-" ( ). For three different

non-negative steady states we also need a positive
quadratic and a negative linear term: f(x) = -a x3 +b x2-
c x+d (a, b, c>0) possesses two positive extrema as can
simply be seen considering f'(x) = 0. Thus, the mini-
mal bistable 1d system reads

. The minimal corre-

sponding MAK system is the Schloegl system shown in
Table 1 (a reversible monomolecular efflux reaction
(d>0) allows for two positive stable steady states). It
follows that a chemically realistic bistable system with
only mono- and bimolecular reactions needs at least
two variables.

2. Using our general quasi-steady-state-approximation
procedure [56], we have previously shown that any
irreversible trimolecular reaction can be understood as

limit case of a reversible bimolecular reaction and
another irreversible bimolecular reaction by introduc-
ing one additional intermediate [57]. Transforming
the Schloegl system accordingly proves that at most
bimolecular bistable 2d systems exist, i.e. the number
of variable reactants in the minimal bistable chemical
system is fixed to two (cf. definition (1)).

3. The lemma of the index sum [58] states that the sum
of indices of all steady states within a two-dimensional
confined set (closed region in phase space where all
trajectories point inwards [59]) equals one. The index
values of a node, a focus, and a saddle are +1, +1, and
-1, respectively (for stable and unstable nodes and foci
[58]). Our minimal system should therefore contain
one unstable (saddle-point) and two stable steady
states (we are only considering non-exploding sys-
tems, such that a confined set could simply be con-
structed, trajectories point inward at the boundary of
the positive orthant anyway). To get three steady states
we need at least a cubic steady state equation f(x) = 0,
i.e. an x3 term (higher order polynomials would
require more bimolecular reactions). In 2d MAK sys-
tems this can only be realized by one ODE with an xy
term and the other with x2 and y terms. Inserting the
corresponding steady state expression y = x2..., into the
other ODE's xy term gives the cubic term. A direct x3

term is forbidden in bimolecular systems. The sym-
metric case y2 and x needs no extra consideration.
These terms already correspond to at least three reac-
tions. One can show that such three reactions are not
sufficient to give a bistable system (the explicit proof
is not necessary, because it turns out indirectly from
the following analysis). So the minimal bistable sys-
tem has at least four reactions.

4. To realize a -x3 term in the corresponding steady
state equation, one either needs the terms y and x2

with different signs and -xy in the other ODE, or y and
x2 with the same signs and +xy in the other ODE. But

the same signs variant cannot work:  is not

chemical,  would contain at least one tri-

molecular reaction,  is not chemical, and

 is also impossible. The latter applies

because: (i) the  equation must also contain a term -

xy (the corresponding reaction cannot be bimolecular
otherwise: a term +xy in  implies the bimolecular

reaction X+Y->2X, implying the term -xy in ), (ii)

detailed analysis of the system

 shows

� …x f x ax a= = − >( ) ,3 0

�x ax bx cx a b c= − + − >3 2 0 ( , , )

�x x y= − −2

�x x y= +2

�y x y= − −2

�y x y= +2

�y

�x
�y

� �x k x k xy y k x k xy k y= − + = − +( ) , ( )2 21
2

2 1
2

2 3  
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that the cubic term in the steady state equation always
vanishes, independent of any other added mono- and/
or bimolecular reactions. So the y and x2 terms must
have different signs in one ODE.

5. There are two variants for the different-sign-case: 1.

 2.  (note

that the x2 term has to appear also in the  equation
to be interpretable as bimolecular reaction). We show
that no bistable system with only four reactions exists
that corresponds to the first case: to realize a positive
quadratic term in the cubic polynomial of the steady
state equation (cf. discussion concerning the Schloegl
system in 1.)  we have three options: (i)

, (ii) , (iii)

. The second case could only be

realized by 4 different reactions and would need a fifth
reaction to yield a linear term in the cubic polynomial
(cf. discussion concerning the Schloegl system in 1.).
The same holds for the third case, even if another x2

term (still realizable by four reactions) would be
added in the  equation. The first case is realizable by

three reactions. However, it is easy to see that a linear
term in the steady state equation  needs at least

two additional reactions.

6. However, the second system

 can yield a bistable at most

bimolecular system with only 4 reactions: The system

 is realizable by three reac-

tions, we add y as the positive term in  (still three
reactions) and a fourth reaction, a simple efflux of x to
ensure a linear term in the cubic polynomial (to yield

three steady states): .

Analysis shows that the reaction from y to x needs to
be bimolecular (reaction 1 in (2a)) to enable three
nonnegative steady states. In fact, this is the only input
into the system. Note that this system is quite unique,
there is no really different bistable chemical system
with only four reactions: the positive term in  has to
be y to enable a positive quadratic term in the steady
state equation . System (2) is unique with
respect to definition (1). The very similar system

where reaction 2X → X + Y is replaced with 2X → 2Y
is mathematically equivalent (factor 2 can be incorpo-
rated into the kinetic constant). �

The slightly modified system replacing reaction X + Y → Y
+ P with X + Y → P is bistable as well (it has also just four
reactions, but is not as minimal as system (2) for the third
criterion of definition (1). Modifying further by replacing
2X → X + Y with 2X → Y and S + Y → 2X with S + Y → 3X
gives another bistable system resembling a system which
can be derived from the Schloegl-system using our previ-
ously discussed general transformation rules [57].
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