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Abstract

Background: With an accumulation of in silico data obtained by simulating large-scale biological networks, a new
interest of research is emerging for elucidating how living organism functions over time in cells.
Investigating the dynamic features of current computational models promises a deeper understanding of complex
cellular processes. This leads us to develop a method that utilizes structural properties of the model over all simula-
tion time steps. Further, user-friendly overviews of dynamic behaviors can be considered to provide a great help in
understanding the variations of system mechanisms.

Results: We propose a novel method for constructing and analyzing a so-called active state transition diagram
(ASTD) by using time-course simulation data of a high-level Petri net. Our method includes two new algorithms.
The first algorithm extracts a series of subnets (called temporal subnets) reflecting biological components
contributing to the dynamics, while retaining positive mathematical qualities. The second one creates an ASTD
composed of unique temporal subnets. ASTD provides users with concise information allowing them to grasp and
trace how a key regulatory subnet and/or a network changes with time. The applicability of our method is
demonstrated by the analysis of the underlying model for circadian rhythms in Drosophila.

Conclusions: Building ASTD is a useful means to convert a hybrid model dealing with discrete, continuous and
more complicated events to finite time-dependent states. Based on ASTD, various analytical approaches can be
applied to obtain new insights into not only systematic mechanisms but also dynamics.

Background
A great deal of biological datasets have been measured in
a lot of laboratories around the world in recent years.
Petri nets have been applied successfully in modeling,
simulating and analyzing biological networks [1,2] (i.e.,
metabolic [3,4], signal transduction [5,6] and gene regula-
tory networks [7,8]). In the meanwhile, a number of pub-
lic and commercial databases have developed tools to
automatically convert biological pathway information
into various formats of models, e.g., the tool TRANS-
PATH2CSML [9] automatically converts data stored in
TRANSPATH [10] to a simulation-based model encoded
in a biological pathway format. These approaches make it
possible to construct larger and more complex biological

network models. However, the associated increase in
complexity and output data result in the difficulty of
grasping systematic characteristics of the models.
Several studies with respect to the topology of the

interactions between biological compounds in cellular
networks based on Petri net theory have been made in
understanding biological networks [11-14]. These
approaches use mathematical properties of Petri nets
(e.g., reachability, liveness, boundedness and T-invariant)
to reveal some topological properties of biological net-
works on qualitative models. Other investigation regard-
ing the dynamics of signal propagation in signaling
pathway has been given by Hardy et al. [15]. This
method gives temporal information about the flow of
signal propagation. However, the analysis is limited to a
single signal source. Nevertheless, it is expected to find
a general methodology to analyze the dynamics with
quantitative simulation information, i.e., time-dependent
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dynamic behaviors among genes and their products
which constitute biological networks [16].
This paper presents a novel method to build a frame-

work for automatically constructing a so-called active
state transition diagram (ASTD) for the dynamic analy-
sis with respect to the structural changes over time in a
hybrid functional Petri net with extension (HFPNe)
model. Our method incorporates time-course simulation
data and temporal structural properties (connection
relationship) of the HFPNe model. This method con-
structs an ASTD composed of unique temporal subnets
which are exhaustively extracted from original HFPNe
model, produces a simplified graphical representation
about the temporal information of the dynamics. After
the ASTD is built, various analysis can be applied to the
ASTD to obtain new insights into the systematic
dynamics. Note that HFPNe is an enhanced Petri net
architecture which involves the functions of existing
high-level Petri nets [17].
The paper is organized as follows. In Methods, we

first present a basic definition of HFPNe. We propose
two new algorithms for constructing ASTD based on
time-course simulation data from an HFPNe model. In
Results and Discussion, we present a case study describ-
ing how our method is employed to integrate and inter-
pret the circadian rhythm model in Drosophila, and give
three characteristic overviews of the ASTD for facilitat-
ing a system-level understanding. The final section con-
cludes our paper and addresses the contribution.

Methods
Hybrid functional Petri net with extension (HFPNe)
Hybrid functional Petri net with extension (HFPNe) is a
mathematical tool for modeling and simulating

biological networks. HFPNe can deal with three types of
data - discrete, continuous and generic - and is com-
prised of three types of elements - places, transitions
and arcs - whose symbols are illustrated in Figure 1.
A discrete place holds a positive integer number of con-

tent. A discrete transition is the same notion as used in the
traditional discrete Petri net [18]. A continuous place holds
a nonnegative real number as concentration of a substance
such as mRNA and protein. A continuous transition is
used to represent a biological reaction such as transcrip-
tion and translation, at which the reaction speed is
assigned as a parameter. A generic place can hold any kind
of types including object, e.g., the string of nucleotide
base sequence. A generic transition can deal with any kind
of operations (e.g., alternative splicing and frameshifting)
to all types of places. Generic place and transition have
been practically applied for modeling and simulating more
complicated biological processes [7,19,20], e.g., activities of
enzymes for a multi-modification protein. Arcs are classi-
fied into three types: normal arc, test arc, and inhibitory
arc. Normal arc connects a place to a transition or vice
versa. Test or inhibitory arc represents a condition and is
only directed from a place to a transition. Each of normal
arc from a place, test arc, and inhibitory arc has a thresh-
old by which the parameter assigned to the transition at its
head is controlled. A normal arc from a place or a test arc
(an inhibitory arc) can participate in activating (repressing)
a transition at its head, as far as the content of a place at
its tail is over the threshold. For either of test or inhibitory
arcs, no amount is consumed from a place at its tail.

Basic definitions for HFPNe
We briefly give the necessary definitions for HFPNe
used in this paper. The formal definition of HFPNe is

Figure 1 The symbols of HFPNe.
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given as additional material [see Additional file 1]. For
further definition and application of HFPNe the reader
is suggested to refer to Nagasaki et al. [17]. The follow-
ing is the mathematic definitions used in this paper:
Definition 1. A hybrid functional Petri net with exten-

sion (HFPNe) H = (P, T, A, τ, w, u, d) consists of the
following:

1. P is a set of places and T is a set of transitions.
Place is labeled with either discrete, continu-
ous, or generic. Transition is also labeled with
discrete, continuous, or generic. The place
and transition are called discrete, continuous, or gen-
eric according to its label.
For each transition t in T, it has two sets Inputt and
Outputt of arcs. Arc aÎInputt is an edge from input
place pa to the transition t called input arc. Arc
a’ÎOutputt is an edge from the transition t to output
place pa’ called output arc. Each arc is labeled with
either normal, test, or inhibitory, and arc
labeled with normal (resp., test, inhibitory) is
called normal arc (resp., test arc, inhibitory arc). We
also say that arcs (a and a’) are discrete (resp., con-
tinuous, generic) if transition t is discrete (resp., con-
tinuous, generic).
We denote by PT and TP the set of input arcs and
the set of output arcs of all transitions, respectively.
We also denote arc a in PT as a(p, t). In a similar
way, arc a’ in TP is denoted as a’(t, p). The set A of
arcs is given by PT∪TP.
2. The types of places are given by a type function τ.
3. For each input arc aÎPT, its activity w(a) is given
by an activity function w. Activity function w(a) is
used as a function giving the threshold in discrete
and continuous cases and the condition in generic
case, which is required for enabling the transition t.
4. For each arc c (c = a(p, t)ÎPT or c = a’(t, p)ÎTP),
the update u(c) is given by an update function u.
5. For each discrete or generic transition t, the delay
of t is given by a delay function d.

We use the parameter x ≥ 0 for the time in HFPNe.
Do not confuse t for transition with x for time.
A marking of P is defined as a mapping M that assigns

a mark (the type of contents) to each place. M [p] is
called the mark of p. The initial marking I is a marking
at time x = 0 and we denote the marking at time x by
M(x). The reserved marking Mr(x) at time x represents
the amount of “tokens” reserved for firing when firing
conditions are satisfied. By convention, let M(p, x) be M
[p](x), and Mr(p, x) be Mr [p](x) for pÎP. We define M
(x) by M [p](x) = M [p](x)-Mr [p](x) if p is discrete or
continuous and M [p](x) = M [p](x) if p is generic.
Given the initial marking of HFPNe, the marking M(x)

and the reserved marking Mr(x) at time x are defined in
the following way:
For time x = 0, M(0) = I by definition. We define Mr

[p](0) = 0 if p is discrete or continuous, and Mr [p](0) =
null (the empty list) if p is generic. For x>0, we define
M (x) and Mr(x) in the following way. For transition t at
time x, we say that t is enabled at time x if the following
conditions are satisfied. Otherwise the transition is said
to be disabled at time x.

1. If t is discrete or continuous, then for all input
arcs c = a(p, t)ÎPT the following conditions hold:

(a) M [p](x)>w(c) [M(x)] if a is not labeled with
inhibitory;
(b) M [p](x)<w(c) [M(x)] if a is labeled with
inhibitory,
where w(c) [M(x)] is the threshold value of c on
marking M at time x.

2. If t is generic, then for all input arcs a(p, t)ÎPT
the following conditions hold:

(a) w(a) [ M (x)] = true if a is not labeled with
inhibitory;
(b) w(a) [ M (x)] = false if a is labeled with
inhibitory. □

Definition 2. For arc c = a(p, t)ÎPT at time x, we say
that c is enabled at time x if the following conditions
are satisfied. Otherwise, the arc c is said to be disabled
at time x.

1. If c is discrete or continuous, then M [p](x)>w(c)
[M(x)] holds;
2. If c is generic, then w(c) [ M (x)] = true holds. □

Definition 3. If disabled transition t turns enabled at
time x, we say that t is triggered at time x and x is called
the trigger time. If enabled transition t turns disabled at
time x, we say that t is switched off at time x and x is
called the switch-off time. □
Definition 4. We define firing of discrete transition t.

Assume that discrete transition t is triggered at time x.
For each normal input arc a(p, t), the place p must be
discrete or continuous by definition. Then Mr [p]
reserves a · u(a) [M (x)], i.e., a·u(a) [M (x)] is added to
Mr [p], for the time y > x until x + d(t) [M(x)], where
a = {0, 1}, if a = 0, reserve is disabled; otherwise, token
is reserved. If t is still enabled at x + d(t) [M(x)], then at
the same time x + d(t) [M(x)], M [p] is decreased by u
(a) [M(x)] and Mr [p] releases u(a) [M (x)], i.e., u(a) [M
(x)] is decreased from Mr [p]. Simultaneously, for each
output normal arc a’(t, p’), M [p’] is increased by u(a’)
[M(x)] at time x + d(t) [M(x)] by arc a’(t, p’). The time
d(t) [M(x)] is called the delay that is determined by the
function d(t) of the mark M(x) at time x.
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As we will describe in Definitions 5 and 6 below, the
reservation is not performed by generic or continuous
transition. However, for the place p, there may be
another discrete transitions t1,..., tℓ with normal input
arcs a1(p, t1),..., am(p, tℓ) which are triggered at time x.
Then each discrete transition ti tries to reserve u(ai) [M
(x)] from the same M [p] at time x for i = 0,..., ℓ, where
a0 = a(p, t) and t0 = t. We say that there is a conflict
with p at time x if M p x u a M xik

[ ]( ) ( )[ ( )]  0

� . When
a conflict occurs, some conflict resolution should be
applied, e.g., random selection of transitions, priorities
on transitions, etc.
Even if some conflict resolution procedure selected the

transition t to go further, the place p of a(p, t) may be
input places or output places of another discrete/contin-
uous/generic transitions. By this, M [p] and Mr [p], and
therefore M [p], may be changed, the conditions of
“enabled” are not be necessarily satisfied until the firing
time x + d(t) [M(x)]. When t becomes disabled before
x + d(t) [M(x)], we say that a system error occurs with t.
Thus triggered transition does not necessarily fire. If

all of these actions succeed, we say that t fires at time
x + d(t) [M(x)]. □
Note that a is set to zero in this paper so that the

reserved marking Mr(x) at any time x equals to zero.
That is, the token amount will not be reserved during
the delay time of the transition t when it becomes
enabled.
Definition 5. We define firing of generic transition t.

Assume that generic transition t is triggered at time x.
For each normal input arc a(p, t), the place p can be
discrete, continuous and generic. For each output nor-
mal arc a’(t, p’), p’ can be also any kind of places. If t
keeps enabled until time x + d(t) [M(x)], then M [p] at
time x + d(t) [M(x)] is updated to u(a) [M(x)] and M
[p’] is updated to u(a’) [M(x)] at time x + d(t) [M(x)].
We say that t fires at time x + d(t) [M(x)] if this action
succeeds. If p is generic, it is always that Mr [p](x) =
null. No change is added to Mr [p] by arc a(p, t) if p
is discrete or continuous. In a similar way to discrete
transition, if p is discrete or continuous, Mp and Mr [p]
have a possibility to be changed before x + d(t) [M(x)]
by another transitions. Therefore w(a)[ M (y)] = true is
not necessarily kept for y Î (x, x + d(t) [M(x)]). As in
the case of discrete transition, it should be reported as
system error. Since generic transition updates M [p] and
M [p’] at time x + d(t) [M(x)], there is a possibility of
conflict with another transitions which use p and p’.
Thus some conflict resolution should be applied or it
should be reported as system error. □
Definition 6. We define firing of continuous transi-

tion t. When continuous transition t is triggered, it
starts firing and updates the marks of its connected
places continuously with the speeds determined by the

update function u and the marking M as long as it is
enabled. Assume that continuous transition t is enabled
at time x. For each normal input arc a(p, t), the place p
must be continuous by definition. Then the mark M [p]
will be decreased through the arc a(p, t) with the addi-
tional speed u(a) [M(x)] at time x. No change is added
to Mr [p] by arc a(p, t). For output normal arc a’(t, p’),
the place p’ must be continuous by definition. Then the
mark M [p’] will be increased through the arc a’(t, p’)
with the additional speed u(a’) [M(x)] at time x. No
change is added to Mr [p’] by arc a’(t, p’). □

HFPNe modeling
• Places are used to model biological molecules, con-
ditions, states and cellular organelles. In the case of
chemical reactions, the compounds involved usually
have specific quantities. In HFPNe, places can take
any object that can be expressed in programming
languages like an instance of a class in C++ or Java.
• Transitions are used to model interactions among
places, such as phosphorylation, translocation, and
apoptosis. In HFPNe, each transition can define any
event/function that can be performed by program-
ming languages. In a simple model, the event/func-
tion can be the speed of a reaction or a discrete
reaction.
• Arcs connecting the places and the transitions
represent the relations between corresponding sub-
stances and interactions.

As described above, HFPNe model allows modeling
and simulation of biological networks combining both
an intuitive graphical representation and well-founded
mathematic definition. Because of the versatility of
HFPNe, it has been successfully employed to develop
and analyze complex biological networks [7,19,20]. For
example, in [7], Li et al. employed a series of generic
places/transitions to realize 48 distinct genetic condi-
tions that are the combination of four genes (lin12,
lin15, vul and lst) and one anchor cell (AC) for deter-
mining the vulval precursor cell fate. AC, lin15, vul and
lst can toggle between true and false. lin12 has three
string-type values, i.e., “wt”, “ko”, “gf”, indicating three
genetic conditions of wild, knockout and overexpression
of lin12 (refer to Figures seven and eight in [7]). Saito et
al. [19] applied HFPNe to model regulatory networks
that involve new key regulator microRNA. They selected
the cell fate determination model of two gustatory neu-
rons of Caenorhabditis elegans - ASE left (ASEL) and
ASE right (ASER) (see Figure three in [19]). These neu-
rons are morphologically bilaterally symmetric but phy-
sically asymmetric in function. By the simulation, they
have confirmed the hypothesis that the cell fate is deter-
mined by the double-negative feedback loop involving
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lsy-6 and mir-273 microRNAs. Tasaki et al. [20] intro-
duced time-series proteomic data to the HFPNe model.
The authors semi-automatically constructed a well-
tuned epidermal growth factor receptor signal transduc-
tion pathway model (EGFR model, see Figure two in
[20]) coupled with their data assimilation (DA)
framework.

Model Analysis
We present two new algorithms (i.e. Algorithm 1 and
Algorithm 2) for analyzing structural transformation of
HFPNe model over time. Figure 2 illustrates a schematic
overview describing how to use Methods for the analysis
based on time-course simulation data.

Algorithm to extract temporal subnet from time-course
simulation data
First we show Algorithm 1 for extracting temporal sub-
nets from time-course simulation data (simulation data
for short). The simulation data is generated by using the
simulator of HFPNe, which is saved in an expression
data format (called EDF). In EDF, the concentrations of
all places (i.e., the marking) are stored at every time
point during the simulation (in this case, a constant
time interval). Let  = x0x1...xsim be a non-empty list

of simulation time points, where x0 is a start time point
of the simulation and xsim is an end time point. The size
(the number of elements) of the list  is denoted by
| |.
Algorithm 1 aims to (i) extract a minimal element set

of the HFPNe model at time x (i.e., the extracted set
cannot be reduced furthermore). In other words, such a
minimal element set with corresponding concentration
distribution M(x), will return exactly the same simula-
tion results as the original model under a precondition
that the elapsed delay time of the discrete transition is
given in the EDF. Any disturbance to the elements
belonging to this minimal set will lead to different
simulation results; and (ii) derive a total minimal ele-
ment sets by exhaustively examining all reachable states
of the HFPNe model with respect to the structural
transformations along the time variations. We thus
define temporal subnet H’(x) at time point x as such a
minimal element set consisting of usable HFPNe ele-
ments involving:

(1) enabled arcs;
(2) transitions connected by (1); and
(3) places connected by (1) and places connected
from (2).

Figure 2 Schematic overview of our method. The method includes Algorithm 1 and Algorithm 2 for constructing an ASTD (active state
transition diagram) from simulation data (EDF file).
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The temporal subnet H’(xi) has following positive
mathematical qualities: (i) the places involved in H’(xi) is
able to be simulated with corresponding concentration
distribution M(xi), and the simulation result of these
places from xi to xi+1 is exactly the same to the one of
the original HFPNe model; and (ii) all elements in H’(xi)
take part in the firing at xi, i.e., corresponding biological
components do participate in regulatory activity. We
formalize this notion in the following definitions:
Definition 7. Let H = (P, T, A, τ, w, u, d) be an

HFPNe.

(1) Let p be a place in P, °p (or p°) is a set of the
input (or output) transitions of p.
(2) AT is a set of the test arcs; AI is a set of the inhi-
bitory arcs; and AN is a set of the normal input arcs.
(3) For each arc c, let °c denote the source of c; let c°
denote the target of c. □

Definition 8. Let t be a transition of the given HFPNe
H.

(1) °t is the set of the input places {pl1, pl2,..., pl|°t|}
of t; t° is the set of the output places {PO1, PO2, ...,
PO|t°|} of t.
(2) PTt is the set of the arcs from the places in °t to
t; TPt is the set of the arcs from t to the places in t°.
(3) The set of input places connected by the inhibi-
tory arcs to the transition t is denoted as
P p p pI t I t I t I t

j k   
, , , ,{ , , , , }

1
  . AI , t is the set of the

inhibitory arcs { , , , , }, , ,c c cI t I t I t
j k  1

  ( ( , )), ,c a p t
j j

I t I t
  .

Similarly, the set of the test (or normal) arcs from
the input places of t to t is denoted as AT, t(or AN, t).
(4) Aw

t is the set of disabled normal and test arcs {c|
(cÎ(AT, t∪AN, t)) ∧ ((w(c)≥M [°c])∨(w(c) = false))},
where w(c) is the activity function. Aw

I t, is the set of
enabled inhibitory arcs {c|(cÎAI , t) ∧ ((w(c) <M
[°c])∨(w(c) = true))}. □

Algorithm 1. EXTRACTING TEMPORALSUBNET
For a given HFPNe H = (P, T, A, τ, w, u, d) at time x,

calculate TSN(H, x) and return H’(x).
TSN(H, x):
1. H’¬H
2. RMVA(H’) /* delete disabled arcs */
3. RMVT(H’) /* delete isolated transitions */
4. RMVP(H’) /* delete isolated places*/
5. return H’
RMVA(H’):
For ∀tÎT of H’,
1. if |AI, t| = 0 /* if there exists no inhibitory arc */

/* if there exists such a normal/test arc whose eval-
uated value of activity function is greater than or equal
to the concentration of the connected place */

2. if | |Aw
t  0 delete PTt∪TPt

3. else /* more than one inhibitory arc existing */
4. if | |Aw

t  0
/* if there exists an inhibitory arc whose evaluated

value of activity function is less than the concentration
of the connected place */
5. if | |,Aw

I t  0 delete PT At
w
I t\ ,  ∪TPt

6. else delete PTt∪TPt

7. else
8. if | |,Aw

I t  0 delete PT At
w
I t\ ,  ∪TPt

9. else delete AI, t

RMVT(H’):
For ∀tÎT of H,
if ((PTt = j) ∧ (TPt = j)) delete t /* delete isolated

transition */
RMVP(H’):
For ∀pÎP of H,
if ((°p = j) ∧ (p° = j)) delete p /* delete isolated

place */
The above algorithm TSN(H, x) is composed of three

parts: RMVA(H’), RMVT(H’) and RMVP(H’). RMVA(H’)
is designed to eliminate disabled arcs. RMVT(H’) and
RMVP(H’) are designed to eliminate isolated transitions
and places respectively since such elements cannot par-
ticipate in regulatory interactions. Figure 3 illustrates
the processes of extracting temporal subnet H’(x) from
H by applying the above algorithm with a given transi-
tion t. In Figure 3, inhibitory arc c2 has an evaluated
value w(c2) less than the concentration M [°c2] of its
connected place pl2. That means (1) the inhibitory arc
c2 represses the activity of transition t; and (2) two arcs
c1 and c

t| | are disabled due to the inhibition via c2.
These arcs are consequently deleted at step 5 in RMVA
(H’) (see the procedure from block (a) to (b)). Further,
due to the inhibition from pl2 which prevents the token
amount from flowing into the place po1, the output arc
a’(t, po1) of t is thus deleted in step 5. This results in
three isolated places pl1, p

t| | and po1 which are all
deleted at step 4 in TSN (H, x) (see the procedure from
block (b) to (c) in Figure 3). Time complexity of above
algorithm to calculate an H for x is O(|A|+|T|+|P|),
where O(|A|) is the time complexity of RMVA (H’).
Likewise, O(|T|) is the time complexity of RMVT(H’)
and O(|P|) is the time complexity of RMVP(H’). By
repeating the above algorithm to the list of simulation
time points  = x0x1...xsimbased on the simulation data
EDF, we can obtain a multiset H of all temporal sub-
nets {H’(x0), H’(x1),..., H’(xsim)}.

Building Active State Transition Diagram (ASTD)
We here show the other algorithm based on the outputs
(i.e., temporal subnets) obtained in Algorithm 1. For a
given time points list  and a set of temporal subnets
H obtained from Algorithm 1, by applying following

Li et al. BMC Systems Biology 2010, 4:39
http://www.biomedcentral.com/1752-0509/4/39

Page 6 of 14



Algorithm 2, we derive a directed graph, called active
state transition diagram (ASTD), which is denoted by
G = (N, E). N represents a set of distinct nodes {z1,..., z|
N|}. Each node zÎN is called active subnet (ASN) (or
state for short), extracted from the set of temporal sub-
sets H without repetition. E denotes a set of directed
edges e from zi to zj, represented by e = (zi, zj).
Algorithm 2. CONSTRUCTING ACTIVESTATE

TRANSITIONDIAGRAM
x: current time point.
sid : state ID.
StateMap: a state map storing H’(x) as key and sid as

value.
Gen(H’(x)): a function to output sid by referring to the

state map.
curState: current state.
prevState: previous state.
sim: simulation time.
1. x¬x0, sid¬1, z1¬H’ (0), prevState¬H’(0), N¬{z1}
2. insert (prevState, 1) to StateMap, push sid to FIFO

queue Q
3. for i = 1 to sim
4. x¬xi, curState¬H’(x)
5. if (curState≠prevState)
6. if ({curState}∩N = j)
7. sid++, zsid ¬ H’(x), N¬N∪{zsid}

insert (curState, sid) to StateMap and push
sid to Q

insert edge e = (zGen(prevState), zsid) to E
8. else push Gen(curState) to Q and

insert edge e = (zGen(prevState), zGen(curState))
to E
9. prevState¬curState
10. return G = (N, E)

In steps 1 and 2 of the above algorithm, we mainly
build a state map storing temporal subnet H’ (x) as key
and state ID sid as value that is used as the suffix of
node zÎN. The state map is employed to find the state
ID sid by referring to the state map when using the
function Gen(H’(x)). We also construct a FIFO queue Q
to store the state ID in turn when reading the temporal
subnet H(x’) along the list of  (see Figure 2).
In steps 3-9, the procedures are executed until xsim

with a constant time interval to find out the ASNs
among the temporal subnets H . In step 5, we com-
pare current state with previous state, where current
state indicates the temporal subnet H’(xi) and previous
state indicates the temporal subnet H’ (xi-1) at the pre-
vious time point.
If H’(xi) is different from H’(xi-1), and a temporal subnet

equivalent to H’(xi) does not exist in N, the current state
H’(xi) will be treated as a new node zsid and the following
procedures will be processed in step 7: (i) N¬N∪{zsid}, (ii)
insert (current state, state ID) to the state map StateMap
and push sid to Q, and (iii) an edge e(H’(xi-1), H’(xi)) from
previous state to current state is inserted to E. Otherwise
if current state H’(x) already exists in N, we (i) push sid to
Q, where sid is derived by referring to the state map via
the function Gen(H’ (xi)), and (ii) insert an edge from the
previous state to the current state to E. Time complexity
of Algorithm 2 is O H| |  .
In Figure 2, we can finally derive the ASTD G after

performing Algorithm 2, where N = {z1, z2, z3} and E =
{e1, e2}. Three distinct states (i.e., ASNs) z1, z2, z3 are
derived from | | temporal subnets. It can be noticed
that constructing ASTD can avoid redundancies in
HFPNe structure, while retaining expressiveness of
dynamic behaviors.

Figure 3 An example illustrating the process of performing Algorithm 1. For a given transition t, the processes of extracting a temporal
subnet H’(x) from H at time x by applying Algorithm 1. Block (b) is obtained from (a) by performing the subroutine RMVA(H’) (step 2 in TSN(H,
x)). Block (c) is obtained from (b) by performing the subroutine RMVP(H’) (step 4 in TSN(H, x)). Note that t is connected by an enabled inhibitory
arc, therefore t cannot be removed by RMVT(H’) (step 3 in TSN(H, x)) in Algorithm 1.
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In the next section, we demonstrate how to integrate
and interpret the simulation data from circadian rhythm
model in Drosophila to obtain a deeper understanding
of structural and dynamic behaviors with ASTD.

Results
A case study: model of circadian clock
Biological background and modeling
There are five genes involved in the Drosophila circa-
dian rhythm: period (per), timeless (tim), Drosophila
Clock (dClk), cycle (cyc) and double-time (dbt). It has
been known that the Drosophila circadian system is
composed of two interlocked negative feedback loops:
(i) Drosophila proteins PER and TIM form a heterodi-
mer (PER/TIM) in the cytoplasm. After the nuclear
translocation, PER/TIM inhibits the transcription of
per and tim in a cycling negative feedback loop. Mean-
while, PER/TIM activates the transcription of dClk
involved in the dCLK/CYC negative feedback loop; (ii)
the proteins dCLK and CYC form a heterodimer
dCLK/CYC that activates per and tim transcriptions
and inhibits dClk transcription. Figure 4(a) shows the
HFPNe model of wild type (called normal model) with-
out external disturbances (e.g., light effects). With
parameters shown in Figure 4(a), in silico simulation
generated stable oscillations in mRNAs of three clock
genes, tim, per, dClk, and proteins dCLK, CYC, dCLK/
CYC, PER, TIM, DBT, PER/DBT, PER/TIM with peri-
ods as shown in Figure 4(b). The detailed mechanism
is given in [21-23].
Results and Discussion
[ASTD analysis of normal model] This subsection pre-
sents the resulting ASTD from performing Algorithm 1
and Algorithm 2. The HFPNe model, simulation data
and related data files of analyzing circadian rhythm
model in Drosophila are available at the website [24]. In
the simulation data, xsim is 150 [pt] with the time inter-
val of 0.01 [pt] ([pt] is the virtual time unit of the
HFPNe model). Figure 5 shows the resulting ASTD
from processing the circadian time-course simulation
data. The ASTD is derived by the following procedures:
(i) By applying Algorithm 1 to the simulation data, we
obtain the set of all the temporal subnets
   H H H H ’( ), ’( . ), , ’( )0 0 01 150 . The total num-

ber of the set is 15,000 corresponding to 15,000 time
points. As mentioned above, each temporal subnet is
the minimal element set at time x; and next (ii) Apply-
ing Algorithm 2 to the outputs of Algorithm 1, we
construct the ASTD.
The constructed ASTD G = (N, E) of the normal

model is composed of 24 unique nodes N={z1, z2,..., z24}
connected by the black and green edges in E on the
right side of Figure 5. Each node with a blue circle
represents a state. The result demonstrates that our

method successfully extracts 24 unique temporal sub-
nets (i.e., ASNs) out of 15,000. This result suggests that
(i) the number of all the temporal subnets of Drosophila
circadian clock model can be reduced from 15,000 to
only 24 when considering structural transformation due
to the concentration variation, and further (ii) these 24
ASNs are all the states regulating the stable oscillations
in the normal model. Each edge connected from pre-
vious state to current state denotes a direct structural
transformation from the previous net structure to the
current one. In Figure 5, dashed-line block is shown as
an example to depict the state transitions of
“z19®z20®z10↔z11“ connected with the edges (z19, z20),
(z20, z10), (z10, z11) and (z11, z10). Detailed direct struc-
tural transformations of HFPNe elements are illustrated
in the left dashed-line block.
As an example we discuss the structural transforma-

tion from z19 to z20. Figures of the structural transfor-
mations of all the states along with corresponding
ASTD are given as additional materials [see Additional
files 2 and 3]. Due to an increase in PER/TIM concen-
tration, two inhibitory arcs a(p13, t10) and a(p13, t14) are
enabled (highlighted in pink), which results in the dele-
tion of four arcs a(p5, t10), a(p5, t14), a’(t10, p6) and
a’(t14, p8) (highlighted in blue). Meanwhile, a test arc
from PER/TIM is also enabled, which results in the add-
ing of arc a(t0, p1). It thus leads to a new temporal sub-
net structure regarded as z20 connected from the
previous state z19. This captures the fact that in the Dro-
sophila circadian clock model, the net structure in z20
can only transform from z19 on account of the rising of
PER/TIM level. This restricts the reasonable transitions
into state z20 to be z19, which simplifies analysis for
both biologists and computational biologists.
The sparseness of this network will be of great value

to computational biologists who need to rapidly investi-
gating a range of regulatory interactions and dynamic
behaviors from simulation data of their models. More
detailedly, ASTD (i) gives researchers a concise impres-
sion of the connection relationship between the nodes.
The nodes that researchers are interested in can be
comprehensively focused and traced according to its
connection in the ASTD; and (ii) such nodes can be
further explored to explicitly elucidate the mechanism
how the occurrence of structural transformation triggers
oscillations along the time axis.
We also observe that state transitions from z1 to z9 are

used only once, and are likely the period before the cir-
cadian rhythm systems reach a stable cycle from the
initial marking. Excluding such nodes, the ASTD
becomes only a cycle composed of the outer-ring nodes
(i.e., all the nodes excluding {z1, z2,..., z9}). The state
transfers following the cycle of these outer-ring nodes in
the ASTD on the rhythms of mRNAs and proteins in
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Figure 4 HFPNe model and its simulation result of circadian rhythm in Drosophila. (a) HFPNe model of circadian rhythm in Drosophila. The
accompanying variable mx at a place represents the concentration of the corresponding mRNA, protein or the compound. For example, the
variable m1 indicates the concentration of dClk mRNA. Reaction speed (the rate of transcription, translation, complex formation or degradation) is
expressed by a simple formula at each transition. For example, the formula m1/5 indicates the translation rate of dCLK protein that depends on
the variable m1 for the dClk Mrna concentration. The real number over an arc is the threshold for the content of the place attached to this arc.
For example, the translation of tim mRNA occurs during the period that the place value of tim mRNA exceeds 1.0. (b) Oscillations of tim, per,
dClk mRNAs, and the proteins TIM, PER, dCLK, PER/TIM, PER/DBT, dCLK/CYC (left y-axis) and DBT, CYC (right y-axis). The unit of x-axis is [pt] ([pt] is
the virtual time unit of the HFPNe model), while that of y-axis is [vc] ([vc] is the virtual concentration unit).
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this oscillation systems. In the following, we investigate
how the ASTD changes when modifying the gene dbt.
[Mutant analysis] Price et al. discussed the property of
dbtL ("L” for long) that is a mutation of dbt. They
showed that the transcription of the gene per is affected
by this mutant, i.e., the period of per mRNA in dbtL

mutant is longer than the one in the normal model [23].
The behavior of per mRNA in dbtL mutant and normal
model is validated afterwards by Matsuno et al. [22]
(see Additional file 4 illustrating the simulation results).
It is obtained by changing the formula at the transition
(t23 = m7*m12/1000 in our case) denoting the complex
forming rate of PER and DBT. Roughly speaking, when
the forming rate of PER/DBT is slowed, it leaves more
PER to bind to TIM, which leads to a faster increase of
PER/TIM to a higher concentration. It thus will take
longer time to inhibit the transcription of per mRNA
and tim mRNA until the concentration of PER/TIM
decreases to the respective threshold values of the inhi-
bitor arcs (see Figure 4(a)). Therefore, the next increases
of per mRNA and tim mRNA are accordingly postponed
because of the longer inhibition effect resulting from the
slow forming rate of PER/DBT. The results gave the
suggestion that the circadian rhythm is controlled by
this forming rate, which is affected by the mutant dbtL.
Due to the space limitation, we show the ASTD of

dbtL mutant model (ASTDL for short) in the figure

together with the ASTD of the normal model (denoted
as ASTDW for short). Note that we employ the same
mutant model in [22] for comparison. In Figure 5, the
ASTDL(N, E) is composed of 23 distinct ASNs, where
N = {z1, z2,..., z21, z24, z25} and E is the set of edges
drawn in black and red. The resulting ASTDW and
ASTDL give information that the temporal structure of
ASTDL is simpler than the one of ASTDW from the
viewpoints of node number and connection relationship.
Figure 5 also provides the information to generate fol-
lowing views: (i) shared 22 nodes {z1, z2,..., z21, z24} in
ASTDW and ASTDLcontribute to produce oscillations
regardless of the period length; and (ii) the temporal
structures of disappeared z22 and z23 in ASTDL do not
contribute to the regulation of the forming rate of com-
plex PER/DBT. In Additional files 2 and 3, it can be
confirmed that the transitions t23 in z22 and z23 are both
disabled (in grey), which reflects that no complex form-
ing action occurs by the formula alteration in the
mutant model.
[Graphical-based analyses of ASTD] As described
above, ASTD can give the user concise impression regard-
ing the time-dependent structural changes in the pathway,
which provides a great help in investigating a range of reg-
ulatory interactions and dynamic system behaviors. Addi-
tionally, it would be helpful to consider some more
intuitive graphical representations to express the

Figure 5 Schematic representation of ASTDWand ASTDL. The four bold-line blocks of z19, z20, z10 and z11 on the left side show the
corresponding temporal subnets that are the minimal element sets at respective time points. Dashed-line block shows the state transitions of
“z19®z20®z10↔z11“ in the ASTD and corresponding detailed regulation variations of HFPNe elements. For example, in the structural
transformation from z19 to z20, two inhibitory arcs a(p13, t10) and a(p13, t14) are enabled due to the increase in the concentration of PER/TIM,
resulting in the deletion of four arcs a(p5, t10), a(p5, t14), a’(t10, p6) and a’(t14, p8). Note that the transformation from z11 to z10 is omitted.
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characteristic information from ASTD. With the help of
such characteristics, one can obtain an intuitive under-
standing to the dynamic behaviors such as “Which state is
maintained longer?”, “How does the frequency of entering
a certain state vary with the parameters?”, and “How does
the concentration of a substance vary in each state?”
We incorporate graphical representation applying to

the states in the ASTD showing three characteristics: (i)
duration, (ii) out-degree, and (iii) total concentration dif-
ference of substance in each state.
Firstly, duration is used to demonstrate the total per-

sistence period of each state when it is reached. Node
size of ASTD is then scaled up or down corresponding
to the duration summation of each state. Secondly, out-
degree is the number of edges going out of a node. This
concept is employed to characterize the frequency of a
certain node used in ASTD. Figure 6(a) displays the
characterized ASTDW and ASTDL with respect to the
duration and out-degree. The scales of node sizes denot-
ing duration and out-degree are given on the right-side
of Figure 6(a), respectively. The node size of duration is
according to the persistence time period of each node.
The node size of out-degree is based on the calculation
of natural log ln(count), where count is the number of
edges going out of a node. We demonstrate how to ana-
lyze ASTD in general by using duration together with
out-degree, as well as discussing obtained ASTDW and
ASTDL of circadian rhythm in Drosophila shown in Fig-
ure 6(a) as follows:

(i) When duration is “B” (B for the big size of the
node) and the out-degree is “S” (S for the small size
of the node), the state of such node (e.g., z18 and
z19,) is maintained at a relative stable condition;
(ii) When duration and out-degree are both “S”, the
state of such node (e.g., z3 and z13) is seldom-used
during the simulation and is negligible. z3 with both
“S” duration and out-degree in ASTDW and ASTDL,
is considered negligible. On the other hand, z13 dis-
plays “B” duration and out-degree in ASTDL unlike in
ASTDW. As shown in Additional file 4, per mRNA
has a longer periodic oscillation in the mutant model
than in the normal one. In ASTDL, the state z15 is
transformed from z13 and z14. Not only duration but
also out-degree of z14 in ASTDW and ASTDL are
almost in the same size. But those of z13 changed
from “S” in the normal model to “L” in the mutant
one, and the node size is closed to z14. It can be con-
sidered that the temporal structure of z13 contributes
to the regulatory mechanism to generate longer peri-
odic oscillations of per mRNA in the mutant model;
(iii) The case of that duration is “S” and out-degree
is “B” is not observed in this ASTD. Such nodes are
highly unstable and trigger frequent structural

transformations. This instability is likely the reason
such nodes are not found in the stable oscillations of
the circadian rhythm;
(iv) When duration and out-degree are both “B”, the
state of such node (e.g., z12 and z14) is unstable, but
it is likely such node is important to the regulation
of the oscillations.

Note that the ASTD allows multiple edges between two
nodes. Several bidirectional arcs are observed in the
resulting ASTD, e.g., the arcs between z14 and z15, z21
and z23, which represent two states oscillates from one
another. We examined there occurs a series of short-
term tiny concentration vibrations of PER and dCLK
around respective threshold values, which lead to the
bidirectional arcs coming into being. For example, when
the concentration of dCLK (p2) changes up and down
around evaluated threshold value 1.0 of the arc (p2, t4),
the states z14 and z15 will oscillates from one another.
The results of out-degree in Figure 6(a) shows that the
nodes connected with bidirectional arcs are relatively lar-
ger than others. These larger nodes reflecting unstable
short-term tiny concentration vibrations are considered
to contribute to the formation of the steady oscillation
period (i.e., the cycle composed of the outer-ring nodes).
Finally, we investigate the dynamic behaviors of each

substance’s concentration level. We present this in a
heat-map-like representation, where the total concentra-
tion difference is represented by colors as shown in Fig-
ure 6(b). The total difference in concentration level
DiffTotal(p, z) is the difference summation in place p’s
concentration (M(p) [xi]-M (p) [xi-1]) at adjacent time
points in the given state z. Figure 6(b) compares con-
centration differences in per mRNA (p1) and dClk
mRNA (p6). In tracking per mRNA, the nodes z17, z18
and z19 are colored in red around z18, while for dClk
mRNA, the nodes z20, z10 and z11 are colored in red
around z11. The shift states accurately reflect the differ-
ence in rise times for per and dClk mRNA level.
Further, by investigating the temporal subnets in the
ASTD, it is confirmed that the transition t10 denoting
the transcription of per mRNA is enabled only in the
red states z17, z18 and z19, while t10 is disabled in all the
other states due to the inhibition of PER/TIM. Similarly,
the transition t0 of dClk mRNA transcription is enabled
in the red states z20, z10 and z11, while it is disabled in
the others because of the inhibition by the dCLK/CYC
complex. In this way, the information of each sub-
stance’s relative expression can be easily visualized using
ASTD with this characteristic.

Discussion
Investigating dynamic behaviors of biological networks
is usually achieved by analyzing concentration plots of
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the simulation data. However, studying such concen-
tration variations of a model generate more vital tem-
poral structural information than considering dynamics
as an ensemble. We thus proposed a novel techniques
combines quantitative simulation data and topological
analysis to deduce the dynamic behaviors of system
mechanisms from the data. In this paper, we give a

cycle ASTD of circadian rhythm of Drosophila from
the simulation data as an example. ASTD can also be
a linear succession of states, which is usually derived
from the signaling pathway owing to its feature of pro-
pagating signals from transmembrane to the DNA
nucleus. Such linear ASTD can also be employed as an
analysis tool for quick interpretation. With the aid of

Figure 6 Three characteristic overviews of the ASTD for the circadian rhythm model. (a) ASTDW and ASTDL characterized with respect to
duration (upper) and out-degree (lower). (b) ASTDW characterized with duration and the total concentration difference for per and dClk mRNAs.
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graphical-based analyses, ASTD can yield concise
impression of the connection relationship among the
states from various viewpoints, such as time period,
concentration variation and so on.

ASTD and reachability graph
ASTD is different from the concept of reachability graph
(i.e., graph of markings) [25]. ASTD is made up of the
nodes that are the unique temporal subnets, and of
directed edges corresponding to the structural transfor-
mation of temporal subnets resulting in the passing
from one state to another. Each node in ASTD is the
grouping of identical temporal subnets from the view-
point of structure. That is, each node simply possesses
the structural information of the entries in the minimal
element set that is extracted by eliminating the disabled
transitions/arcs and isolated places. No concentration
information (i.e., marking) is recorded in the ASTD
(this is the point different from the concept of reachabil-
ity graph) although such information is used to deter-
mine the ASTD. In contrast, reachability graph consists
of nodes corresponding to reachable markings and of
arcs corresponding to firing of transitions [25]. From
this case study with the given sampling interval, the
state space of reachability graph is 15,000, while that of
ASTDL is significantly reduced to 24. A series of non-
negative real numbers in the column of the EDF file is
equivalent to current marking (state) in the reachability
graph. Additionally, ASTD can deal with any general
type, e.g., string and object. There are totally 15,000
unique markings obtained from EDF file. The state
space of reachability graph will not be less than 15,000
when further decreasing the sampling interval time of
simulation.

Conclusions
This paper describe a novel methodology to construct a
so-called active state transition diagram (ASTD) by
using the time-course simulation data from a well-
founded formal framework of hybrid functional Petri net
with extension (HFPNe). The main contributions are as
follows: (i) Automatically constructed ASTD we have
presented suggests that building an ASTD representa-
tion can eliminate redundant HFPNe structures, while
maintaining equivalent expressiveness as the full model;
(ii) Characterized ASTD gives the user concise impres-
sion and new insights to grasp and trace how a key reg-
ulatory subnet and/or a network changes with time; (iii)
Due to the nature of the ASTD, any state belonging to
the ASTD is able to be simulated and it enables us to
simulate equivalent concentration distributions; and (iv)
The applicability of the proposed method is investigated

by the analysis of an HFPNe model of circadian rhythm
in Drosophila.
Another approach to represent biochemical reactions as

a system is to use a series of ordinary differential equations
(ODEs). Since the HFPNe allows quantities to be continu-
ous and generic, the biological processes with ODE-based
kinetics can be realized [22], i.e., an ODE-based system
that is convertible into an HFPNe model, can yield an
ASTD and give simplified graphical representation of the
time-dependent structural transformation. There is, how-
ever, a special case at this point, for models without inhibi-
tory arcs and with threshold value of normal and test arcs
equal to zero, the resulting ASTDs will contain only one
state - a full HFPNe structure - for all the time points.
Moreover, for the ODE model of hybrid dynamical sys-
tems, an existing method has been developed providing a
mathematical approach with applying reachability analysis
by Halász et al. [16]. It serves as a promising theoretic
basis and leads us to make further investigation on this
special case as the future work.
In this paper, the circadian rhythm model of Droso-

phila is a deterministic one, in which all the parameters
of transition speeds and arc thresholds have been deter-
mined in advance [22]. Since HFPNe model supports
stochastic transitions as well, in the future, ASTD will
be adapted to such probabilistic features of the system
as well as the firing conflict problem of the discrete
transition by means of particular graphical-based repre-
sentation. Additionally, building ASTD makes possible
converting a hybrid model dealing with discrete, contin-
uous and more complicated events to finite time-depen-
dent states. Various analysis techniques, e.g., network
motif analysis, centrality analysis, clustering analysis and
model checking technique, will also be imported to the
ASTD to obtain better understanding of systematic
dynamics from simulation data as the future research.

Additional file 1: Definition of hybrid functional Petri net with
extension (HFPNe). The data provide full mathematical definitions of
HFPNe.

Additional file 2: Detailed net structure of the nodes in the
resulting ASTD. The detailed net structure of nodes (i.e., z10,..., z25) in the
resulting ASTD shown in Figure 5. The connection relationships are
shown between the bold-line blocks of the nodes. Legend is given in
Figure 5.

Additional file 3: Detailed net structure of all the nodes in the
resulting ASTD. Detailed net structure of all 25 nodes (note that one
node is displayed in one page). Readers can turn page forward and back
to see the structural difference between two nodes in an easy-to-
understand manner.

Additional file 4: Concentration behaviors of per mRNA: (a) normal
model; and (b) dbtL mutant. Formula such as m7 * m12/1000 for the
firing speed of transition t23 is given at charts (a) and (b), which
represents complex forming rate of two proteins PER and DBT. The firing
speed in dbtL is slower than the one in the normal model.
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