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Abstract
Background: MicroRNA regulate mRNA levels in a tissue specific way, either by inducing degradation of the transcript 
or by inhibiting translation or transcription. Putative mRNA targets of microRNA identified from seed sequence 
matches are available in many databases. However, such matches have a high false positive rate and cannot identify 
tissue specificity of regulation.

Results: We describe a simple method to identify direct mRNA targets of microRNA dysregulated in cancers from 
expression level measurements in patient matched tumor/normal samples. The word "direct" is used here in a strict 
sense to: a) represent mRNA which have an exact seed sequence match to the microRNA in their 3'UTR, b) the seed 
sequence match is strictly conserved across mouse, human, rat and dog genomes, c) the mRNA and microRNA 
expression levels can distinguish tumor from normal with high significance and d) the microRNA/mRNA expression 
levels are strongly and significantly anti-correlated in tumor and/or normal samples. We apply and validate the method 
using clear cell Renal Cell Carcinoma (ccRCC) and matched normal kidney samples, limiting our analysis to mRNA 
targets which undergo degradation of the mRNA transcript because of a perfect seed sequence match. Dysregulated 
microRNA and mRNA are first identified by comparing their expression levels in tumor vs normal samples. Putative 
dysregulated microRNA/mRNA pairs are identified from these using seed sequence matches, requiring that the seed 
sequence be conserved in human/dog/rat/mouse genomes. These are further pruned by requiring a strong anti-
correlation signature in tumor and/or normal samples. The method revealed many new regulations in ccRCC. For 
instance, loss of miR-149, miR-200c and mir-141 causes gain of function of oncogenes (KCNMA1, LOX), VEGFA and 
SEMA6A respectively and increased levels of miR-142-3p, miR-185, mir-34a, miR-224, miR-21 cause loss of function of 
tumor suppressors LRRC2, PTPN13, SFRP1, ERBB4, and (SLC12A1, TCF21) respectively. We also found strong anti-
correlation between VEGFA and the miR-200 family of microRNA: miR-200a*, 200b, 200c and miR-141. Several identified 
microRNA/mRNA pairs were validated on an independent set of matched ccRCC/normal samples. The regulation of 
SEMA6A by miR-141 was verified by a transfection assay.

Conclusions: We describe a simple and reliable method to identify direct gene targets of microRNA in any cancer. The 
constraints we impose (strong dysregulation signature for microRNA and mRNA levels between tumor/normal 
samples, evolutionary conservation of seed sequence and strong anti-correlation of expression levels) remove spurious 
matches and identify a subset of robust, tissue specific, functional mRNA targets of dysregulated microRNA.

Background
MicroRNA regulate mRNA and protein levels by cleavage
and/or translation/transcriptional repression in a tissue
specific manner [1-4]. By modulating key cellular pro-
cesses such as metabolism, division, differentiation,
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development and apoptosis, they can simultaneously reg-
ulate both oncogenes and tumor suppressor genes [5-7].
Aberrant microRNA profiles have been noted in many
cancers [5-11], including renal cell carcinoma [12-16].
Almost half the known microRNAs are in cancer-associ-
ated chromosomal fragile sites, susceptible to point
mutation, amplification, deletion, or translocation
[17,18]. Recent evidence demonstrates that microRNA
play an important role in the patho-physiology of many
cancers [19-22] and they are believed to be involved in
pathogenesis in ccRCC [20,23]. MicroRNA are also being
studied in various tumors to understand their signifi-
cance for drug resistance [24,25], diagnosis and prognosis
[26-28] and for their therapeutic potential [29-40]. Their
secondary structure preserves them better in FFPE sam-
ples than mRNA, making them easier to extract in intact
form, resulting in higher identification accuracy in the
analysis of archived clinical material [35]. Their tissue
specificity and tight regulation makes them more reliable
identifiers of tissue of origin in highly differentiated
tumors [41]. Single microRNA can regulate multiple
mRNA and are therefore both better identifiers of mech-
anism and possibly better drug targets [4]. However,
while it is clear that microRNA play an important role in
the biology of many cancers, their complex biology and
tissue specificity makes it difficult to understand the pre-
cise role they play in the disease process and the genes
affected by their dysregulation [42-47].

Mature microRNAs are produced in a multi-stage pro-
cess. After transcription, they are processed by RNA Pol
II or Pol III to create capped and polyadenylated primary
transcripts (Pri-microRNAs), which are further pro-
cessed in the nucleus by the enzyme Drosha/Pasha (in
flies) or by DGCR8 (in humans) to produce ~60-nucle-
otide Pre-microRNA stem-loop molecules. These are
then exported to the cytoplasm by Exportin and Ran-
GTP where they are further processed by Dicer to ~22 nt
double-stranded RNA duplexes, which form complexes
with RISC (RNA-induced silencing complex) leading to
unwinding of the duplexes to form single-stranded
microRNAs. MicroRNAs bound to RISC can down-regu-
late protein levels using at least two alternative pathways:
1) If the microRNA has imperfect complementarity with
a matching sequence in the 3'UTR of its target mRNA,
the microRNA-RISC complex can combine with the
complement mRNA sequence and cause translational
repression. 2) On the other hand, if the microRNA and its
mRNA target have perfect or near perfect complementa-
rity, the microRNA-RISC complex binding to its target
mRNAs can result in the cleavage and degradation of the
mRNA by Argonaute2 (Ago2) [1-7,35].

Although many studies have identified signatures of
microRNA dysregulation, the identification of tissue spe-
cific targets of aberrantly regulated microRNA is difficult.

Putative identification using seed sequence complemen-
tarity and free energy predictions of RNA-RNA duplexes
[48-55] are available in databases such as TargetScan:
http://www.targetscan.org. However, the false positive
rate for such matches is unacceptably high, with different
algorithms identifying different mRNA targets for the
same microRNA [51-53,56,57]. The tissue specificity of
microRNA regulation is known only in some specific
cases (e.g. see Table one in [58]) and a general methodol-
ogy for target identification, tissue specificity of action
and specific biological role of microRNA in the initiation
and progression of most cancers remains an open prob-
lem.

We describe a novel method to identify "direct mRNA
targets" of microRNA in any cancer based on measuring
an anti-correlation signal between differentially
expressed microRNA and mRNA in patient matched
tumor and normal samples. In this paper, the words
"direct mRNA targets" is used in a very strict and limited
sense. A direct target is one which: a) has an exact seed
sequence match in its 3'UTR to the corresponding
microRNA, b) the seed sequence match is conserved
across mouse, human, rat and dog genomes, c) the
expression levels of both the microRNA and the mRNA
can distinguish tumor from normal with high statistical
significance and d) the mRNA and microRNA levels are
strongly and significantly anti-correlated in tumor and/or
normal. These requirements could be relaxed to find
additional targets or eliminated altogether to find indirect
regulations (see later discussion).

The method proceeds as follows: a) Identify signifi-
cantly differentially expressed microRNA and mRNA
between the two classes (e.g. normal and tumor); b) For
each microRNA which is differentially expressed, identify
all its putative target mRNA by restricting to those differ-
entially expressed mRNA with a matching seed sequence
in their 3'UTR, with the further requirement that it be
conserved in human, mouse, rat and dog genomes; c)
Compute the Pearson correlation between microRNA
and mRNA expression levels for samples in each class
(tumor and normal) and d) Retain only those microRNA/
mRNA pairs whose expression levels are highly anti-cor-
related. These constraints remove spurious matches,
reducing relatively speculative "putative" seed match
based mRNA targets in databases to a highly robust sub-
set of direct functional targets.

Note that our method can be extended (with data on
more samples) by removing constraint b) and looking for
a correlation (or anti-correlation) signature in c). This
allows the identification of indirect regulation. For exam-
ple, if a microRNA up-regulated in cancer down-regu-
lates a gene which is a transcriptional repressor of an
oncogene, then the expression level of the microRNA will
be correlated with the level of the oncogene without a

http://www.targetscan.org
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seed sequence match. Since the direct gene target (the
transcriptional repressor in the example above) of the
microRNA should already be identified using our
method, such an analysis would extend the regulation
network beyond first order interactions. Note that,
although the method as described above does not identify
regulation by translation inhibition (because this would
not significantly affect mRNA levels), if protein levels
were also measured, the method could easily be extended
to identify such regulation.

We demonstrate the use of our method on expression
data from clear cell Renal Cell Carcinoma (ccRCC) and
matched normal kidney samples. Renal Cell Carcinoma
(RCC) represents ~3% of all malignancies in the US, with
50,000 new cases and 12,000 deaths each year http://
www.nci.nih.gov/cancertopics/types/kidney. The most
common histological class is ccRCC, accounting for
~75% of kidney cancers. ccRCC is known to be character-
ized by the loss of the VHL gene, which under normal
oxygen pressure, binds to the α subunits of hypoxia-
inducible factors (HIFs), inducing their poly-ubiquitinyla-
tion and subsequent degradation in the proteasome. In
hypoxic conditions, or if HIF regulation is lost because of
VHL inactivation, HIF accumulates to high levels and
promotes the transcription of genes such as VEGF,
PDGF-β, TGF-α, EPO etc which trigger angiogenesis, cell
growth, migration and proliferation [59,60]. The spec-
trum of HIF target genes expressed in individual tumors
and the factors which influence them are the object of
active ongoing research. ccRCC tumors have a wide range
of natural histories and varied responses to VEGF-tar-
geted therapy [61]. Early stage, Fuhrman grade 1 (low
grade) tumors tend to have significantly better disease
free survival after resection than higher stage and grade
(Fuhrman grade 4) [62]. Although VHL mutation is asso-
ciated with all grades of ccRCC, the other molecular fac-
tors associated with ccRCC initiation and progression are
largely unknown. The molecular basis of the diversity in
histologic grade, clinical behavior, and response to
VEGF-targeted is also unclear, and makes ccRCC a ripe
target for studies investigating the molecular and genetic
nature of these heterogeneities.

In RCC, various studies have identified panels of
microRNA and mRNA that are differentially expressed
between normal renal tissue and tumor or between histo-
logical subtypes of tumor [12,14,15,63-66]. The present
study extends these previous studies by linking the
microRNA to some of their mRNA targets, thus elucidat-
ing a hitherto unknown part of the biology of ccRCC dis-
ease. Some of the identified microRNA/mRNA anti-
correlations were validated on a new cohort of ccRCC/
normal samples. SEMA6A was confirmed as a direct tar-
get of miR-141 by over-expressing miR-141 in a ccRCC

cell line and showing strong down-regulation of the
SEMA6A transcript.

Results
The underlying hypothesis in our method is that the
expression levels of microRNA and their direct mRNA
targets should be strongly anti-correlated when averaged
over matched samples in either tumor or normal tissue.
The stepwise procedure is as follows:

Step 1: Identify significantly up/down regulated
microRNAs in ccRCC samples vs normal samples.
Step 2: Identify significantly up/down regulated
mRNAs in ccRCC samples vs normal samples.
Step 3: Using TargetScan, retain only the mRNA in
Step 2 which have a conserved seed sequence in their
3' UTR for at least one of the microRNA from Step 1.
Step 4: Find anti-correlated pairs of up-regulated
microRNA and down-regulated mRNA in ccRCC
samples using a strict cutoff (P0) in Pearson correla-
tion coefficient in ccRCC samples. Similarly, find
anti-correlated pairs of down-regulated microRNA
and up-regulated mRNAs in normal kidney samples
using a strict cutoff.

In Step 3, putative target mRNA were identified using
TargetScan Version 4.1 http://www.targetscan.org, which
identifies possible regulatory targets of mammalian
microRNAs as those with conserved sequences of match-
ing seed regions for each microRNA. The term "con-
served" means that the sequence is conserved in human,
mouse, rat and dog. In Step 4, we ran 1000 permutations
in BRB-ArrayTools' http://linus.nci.nih.gov/BRB-Array-
Tools.html and multivariate/univariate analysis at p <
0.01, FDR < 0.2 to assess significance of discovered pairs
and to find the appropriate cutoff P0 for significance of
the measured Pearson correlation. In the primary dataset,
because of the high accuracy of qRT-PCR, we were able
to set a strict cutoff P0 = -0.95; thus in Step 4 only
microRNA/mRNA pairs with P < P0 (= -0.95) were con-
sidered to be significant.

Step 1: MicroRNA significantly differentially expressed in 
ccRCC versus normal kidney tissue
35 microRNA were identified as differentially expressed
(p < 0.001) in ccRCC versus normal kidney, 26 down-reg-
ulated and 9 up-regulated. The microRNA down-regu-
lated in ccRCC were miR-100, miR-10b, miR-125b, miR-
26a+, miR-133b, miR-135a, miR-135b, miR-136, miR-
141, miR-149, miR-154, miR-199a, miR-200a, miR-200b,
miR-200c, miR-204, miR-211, miR-218, miR-30a-3p,
miR-30a-5p, miR-337, miR-411, miR-429, miR-507, miR-
510, miR-514 and the microRNA up-regulated in ccRCC
were miR-142-3p, miR-155, miR-185, miR-21, miR-210,
miR-224, miR-34a, miR-34b, miR-592 (see Table 1), in
agreement with recent studies [12,14,15,65,66]. The chro-

http://www.nci.nih.gov/cancertopics/types/kidney
http://www.nci.nih.gov/cancertopics/types/kidney
http://www.targetscan.org
http://linus.nci.nih.gov/BRB-ArrayTools.html
http://linus.nci.nih.gov/BRB-ArrayTools.html


Liu et al. BMC Systems Biology 2010, 4:51
http://www.biomedcentral.com/1752-0509/4/51

Page 4 of 17
Table 1: The 35 microRNA that distinguish tumor from normal tissue in human ccRCC.

microRNA Expression Status in ccRCC Hystotype (from references:
[5-22,35-40,65,66,73,74,79])

Cancer-related Regions 
[17,18]

Name

miR-100 Down Up in pancreas, stomach 11q23-q24 (D)

Down in ovarian

miR-10b Down Down in breast

miR-125b Down Up in pancreas 11q23 (D)

Down in breast

miR-26a+ Down Down in epithelial cancers 3p21.3 (D)

miR-133b Down Down in ovarian

miR-135a Down 3p21.1-21.2 (D)

miR-135b Down

miR-136 Down 14q32 (D)

miR-141 Down Up in lung, ovarian

miR-149 Down 2q37 (D)

miR-154 Down Down in ovarian 14q32 (D)

miR-199a Down Up in lung, pancreas, prostate

Down in ovarian

miR-200a* Down Up in ovarian

miR-200b Down Up in lung, ovarian

miR-200c Down Up in ovarian

miR-204 Down Down in ovarian

miR-211 Down

miR-218 Down 4p15.3 (D)

miR-30a-3p Down
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mosomal location of these microRNA (Table 1) shows
that several are proximal to fragile regions and regions
commonly deleted in ccRCC [17,18]. Figure 1A shows a
heat-map of the microRNA expression levels for samples
in the primary dataset showing that they can robustly
separate ccRCC from normal kidney.

Step 2: mRNA differentially expressed in ccRCC versus 
normal kidney tissue
Using SAM http://www-stat.stanford.edu/~tibs/SAM/ at
FDR = 0.1 and 100 permutation tests, 2632 mRNA probes

were found up-regulated and 2238 were found down-reg-
ulated in ccRCC. The genes represented by these probes
included many genes known to be dysregulated in ccRCC
[63,64]. We saw significant upregulation of oncogenes
VEGFA (vascular endothelial growth factor) and EGFR
(epithelial growth factor receptor), integrin-mediated cell
adhesion pathway genes (ITGA3, IGA5, ITGAM, ITGAX,
ITGAL and CAV1), cell adhesion related genes (FN1,
COL4A and LAMA4) and cytokines (GBP2 and GBP5).
Similarly we noted down-regulation of tumor suppressor
genes (VHL, SFRP1, CDKN1C and S100A2) and of mem-

miR-30a-5p Down Down in lung

miR-337 Down 14q32 (D)

miR-377 Down

miR-411 Down 14q32 (D)

miR-429 Down

miR-507 Down

miR-510 Down

miR-514 Down

miR-142-3p Up

miR-155 Up Up in breast, colon, lung 21q21 (A)

miR-185 Up Up in kidney, bladder

miR-21 Up Up in breast, colon, lung, 
pancreas, prostate, stomach,; 
gliobastoma cervical

17q23.2 (A)

miR-210 Up Up in breast

miR-224 Up Down in lung, ovarian Xq28

miR-34a Up Up in lung, rat RCC 11q23-q24 (D)

Down in neuroblastoma

miR-34b Up

miR-592 Up

Cancer-related regions listed are either deleted regions (D), amplified regions (A) or breakpoint regions.

Table 1: The 35 microRNA that distinguish tumor from normal tissue in human ccRCC. (Continued)

http://www-stat.stanford.edu/~tibs/SAM/
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Figure 1 Differential expression of microRNA and mRNA between normal and tumor tissue. A. Heatmap of 35 microRNA differentially ex-
pressed in ccRCC and matched normal kidney tissue in the primary dataset. B. Heatmap of some of the identified mRNA targets of the microRNA in A 
as identified by our method. C. Heatmap of the 27 microRNA in A which were available on the Agilent chipset used on the validation samples. D. Val-
idation sample set heatmap of mRNA levels for the same genes as in B.
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bers of the metallothionein family (MT2A, MT1E, MT1F,
MT1G, MT1H, MT1M, MT1X).

Steps 3 and 4: Identifying direct mRNA targets of 
dysregulated microRNA
Pearson correlation analysis with P0 = -0.95 was applied
to each of the 35 differentially expressed microRNA and
its putative mRNA targets (those with conserved seed
sequences in their 3'UTR as found in TargetScan). This
procedure identified 11 mRNA targets for the 9 up-regu-
lated microRNA. This list included several important
tumor suppressor genes, such as PTEN, ERBB4 and
SFRP1, known to be mutated or down-regulated in many
tumors, including ccRCC [16,17,23]. The 26 down-regu-
lated microRNA had 170 direct up-regulated mRNA tar-
gets, including oncogenes VEGFA, LOX, LOXL2 and
FAS, well known to be involved in kidney cancer
[16,17,23].

The nine most significantly down-regulated and twelve
most significantly up-regulated mRNA are listed in Table
2 and their heatmap is shown in Figure 1B. In Figure 2 we
plot microRNA and mRNA levels for miR-200c and its
target VEGFA. Note that the levels of miR-200c and its
target VEGFA are not only anti-correlated overall, but are
also anti-correlated separately in both ccRCC and normal
tissue. Additional Files 1 and 2 contain the full list of
microRNA/mRNA regulations identified by our analysis.

Validation on a cohort of ccRCC/normal kidney samples
A. Validation of differentially expressed microRNA and mRNA
Seventeen validation samples were collected from a new
cohort of patients and analyzed by microRNA and
mRNA profiling on Agilent arrays (see the Methods Sec-
tion). Figure 1C shows a heat map of twenty-seven
microRNA (those which were found on the Agilent chip)
of the thirty five differentially expressed microRNA iden-
tified previously. A weighted voting classifier on bina-
rized microRNA expression data in the validation set had
100% accuracy in leave-one-out (LOO) cross validation in
distinguishing ccRCC from normal kidney. Figure 1D
shows a heatmap of mRNA expression levels for the
genes in Figure 1B. These were also found to be 100%
accurate at discriminating ccRCC from normal kidney
using weighted voting and LOO cross validation analysis.

mRNA levels of three genes (ERBB4, SFRP1, SLC12A1)
which were down-regulated in ccRCC and one gene
(VEGFA) up-regulated in ccRCC were also measured by
quantitative RT-PCR in twelve of the test samples. The
results, shown in Figure 3A, demonstrate that mRNA lev-
els of ERBB4, SFRP1, SLC12A1 and VEGFA were quanti-
tatively and significantly down/up-regulated as expected.

B. Validation of anti-correlation signature between some 
identified microRNA/mRNA pairs
In Figure 3B-E, we plot the qRT-PCR expression levels of
ERBB4, SFRP1, SLC12A1 and VEGFA versus Agilent chip
measured levels of their regulatory microRNA (miR-224,
miR-34a, miR-21 and miR-200c) for the twelve samples of
Figure 3A. The overall strong anti-correlation signature
between microRNA and mRNA levels is clearly visible in
these plots. Figure 4 summarizes our validation analysis
of a number of anti-correlation measurements between
several identified microRNA/mRNA pairs in the Agilent
chip data. The measured correlations between predicted
microRNA/mRNA pairs are shown in the figure. Because
of the higher level of noise in the Agilent chip data com-
pared to qRT-PCR, we cannot apply the strict criterion
(P0 = -0.95) used in the primary dataset. Instead, the sig-
nificance of the correlation (also shown) was computed
using permutation tests as follows: A large number of
datasets were obtained by permuting the sample labels in
the microRNA or mRNA measurements. For each
microRNA/mRNA pair, these permuted datasets were
used to compute the null distribution for P and the signif-
icance of the measured value of P was estimated in this
null distribution. As the p-values in Figure 4 indicate, we
validate a strong anti-correlation signature between
mRNA levels of (KCNMA1, LOX), VEGF, SEMA6A,
(LRRC2, PTPN13), SFRP1, ERBB4, SLC12A1 and TCF21,
and their identified regulators: miR-149, miR-200c, mir-
141, miR-142-3p, miR-185, mir-34a, miR-224 and miR-21
respectively.
C. In vitro validation of SEMA6A as a target of miR-141 in an 
RCC cell line
Finally, to establish that this method can accurately pre-
dict functional and direct microRNA/mRNA regulation,
we performed an in vitro analysis of one microRNA
(miR-141), and its identified direct target SEMA6A. The
RCC cell line CRL-1611 was transfected (by either
Fugene or HyFect methods) with either pre-miR-141 or a
control pre-miR, and levels of SEMA6A were measured
on the case/control cell lines by semi-quantitative RT-
PCR. The results (Figure 5) showed that introduction of
pre-miR-141 produced a significant reduction in the level
of SEMA6A mRNA, validating SEMA6A as a functional
and direct target of miR-141.

Discussion
We have developed and validated a simple method to
identify direct functional mRNA targets of microRNA in
ccRCC using patient matched tumor/normal samples.
The method looks for the subset of anti-correlated
microRNA/mRNA pairs from a larger set of microRNA
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Table 2: Some representative, direct mRNA targets of microRNA predicted by our method.

microRNA mRNA Status of mRNA in ccRCC

miR-142-3p LRRC2 Down +

miR-185 PTEN Down

miR-185 PTPN13 Down +

miR-185 KCNJ16 Down

miR-21 SLC12A1 Down +

miR-21 TCF21 Down +

miR-34a SFRP1 Down +

miR-34a CAMTA1 Down

miR-224 ERBB4 Down +

miR-199a COL11A1 Up

miR-141/200a* SEMA6A Up +

miR-141/200a* RBM3 Up

miR-149 LOX Up +

miR-149 KCNAB1 Up +

miR-149 KCNMA1 Up +

miR-200bc/429 VEGF Up +

miR-200bc/429 FAS Up

miR-204/211 COL1A2 Up

miR-204/211 FN1 Up

miR-218 LOXL2 Up

miR-218 IGFBP3 Up

The full list of identified microRNA/mRNA pairs is given in Additional Files 1 and 2. + marks microRNA/mRNA anti-correlations that were 
tested/validated on an independent set of matched ccRCC/normal kidney samples.
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and mRNA able to distinguish tumor from normal tissue,
with the additional requirement of a highly conserved
seed sequences for the corresponding microRNA in the
3'UTR of the corresponding gene. Our method can not
only identify microRNA/mRNA pairs which discriminate
normal from cancer tissue, but also dysregulated regula-
tion mechanisms between them that may initiate and/or
drive the disease process.

We used an RT-PCR panel for our initial discovery
experiments and microRNA and microarray chips both
for validation of our previously discovered microRNA/
mRNA pairings and to expand the available pool of
microRNAs to all currently known microRNAs for a
comprehensive examination of microRNA/mRNA pairs.
In comparing the two data modalities, we noticed that in
the RT-PCR data, the sample to sample variation in the
normal samples (i.e. the population variation) was com-
parable to the change in level between normal and tumor
(in the same patient) which caused a statistically signifi-
cant up/down regulation of the target mRNA. To find
reliable matches, it was therefore crucial to minimize sto-
chastic error. We observed that the RT-PCR data had
lower stochastic variance than the microarray data (esti-
mated using replicate measurements in the RT-PCR anal-
ysis and from bootstrap analysis of the microarray data).
This noise effect is also reflected in the measured P0 val-
ues in the validation analysis on the microarray data (Fig-

ure 4), which are smaller in magnitude (|P0|~0.5-0.6)
than the strict cutoff |P0| > 0.95 used in the discovery
phase on the RT-PCR data. Since the present study is
mainly to demonstrate "proof of concept", we limited the
RT-PCR data for discovery and the microarray data for
validation. In a more extensive study, with sufficiently
large sample sizes and more accurate data from high
throughput technologies (microarrays, sequencing) it
may be feasible and cost effective to use a high through-
put platform for discovery and RT-PCR for validation.
Such an analysis might also identify a much bigger set of
microRNA/mRNA relationships. Although our method is
very robust, as described, it cannot find all mRNA tar-
gets. Its principal merit is the ability to reduce the large
number of relatively speculative matches from seed
sequences alone to a smaller set of functional, tissue spe-
cific targets. While this smaller set is perhaps incomplete,
it is more reliable. Additionally, the use of perfect seed
sequence matches can easily be relaxed. A more serious
issue is that the method as described cannot find targets
affected by translation inhibition. For such targets, the
changes in microRNA levels would leave mRNA levels
unaffected, but reduce protein levels. Such targets might
be identified if protein levels in tumor/normal samples
were also measured along with the microRNA and
mRNA levels. The method could then be adapted to iden-
tify targets affected by translation inhibition by using an

Figure 2 Anti-correlation of microRNA expression and predicted target mRNA. Expression levels of miR-200c and VEGFA in the primary dataset 
showing anti-correlation in both ccRCC and matched normal kidney tissue. This plot suggests that loss of miR-200c function in ccRCC contributes to 
increase in VEGF levels.
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Figure 3 qRT-PCR validation of predicted mRNA targets of microRNA. A. qRT-PCR measured mRNA levels of VEGF, ERBB4, SFRP1, and SLC12A1 
in 12 ccRCC and matching normal kidney tissue in the validation set. Expression levels, including those of 18S rRNA (control) are plotted on a log-scale 
relative to a housekeeping gene (beta-actin). These expression level changes agree with predicted changes based on the primary dataset. Dark grey 
bars denote tumors, while light grey bars denote normal kidney tissue. p-values are for accuracy of discrimination of ccRCC/normal kidney using the 
t-test. B-E. Agilent chip expression levels of miR-200c, miR-244, miR-34a and miR-21 versus the levels of mRNA that they regulate: VEGFA, ERBB4, SFRP1 
and SLC12A1 respectively as measured by qRT-PCR for 12 validation set samples The dark circles represent the values in ccRCC and the light circles in 
normal kidney. It is clear that loss of mir-200c regulation contributes to an increase in VEGFA transcript while for the other three (tumor suppressor 
genes), the level of transcript decreases because of a gain in the level of the corresponding microRNA.
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appropriate joint correlation/anti-correlation analysis of
microRNA/mRNA/protein levels. Our method, as
described here, would also miss regulation that proceeds
via intermediate states. In these cases, there would be no
seed sequence match (exact or approximate) between a
microRNA and the mRNA whose level was affected by it.
We could attempt to identify such secondary effects by

eliminating the seed sequence match requirement but
keeping the requirement of a high correlation/anti-corre-
lation signal between microRNA/mRNA levels. Whether
such a procedure would work would depend on the
degree to which the intermediate state gene/protein is
affected and measurable. We briefly discuss some of these
issues below. However, it should be noted that these stud-
ies would require significantly larger sample sizes and are
beyond the scope of the present paper. The next round of
TCGA http://cancergenome.nih.gov/ may make these
types of analyses more feasible.

Although here, we focused on microRNA/mRNA pairs
with exact seed sequence match and an anti-correlation
signal in both tumor and normal samples, as noted above,
with additional samples it should be possible to use this
method and simple extensions to identify more subtle
types of dysregulation. For example, if a mutation in a
microRNA in the tumor samples causes loss of its func-
tion (failure to regulate its target mRNA), then although
the microRNA/mRNA levels would be anti-correlated in
normal tissue, they would not be anti-correlated in tumor
samples. Similarly a de-novo gain of microRNA function
would be signaled by an anti-correlated signal in tumor
samples which was absent in the normal samples.

In our data, we did observe several correlations and
anti-correlations between microRNA/mRNA pairs in
tumor or normal samples without a corresponding seed
sequence match. As noted above, these most likely repre-
sent regulations which proceed via intermediate states
and hence cannot be identified by seed sequence
matches. For example, if increased levels of microRNA X
down-regulates expression of a protein which is a tran-
scriptional repressor of gene Y, there will be a strong cor-
relation between X and Y levels but no seed sequence
match. Conversely, if microRNA X regulates a protein
which is a transcription factor for gene Y then the levels
of X and Y will be anti-correlated without a seed
sequence match. The measurement of such correlations
would extend the network of microRNA control beyond
first level regulators but would require significant
increases in the number of samples (~100-200) for statis-
tical significance.

Since the method finds functional relationships, it
should be useful for identifying pharmaceutically relevant
mechanisms which suggest drug targets for therapy. We
describe below some of the regulations we identified
which have pharmaceutical relevance.

microRNA which shut down multiple tumor suppressor 
genes in ccRCC
We found several dysregulated microRNA which targeted
multiple tumor suppressor genes. For example, the onco-
genic miR-185 was significantly up-regulated in ccRCC
and anti-correlated with the tumor suppressor gene

Figure 4 Validation of microRNA/mRNA regulation relationships 
in Table 2. Red/green boxes represent over/under expression of mi-
croRNA or mRNA levels in ccRCC compared to normal kidney. Pearson 
correlations were calculated for mRNA and microRNA expression val-
ues for tumor and normal combined and are shown with their p-values 
for significance using the permutation test.
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Figure 5 Validation of a Direct interaction between miR-141 and 
SEMA6A. Results of in-vitro experiment on RCC cell line CRL-1611 
transfected either with pre-miR-141 or a control pre-miR using either 
Fugene (Fu) or Hyfect (Hy). RNA was extracted after 48 hours and the 
expression of SEMA6A was measured using semi-quantitative RT-PCR. 
There is clear reduction in mRNA of SEMA6A upon introduction of miR-
141 by either transfection method in these cells.
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PTEN, suggesting that its gain of function shuts down
PTEN in ccRCC. Mutated or down-regulated in many
advanced cancers [67], PTEN loss activates the PI3K-
AKT [68] signaling pathway and its downstream target
mTOR, with important implications in RCC development
and therapeutic selection [59,60,69,70]. Another identi-
fied target of miR-185 was PTPN13 (also a predicted
miR-185 target in miRBase: http://microrna.sanger.ac.uk/
), which is a Fas-associated protein tyrosine phosphatase
and putative tumor suppressor gene that can inhibit
PI3K/AKT signaling, suppress the influence of insulin-
like growth factor-I on cell survival and induce apoptosis
[71]. KCNJ16, member of the potassium channel subfam-
ily of membrane proteins, was also identified as a target
of miR-185. Such membrane proteins have been sug-
gested in anti-cancer therapies because of their important
role in cell growth [72] and are known to be down-regu-
lated in RCC [73].

miR-34a is known to be over-expressed in various
tumors and associated with cell proliferation [74]. In our
data, it was up-regulated in ccRCC and predicted to tar-
get SFRP1, a known regulator of the Wnt signaling path-
way and a tumor suppressor gene whose loss has been
observed in a majority of RCC patients [75]. Another
tumor suppressor regulated by miR-34a was CAMTA1
[76], a reduction in whose levels correlates with poor out-
come in neuroblastoma [77]. Finally, we find miR-224,
associated with a human chromosome fragile site on Chr-
Xq28 [18], is up-regulated in ccRCC and predicted to tar-
get ERBB4, a member of the EGFR family, a potential
tumor suppressor known to be strongly down-regulated
in ccRCC [78].

Hypoxia induced microRNAs
A hypoxic tumor microenvironment can directly activate
the expression of several microRNA [79,80]. For example,
miR-21, miR-210 and miR-155 reduce pro-apoptotic sig-
naling in response to a hypoxic environment and are con-
sistently over-expressed in a variety of human tumors
(Table 1). ccRCC is a unique setting in which to study
these microRNAs, given that VHL loss constitutively sta-
bilizes one or more HIF factors, thereby creating a
pseudo-hypoxic scenario in ccRCC tumor cells [59,60].
We found that hypoxia related microRNA had the most
significant fold changes, with miR-210, miR-155 and
miR-21 being amongst the top., suggesting a major role
for them in renal carcinogenesis. We found 16 genes
down-regulated in tumor, inversely correlated with miR-
21 and enriched (via KEGG) in the cell adhesion (CAM)
pathway at p = 0.0006. Loss of CAM degrades the intra
and extracellular matrix, leading to abnormal cell growth
patterns. Among these 16 genes, two were identified as
direct targets of miR-21: SLC12A1 and TCF21, both of

which have been reported down-regulated in ccRCC
[69,70].

Identification of microRNA family interactions
We found evidence that families of microRNAs may be
coordinately participating in microRNA/mRNA interac-
tions. One example in ccRCC is the miR-204/211 family,
which was significantly down-regulated in ccRCC sam-
ples. We identified thirty five significant mRNA targets (p
= 0.0001) for this family (Additional File 2). Among these,
eight were on Chromosome 3q, a common amplicon
region in many epithelial tumors [81]. These genes
include C3orf58, CCDC50, DTX3L, PLD1, TRIM59, two
oncogenes ECT2 and RAP2B, and a hypoxia associated
protein SERP1 [82]. The gain of this chromosome arm
was previously associated with papillary RCCs [83], and
our observation in clear cell RCC implies a possible regu-
latory relation between miR-204/211 and the genes in
this region as an alternate mechanism of up-regulation of
this group of genes.

Another example is the miR-200 family which includes
two microRNA clusters, one on Chromosome 1p36.3
(miR-200a*/200b/429) and another on Chromosome
12p13 (miR-200c/141). Five miR-200 family members
contain very similar seed sequences - AAUACU for miR-
200b/200c/429 and AACACU for miR-200a*/141 [84].
Recently, several other groups have reported a role for the
miR-200 family in the Epithelial-Mesenchymal-transition
(EMT) and in cancer cell migration, the latter by directly
targeting the transcription factors ZEB1 and ZEB2, which
regulate E-Cadherin, a mediator of cell-cell adhesion
[84,85]. Another study [86] identified a regulatory loop
between these microRNAs and ZEB transcription factors
as well as the EMT inducer TGFβ. In epithelial cells, miR-
200 family microRNAs and E-cadherin maintain higher
level expression by repressing ZEB1, ZEB2 and TGFβ; on
the other hand, in mesenchymal cells and tumors, the up-
regulation of ZEB factors is triggered by TGFβ and sup-
presses the transcription of miR-141/200c by binding to
their putative common promoter region. In our primary
dataset, ZEB1 and ZEB2 were both up-regulated in six
out of our eight ccRCC samples and, their expression lev-
els were highly anti-correlated with the miR-200 family in
both tumor and normal samples. As confirmation of
these results, down-regulation of miR-141 and miR-200c
and their function on ZEB2 in ccRCC has recently been
reported [87]. We also noted that in our data, the anti-
correlation between VEGFA and the miR-200 family was
strongest in normal kidney tissue, suggesting that loss of
this regulation may be an important factor providing a
permissive environment for HIF transcriptional signal-
ing. Our hypothesis (prediction) from these various
observations is that in normal kidney, the expression level
of HIF2α and its downstream targets (VEGFA, TGFβ etc)

http://microrna.sanger.ac.uk/
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are regulated by miR-141, 200a*, 200b and 200c and the
loss of this microRNA regulation, in concert with VHL
loss, is responsible for activation of the HIF pathway.

One intriguing association which we have identified
(miR-141 regulation of SEMA6A) is highly significant for
therapy in ccRCC. This is because the soluble extracellu-
lar domain of SEMA6A has been engineered to effec-
tively inhibit VEGF-mediated tumor formation [88].
Hence, our results imply that miR-141 may have a role in
gene therapy. A model which summarizes our observa-
tions and integrates it with mechanisms for ccRCC dys-
regulation from the literature is shown in Figure 6. This
model integrates our measured microRNA regulatory
mechanisms with known transcriptional activity result-
ing from VHL loss and activation of the hypoxia response
pathway. The pathways shown in Figure 6 are likely highly
interconnecting, and this model, and the individual func-
tional interactions it suggests, need to be validated (and
probably significantly extended) by direct experimental
targeting of microRNA levels and measurements of each

of the predicted target genes in a larger cohort (such as is
planned for The Cancer Genome Atlas (TCGA) in its
next phase).

Conclusions
The main innovation in this paper is the use of an anti-
correlation analysis of microRNA/mRNA levels in two
cell types from the same patient (tumor/normal cells in
our case) to identify functional mRNA targets of altered
microRNA. The method can obviously extend to any tis-
sue type and might be useful in other contexts: for
instance, by using microdissection to harvest cells from
different cellular compartments from the same breast
cancer patient, it might reveal the microRNA/mRNA reg-
ulation program which causes progression of normal epi-
thelium to hyperplasia to DCIS to invasive disease. The
method might also be useful in non-cancer studies, such
as in identifying the role of microRNA and their target
genes in the transition from stem cells to differentiated
cells or in embryogenesis. In summary, in this paper, we

Figure 6 Model of dysregulated pathways in ccRCC based on predicted microRNA/mRNA interactions and known signaling pathways from 
the literature. This figure shows some of the biological pathways and regulatory interactions in normal kidney that are altered/dysregulated in ccRCC 
by changes in microRNA/mRNA levels. Light blue and violet/red indicates genes that are down-regulated and up-regulated in tumors, respectively, 
while dark golden colors show pathways.
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have demonstrated a simple method to identify tissue
specific mRNA targets of microRNA, which is expand-
able to many study types.

Methods
Primary Dataset: Tissue specimens, RNA extraction and 
cDNA synthesis
Eight ccRCC tissue specimens and adjacent normal kid-
ney (NK) tissue were collected from patients at Boston
Medical Center and Cleveland Clinic immediately after
radical nephrectomy, processed and stored at -80°C until
RNA extraction. Total RNA was extracted by homogeniz-
ing 40 milligrams of frozen tissue, followed by RNA isola-
tion. The concentration of the purified RNA was assessed
and RNA was reverse transcribed into first-strand cDNA
for real-time PCR.

Identifying the microRNA panel
Using this primary cohort of eight normal/tumor tissue
pairs, microRNA expression profiling was performed in
triplicate for each normal and ccRCC sample using quan-
titative real-time PCR in a 384-well format (System Bio-
sciences (SBI), Mountain View, CA, USA). Expression
levels were quantified using the comparative Ct (cycle
threshold) method and normalized to a "housekeeping"
microRNA, identified as the one whose level was most
unchanged across normal and tumor samples. To identify
microRNA signatures that distinguish tumor from nor-
mal tissue, we used the signal-to-noise ratio statistic [89]
and computed the associated p-value using 1000 permu-
tation tests with multiple hypothesis correction using
false discovery rate (FDR) and q-values [90].

Identifying differentially expressed mRNA
mRNA expression levels for the primary paired tumor/
normal specimens were measured by hybridizing
extracted RNA to Affymetrix HG-U133 Plus 2.0 arrays,
and the expression data was exported by MAS5.0 and
log2 transformed. To identify genes which strongly differ-
entiate between ccRCC and normal kidney tissue, we use
a two-fold expression cutoff and assessed their signifi-
cance using permutation tests to measure p-values and
False Discovery Rates (FDR) using SAM http://www-
stat.stanford.edu/~tibs/SAM/.

Validation on patient matched ccRCC and normal kidney
The validation cohort of 17 ccRCC tumor and adjacent
normal kidney tissue samples was collected from the Uni-
versity of North Carolina Tumor Bank. These samples
were snap frozen in liquid nitrogen, quality assured by
histologic analysis of adjacent fixed sections, and stored
at -80. Total RNA was extracted using the Qiagen
miRNeasy Mini Kit, quantified by Nanodrop (Thermo-
Scientific), and quality checked on an ABI Bioanalyzer

(ABI). MicroRNA analysis on the validation set of 17
ccRCC tumor and surrounding NK was performed using
a highly distinct platform from the experimental set:
Samples were end-labeled and hybridized to a commer-
cial densely tiled probe Agilent 8 × 15 K microRNA array.
We included more samples in the validation set than in
the primary set because of the lower signal/noise ratio in
microRNA expression values using the Agilent chip com-
pared to RT-PCR. The validation set of mRNA samples
were co-hybridized with a commercial RNA reference
(Stratagene) supplemented with a routine set of tumor
genes [83] to provide a standard reference for relative
expression. Hybridization was done on a commercial
Agilent human 4 × 44 K cDNA array to measure expres-
sion levels.

The samples collected at Boston University and Cleve-
land Clinic were obtained from patients immediately
after radical nephrectomy under IRB approved informed
consent from all patients. The IRB approving bodies were
the Boston University Medical Center Institutional
Review Board and the Cleveland Clinic Regional Institu-
tional Review Board respectively. The samples collected
at the University of North Carolina Medical School were
collected as a tumor banking protocol entitled Procure-
ment of Solid Tumor Tissue (LCCC 9001) approved by
the Biomedical Investigational Review Board (IRB) at the
University of North Carolina Medical School.

Validation set ccRCC mRNA measurements using 
quantitative RT-PCR
Total RNA from a subset of 12 of the 17 validation tumors
and matched normal kidney sample pairs was also ana-
lyzed for mRNA expression of the predicted target genes
VEGFA, ERBB4, SFRP1, and SLC12A1. Briefly, cDNA
was prepared from 500 ng of RNA using SuperScript II
polymerase, using manufacturer recommended standard
buffer and temperature conditions. cDNA was analyzed
by quantitative RT-PCR using commercial FAM-labeled
probe sets (ABI) using standard cycle conditions. For
each set of cDNAs analyzed, control 18S ribosomal sub-
unit and beta-actin cDNA were measured for internal
normal controls. Cycle threshold values were corrected
by normalization to actin.

In vitro validation of SEMA6A as a target of miR-141
Human renal cell adenocarcinoma cells (ATCC, CRL-
1611) were transfected with either the negative control
pre-miR or hsa-miR-141 (Ambion) using either FuGENE
HD (Roche) or HyFect (Denville scientific) transfection
reagents. RNA was isolated after 48 hours using the Tri-
zol reagent (Invitrogen) and treated with DNase. cDNA
was synthesized using the SuperScript III First-Strand
synthesis system for RT-PCR (Invitrogen) using oligo(dT)
primers according to the manufacturer's instructions.

http://www-stat.stanford.edu/~tibs/SAM/
http://www-stat.stanford.edu/~tibs/SAM/


Liu et al. BMC Systems Biology 2010, 4:51
http://www.biomedcentral.com/1752-0509/4/51

Page 15 of 17
PCR was performed using GeneAmp Fast PCR master
mix (Applied Biosystems) using SEMA6A primers
(Sigma) for 35 cycles. The specific primers used were:
SEMA6A forward: 5'-CCTGGACACCAGTTCCTGAT

SEMA6A reverse: 5'-GCAATTTTGGTAAGGCGGTA.
The samples were analyzed on 1.5% agarose gel.

Additional material
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