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Abstract
Background: The ability of a gene to cause a disease is known to be associated with the topological position of its 
protein product in the molecular interaction network. Pleiotropy, in human genetic diseases, refers to the ability of 
different mutations within the same gene to cause different pathological effects. Here, we hypothesized that the ability 
of human disease genes to cause pleiotropic effects would be associated with their network properties.

Results: Shared genes, with pleiotropic effects, were more central than specific genes that were associated with one 
disease, in the protein interaction network. Furthermore, shared genes associated with phenotypically divergent 
diseases (phenodiv genes) were more central than those associated with phenotypically similar diseases. Shared genes 
had a higher number of disease gene interactors compared to specific genes, implying higher likelihood of finding a 
novel disease gene in their network neighborhood. Shared genes had a relatively restricted tissue co-expression with 
interactors, contrary to specific genes. This could be a function of shared genes leading to pleiotropy. Essential and 
phenodiv genes had comparable connectivities and hence we investigated for differences in network attributes 
conferring lethality and pleiotropy, respectively. Essential and phenodiv genes were found to be intra-modular and 
inter-modular hubs with the former being highly co-expressed with their interactors contrary to the latter. Essential 
genes were predominantly nuclear proteins with transcriptional regulation activities while phenodiv genes were 
cytoplasmic proteins involved in signal transduction.

Conclusion: The properties of a disease gene in molecular interaction network determine its role in manifesting 
different and divergent diseases.

Background
Decades-long research efforts have resulted in the identi-
fication of a large number of human disease genes [1-3].
Most of this research has been based on experimental
and clinical studies of individual diseases and genes. A
conceptually different approach was recently described,
namely to study the network properties of human disease
genes on a diseasome-wide scale. The studies were based
on analyzing disease genes databases, such as the Online
Mendelian Inheritance in Man (OMIM) [4]. The disease
genes were classified as monogenic, polygenic or complex
and their properties in molecular interaction networks
were elucidated [5,6]. Further, it was shown that pheno-
typically similar diseases are often caused by functionally

related genes [7-9]. This has led to the exploitation of
molecular interaction networks to find novel candidate
genes exploring neighbors of a disease-causing gene in a
network as they are more likely to cause either the same
or a similar disease [7,8].

Pleiotropy, in the context of human genetic diseases,
implies that different pathological effects of different
mutations within the same gene predispose an individual
to different disorders [10]. While the previous studies
have studied the properties of disease genes classified
based on the number of genes involved in a phenotype, it
is paramount to study the genes classified based on the
number of phenotypes they are involved in. This would
aid in identifying disease genes that are specific to dis-
eases (specific genes), which can be exploited for thera-
peutic intervention. This would also help to find
pleiotropic genes that are shared between different dis-
eases (shared genes) to understand shared pathogenesis
and hence mechanisms underlying co-morbidity [10-12].
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Network properties of shared genes associated with phe-
notypically similar diseases have been examined so far,
whereas those of pleiotropic genes with effects on diver-
gent phenotypes and genes associated with specific dis-
eases have not been examined. We hypothesized that the
network properties of a gene in molecular interaction
network and its tissue co-expression with its interactors
determines the number of disease phenotypes it is associ-
ated with.

Here, we retrieved human disease genes and the associ-
ated diseases from Morbid Map (OMIM). We classified
the shared disease genes into genes associated with phe-
notypically similar diseases (phenosim genes) and those
that are associated with phenotypically divergent diseases
(phenodiv genes) based on CIPHER score [13]. For
instance, AKT1 which is associated with ovarian cancer,
breast cancer, colorectal cancer and schizophrenia was
classified as a phenodiv gene while TYRP1 which is asso-
ciated with brown albinism and rufous albinism was clas-
sified as a phenosim gene. We demonstrated that shared
genes were more central than specific genes while pheno-
div genes were more central than phenosim genes.
Shared genes had a higher number of disease gene inter-
actors compared to specific genes. However, shared genes
had a relatively restricted tissue co-expression with its
interactors compared to specific genes. Essential genes,
mutations in which lead to lethality, are known to be high
degree nodes (hubs), thus occupying a central position in
protein interaction network. When compared with spe-
cific, shared and phenosim genes essential genes had
higher measures of centrality, as expected. However,
essential genes and phenodiv genes had comparable con-
nectivities (degrees) instigating us to explore for other
network attributes of lethality and pleiotropy. We found
that essential and phenodiv genes were intra-modular
and inter-modular hubs, with the former being highly co-
expressed with their interactors contrary to the phenodiv
genes. Gene Ontology analysis identified the essential
genes to be predominantly transcription factors residing
in nucleus while phenodiv genes were cytoplasmic pro-
teins involved in signal transduction. This study demon-
strated that the effect of a disease gene on the number of
different and phenotypically divergent diseases is associ-
ated with its properties in a molecular interaction net-
work.

Results
Centrality of human disease genes in protein interaction 
network
We retrieved a list of 3350 human disease genes from
OMIM Morbid Map. If a gene is associated with only one
disease it was classified as specific disease gene and if it is
associated with more than one disease it belonged to the
shared disease genes category (Figure 1). The importance

of a node in a molecular network is often correlated to its
centrality [14]. There are different measures that capture
the centrality of a node in a network. We constructed a
human protein interaction network using a modified ver-
sion of CRG interactome [15] and investigated for differ-
ences in four different centrality measures namely degree,
closeness, betweenness and eccentricity between specific
and shared genes. The degree of a node provides the
information about how many links (edges) that node has
to other nodes in the network. Closeness is defined as the
reciprocal average distance (number of links in the short-
est path) to every other node- a node with high closeness
is thus, on average, close in graph distance to the other
nodes. Betweenness is a global centrality measure, which
determines the centrality of a node in a network based on
the total number of shortest paths going through the
given node. Thus, nodes that occur on many shortest
paths between other nodes have higher betweenness. The
eccentricity of a node is the distance to the farthest reach-
able other node in a network, thus focusing on a maximal
property where closeness focuses on an average.

Shared genes were more central than the specific genes
in the protein interaction network as indicated by all the
four measures of centrality (Table 1; Figure 2 panels A
through D). These topological differences could be
affected by shared genes in phenotypically similar dis-
eases; such genes would be expected to be topologically
similar to specific genes. To account for this we used
CIPHER to distinguish between shared genes associated
with phenotypically divergent and similar diseases (Phen-
odiv and phenosim genes respectively). Our analysis
established that phenodiv genes were significantly more
central than phenosim genes (Table 1; Figure 3 panels A
through D). The observed differences in all the measures
of centrality among the genes belonging to the four cate-
gories were well demonstrated by the distribution profiles
(Figures 2 and 3). Further, phenotypic similarity of dis-
eases (demonstrated by an increasing CIPHER score)
showed a significant correlation with the centrality mea-
sures in the protein interaction network; we observed sig-
nificant negative correlations of degree, closeness and
betweenness with CIPHER score (Spearman's rho= -0.24,
-0.23 and -0.26; P < 0.001 for all comparisons; Figure 4
panels A through C) while eccentricity was positively cor-
related (Spearman's rho= 0.19; P < 0.001; Figure 4D). In a
protein interaction network human disease genes, rela-
tive to non-disease genes, are known to have a higher ten-
dency to interact with protein products of other disease
genes [4,5]. Since the shared genes are involved in many
diseases they would be expected to interact with more
disease genes compared to the specific ones. Confirming
this, we observed that disease genes were overrepre-
sented among the interactors of shared genes compared
to those of specific ones (Figure 5; P < 0.001). This obser-
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vation prompts us to speculate that there is a higher like-
lihood of finding a disease gene in the network
neighborhood of shared genes. Phenodiv and phenosim
genes had a comparable proportion of disease-gene inter-
actors (P = 0.5). The enrichment of disease genes among
the interactors of shared genes highlighted their role in
shared pathogenesis.

Genes that are essential for early development, func-
tional changes in which might lead to abortions, are
termed as essential genes. Essential genes are known to
show a tendency to be associated with hubs [4,14]. Some
of the human orthologs of mouse lethal (essential) genes
are known to be associated with human genetic diseases

[4]. Essential genes associated with human diseases were
classified as essential disease genes (n = 811) while others
belonged to the essential genes set (n = 1555; Figure 1).
As shared genes show higher centrality we speculated
that these might be enriched with essential disease genes
compared to specific genes. Shared genes showed an
enrichment of essential disease genes compared to spe-
cific (44% to 17%; Fisher's Exact P < 0.001; Figure 6). Phe-
nodiv and phenosim categories had comparable
proportions of essential disease genes. These essential
genes can be presumed to be vital for organism survival,
sequence variants in which may lead to lethality. We
observed that essential genes were significantly more

Figure 1 Flow chart detailing how the different classes of genes were derived for this study.

Table 1: Comparison of measures of centrality of specific with shared genes and phenosim with phenodiv genes in human 
protein interaction network

Disease gene classes Degree Closeness Betweenness Eccentricity

Mean ± S.D. P-value * Mean ± S.D. P-value * Mean ± S.D. P-value * Mean ± S.D. P-value *

Specific genes 13.29 ± 24.21 <0.001 0.26 ± 0.04 <0.01 3.3 × 10-4 ± 0.001 <0.001 8.65 ± 1.37 <0.001

Shared genes 16.28 ± 27.73 0.26 ± 0.03 5.9 × 10-4 ± 0.002 8.61 ± 1.06

Phenosim genes 12.72 ± 20.72 <0.001 0.27 ± 0.04 <0.001 3.1 × 10-4 ± 0.0007 <0.001 8.75 ± 0.88 <0.01

Phenodiv genes 20.44 ± 34.85 0.27 ± 0.04 8.7 × 10-4 ± 0.003 8.47 ± 1.17

*P-values were determined using Mann-Whitney U test
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central than specific and shared genes (Table 2; Figure 2).
Phenosim genes differed significantly only in degree and
closeness while phenodiv genes had all measures of cen-
trality comparable to essential non-disease genes except
betweenness. Phenodiv genes had significantly higher
betweenness than essential genes (Table 2; Figure 3).

Tissue-specificity of disease genes and their interactors
To discern whether centrality in a protein interaction net-
work relates to a broader tissue distribution we checked
for differences in the gene expression of the four catego-
ries of disease genes in 79 different human tissues [16].
We could not find any significant difference in the distri-
bution of shared and phenodiv genes compared to spe-
cific and phenosim genes respectively (P = 0.05 and 0.23
respectively). A previous study suggests significant over-
expression of disease genes and their complexes in nor-
mal tissues where defects cause pathology [17]. This led
us to check for differences in the 'local' interactomes for
the four classes of disease genes in the different tissues.
For this, we integrated the protein interaction data with
that of the gene expression information. When we

checked for co-expression of interactors in the protein
interaction network with those of the disease genes we
identified that specific genes are more often co-expressed
with their interactors than the shared genes (Figure 7A;
Mann-Whitney P < 0.001; Mean ± S.D. = 45.9 ± 24.6 and
42.4 ± 24.1 respectively). We could not find any differ-
ences among phenodiv and phenosim genes (P = 0.45).
Further, we identified that specific genes have a higher
tendency of tissue co-expression with their disease-gene
interactors compared to shared genes (Figure 7B; Mann-
Whitney P < 0.001; Mean ± S.D. = 42.6 ± 24.6 and 40.2 ±
24.1 respectively). This, though somewhat unexpected, is
in line with the earlier observation of increased co-
expression of specific genes with their interactors com-
pared to shared genes. Similarly, we could not find differ-
ences in co-expression of disease-gene interactors when
shared genes were classified into phenodiv and phenosim
genes (P = 0.05). Essential genes had higher tissue co-
expression with their interactors compared to the differ-
ent classes of disease genes except specific genes which
had comparable proportions (Table 3). Notably, phenodiv
genes had significantly lesser tissue co-expression.

Figure 2 Distribution profiles of measures of centrality A) Degree, B) Closeness, C) Betweenness and D) Eccentricity among the specific, 
shared and essential genes. Shared genes show intermediate measures of centrality between essential genes and specific genes in human protein 
interaction network. Statistical comparisons of the measures of centrality between specific, shared and essential genes are presented in tables 1 and 2.
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Pleiotropy and network modularity
In the human protein interaction network, phenodiv
genes and essential genes had comparable degrees, close-
ness and eccentricity. However, phenodiv genes had
greater global centrality as indicated by higher between-
ness than essential genes (Mann-Whitney P < 0.001;
Mean ± S.D. = 8.7 × 10-4 ± 0.003 and 5.5 × 10-4 ± 0.002
respectively). This prompted us to check for differences
in clustering coefficient among essential and phenodiv
genes. Clustering coefficient quantifies the cohesiveness
of the neighborhood of a node and is defined as the ratio
between the number of edges linking nodes adjacent to a
node and the total possible number of edges among them.
Thus, clustering coefficient characterizes the overall ten-
dency of nodes to form clusters or groups. We observed
that phenodiv genes had significantly lesser clustering
coefficient than the essential genes (Mann-Whitney P =
0.018; Mean ± S.D. = 0.12 ± 0.19 and 0.17 ± 0.24 respec-
tively). In addition, phenodiv genes showed relatively
restricted tissue co-expression with their interactors in
contrary to essential genes. Taken together, these results

imply that these phenodiv and essential genes are classes
of high degree genes (hubs) which are inter-modular and
intra-modular respectively (Figure 8). Such hubs have
been extensively studied recently [18] and biochemical
differences have been reported between these two types
of hubs. We hypothesized that the varying topological
properties along with their different tissue co-expression
profiles with their interactors could be explained by dif-
ferent biological functions. Hence, we used Gene Ontol-
ogy (GO) to functionally characterize the essential and
phenodiv genes for their cellular component, molecular
function and biological process (Additional files 1 and 2).
GO analysis of essential genes identified organelle, intrac-
ellular membrane bound organelle (1022 and 946 genes
in contrast to a random expectation of 701.5 and 607.1
genes respectively; P < 0.001) to be the most significant
cellular components with most of the genes in nucleus
(737 genes as against a random expectation of 392.3
genes; P < 0.001). Contrarily, cytoplasm and membrane
(123 and 121 genes in contrast with the random expecta-
tion of 82.9 and 88.1 respectively; P < 0.001) were over-

Figure 3 Distribution profiles of measures of centrality A) Degree, B) Closeness, C) Betweenness and D) Eccentricity among the phenosim, 
phenodiv and essential genes. Phenodiv genes have higher measures of centrality compared to Phenosim genes. Phenodiv genes have compara-
ble measures of centrality to essential genes except higher betweenness. Statistical comparisons of the measures of centrality between phenosim, 
phenodiv and essential genes are presented in tables 1 and 2.
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represented in phenodiv genes. The overrepresented
molecular function categories for the essential genes
include protein binding and nucleic acid binding (945 and
505 genes against random expectation of 588.1 and 280.8
respectively; P < 0.001) while apart from protein binding
overrepresented molecular function classes for phenodiv
genes were catalytic activity and signal transducer activity
(84 and 62 genes to a random expectation of 65.2 and 28.2
respectively; P < 0.01 and <0.001 respectively). Intrigu-
ingly, both these classes of genes are involved in similar
biological processes.

Discussion
The phenotypic consequence of a variation in a gene is
known to be affected to a large extent by the topological
position of its protein product in the molecular interac-
tion network. Thus, the functional importance of a gene
is signified by its centrality in a protein interaction net-
work. Previously, we and others have shown that the con-

tribution of variations in a single gene to bring about an
associated phenotype is a function of its centrality [4-6].
Accordingly, based on centrality different gene classes
leading to a phenotype are ordered as essential genes
(being the most central), monogenic disease genes, com-
plex disease genes and non-disease genes (being the most
peripheral). However, the network properties of a gene,
mutations in which lead to various phenotypes have not
been explored.

Based on the current understanding of the human pro-
tein interaction network and the results presented here,
we demonstrated that the pleiotropic genes (shared
genes) had an intermediate centrality compared with
essential genes and genes associated with only one dis-
ease (specific genes). However, classification of the
shared genes based on the similarity of the associated
phenotypes demonstrated that phenodiv genes leading to
divergent phenotypes were more central than phenosim
genes. Thus based on increasing order of centrality these

Figure 4 Correlation of measures of centrality. A) Degree, B) Closeness, C) Betweenness, D) Eccentricity with phenotypic similarity estimat-
ed by CIPHER Score. ρ represents Spearman's rho. The trend lines with negative slope in panels A, B and C indicate negative correlation of degree, 
closeness and betweenness with phenotypic similarity with the corresponding correlation coefficient and significance. The positive slope of the trend 
line in panel D demonstrates a positive correlation between eccentricity and phenotypic similarity. Thus, with the increasing phenotypic similarity, 
the respective disease associated genes show decreasing centrality. Very high degree values in the panel A have been removed in order to aid better 
visualization; however they have been considered for estimating correlation.
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different disease genes could be arranged as Specific,
Phenosim and Phenodiv genes. We note that the
observed correlation of measures of centrality with phe-
notypic similarity provides support that the interpreta-
tions might not have been affected by considering
median CIPHER value as a cut-off to classify phenosim
and phenodiv genes.

Co-expression with interactors is a prerequisite to bring
about the function of a gene. Thus, specific genes with a
very small network neighborhood would always be co-
expressed with their interactors. Conversely, essential
genes are hubs with high co-expression with their inter-
actors. This attribute explains as to why mutations in
these genes lead to lethality. Contrary to both specific and
essential genes, shared genes showed decreased co-
expression with their interactors. In addition to an inter-
mediate centrality in the protein interaction network, this
could be considered as an important functional property

of genes with pleiotropic effects. For instance, the pheno-
div gene AKT1 is associated with divergent phenotypes
including schizophrenia, colorectal cancer, ovarian can-
cer and breast cancer. The network of its interactors var-
ies among these diseases (Figure 9A) with some
expressed in all disease tissues to very few not expressed
in any. On the contrary, the disease-specific genes are co-
expressed with all their interactors in the respective dis-
ease tissue. This is explicitly demonstrated by the co-
expression of CLINT1 associated with schizophrenia
with all its interactors in the brain region associated with
the pathophysiology of the disease (Brodmann area 10:
anterior prefrontal cortex; Figure 9B). Similarly, RRAS2,
PMS1 and PHB which are associated only with ovarian
cancer, colorectal cancer and breast cancer are co-
expressed with their interactors in the respective disease
tissues (Figure 9 panels C through E).

The similar measures of centrality between essential
and phenodiv genes, except betweenness, led us to inves-
tigate the properties that determine essentiality (lethality

Figure 5 Fraction of disease-gene interactors among those that 
interact with the four categories of disease genes. Phenodiv and 
Phenosim genes have the highest number of disease-gene interactors 
while specific genes have the least.

Table 2: Comparison of measures of centrality of Essential genes with that of specific, shared, phenosim and phenodiv 
genes in human protein interaction network

Measure Essential Specific Shared Phenosim Phenodiv

Mean ± S.D. P-value* P-value* P-value* P-value*

Degree 21.57 ± 35.89 <0.001 0.012 <0.001 0.44

Closeness 0.27 ± 0.03 <0.001 <0.001 <0.001 0.83

Betweenness 5.5 × 10-4 ± 0.002 <0.001 0.23 0.12 <0.001

Eccentricity 8.63 ± 0.87 <0.001 0.99 0.039 0.039

Mean ± S.D. values for the specific, shared, phenosim and phenodiv genes are provided in Table 1. *P-values were determined using Mann-
Whitney U test

Figure 6 Proportion of essential disease genes in the four catego-
ries of human disease genes. Essential disease genes are defined as 
the orthologs of mouse genes that resulted in lethal phenotype upon 
knock-out, mutations in which lead to diseases in humans. Phenodiv 
genes have the highest number of essential disease genes while spe-
cific have the least.
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of mutants) and pleiotropy. One of the most striking
observations made here was that the essential genes and
phenodiv genes were intra-modular and inter-modular
hubs, with the former being highly co-expressed with its
interactors contrary to the latter. Furthermore, essential
genes were predominantly involved in transcription regu-
lation while phenodiv genes in signal transduction.

This study could be affected by knowledge bias pertain-
ing to the disease genes and their associated phenotypes
as presented in OMIM, the human protein interaction
network and the information on tissue expression. With
an increasing number of genetic studies it is likely that
some of the specific genes will be identified as shared and
some of the phenosim as phenodiv genes. Based on the

trend we observed here, it is tempting to speculate that
essential disease genes in the specific and phenosim
genes categories may have a higher likelihood for this
transition. An expansion of knowledge of the diseases
and disease genes, protein interactions and tissue expres-
sion would aid in better comprehension of the properties
associated with genes causing pleiotropic effects. Further,

Table 3: Comparison of tissue co-expression of interactors 
of Essential genes with that of specific, shared, phenosim 
and phenodiv genes

Gene Class Tissue co-expression of interactors

Mean ± S.D. P-value*

Essential 46.4 ± 23.2

Specific 45.9 ± 24.6 0.42

Shared 42.4 ± 24.1 <0.001

Phenosim 42.5 ± 24.0 <0.001

Phenodiv 42.0 ± 22.9 <0.001

*P-values were determined using Mann-Whitney U test

Figure 7 Tissue co-expression of specific and shared genes with A) All interactors and B) Disease gene interactors. The Tissue Co-expression 
Index (TCI) was calculated for a disease gene and its interactor as the fraction of the 79 tissues analyzed in which both were detected as expressed. 
Larger indices indicate that disease gene and the interactor are co-expressed in most tissues. The fractions of disease genes shown as the function of 
TCI indicate that specific genes are more co-expressed with their interactors as well as disease gene interactors compared to shared genes. The error 
bars represent SEM.

Figure 8 A simplified illustration of the topological position of 
the protein product of A) Essential gene (Intra-modular hub) and 
B) phenodiv gene (Inter-modular hub) in the molecular interac-
tion network. The representative essential and phenodiv genes are 
marked in solid blue color node border. Both the classes of genes have 
same connectivities. Phenodiv genes have higher betweenness imply-
ing that these are proteins that occur on many shortest paths between 
other proteins in protein interaction network. On the other hand, es-
sential genes have higher clustering coefficient suggesting the in-
creased overall tendency of its interactors to form clusters.
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Figure 9 Networks of interactors of disease genes in disease tissues. A)Network of interactors of the phenodiv gene AKT1 which is associated 
with schizophrenia, ovarian cancer, colorectal cancer and breast cancer. The color of the nodes indicates the number of disease tissues in which the 
interactors are expressed in. As indicated by the co-expression of interactors, AKT1 interacts with diverse interactors under different pathological con-
ditions. AKT1 as a specific example of phenodiv genes demonstrates that phenodiv genes have more interactors (higher connectivity) and show rel-
atively restricted co-expression with their interactors across different tissues. Network of interactors of specific genes- B) CLINT1 C) RRAS2 D) PMS1 and 
E) PHB associated with schizophrenia, ovarian cancer, colorectal cancer and breast cancer respectively. As has been observed for the class of specific 
genes, CLINT1, RRAS2, PMS1 and PHB have lesser number of interactors and are co-expressed with all their interactors in the respective disease tissue.
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it will be interesting to study the temporal co-expression
of these genes with their interactors in various tissues.

Conclusions
Here we demonstrated that the ability of a disease gene to
influence the cellular network, signified by its centrality
and tissue co-expression with its interactors, determines
its pleiotropic effects.

Methods
Dataset
We obtained the list of human genetic diseases and asso-
ciated 5024 diseases from the OMIM MorbidMap (down-
loaded in February 2009) [19]. Based on the number of
disease associations the genes were then classified as spe-
cific- genes associated with one disease (n = 2512) and
shared- those associated with more than one disease (n =
838). To determine the phenotypic divergence among dis-
eases associated with the shared genes we used CIPHER
(Correlating protein Interaction network and PHEnotype
network to pRedict disease genes) [13]. CIPHER provides
a similarity score of phenotypes for diseases in Morbid-
Map, based on their OMIM descriptions using Medical
Subject Headings (MeSH) terms. Thus, a lower CIPHER
score represents a higher phenotypic divergence. We
retrieved CIPHER score for all diseases associated with
the same gene and recorded the lowest score for each
shared gene. This resulted in identification of 472 shared
genes with phenotypic similarity/divergence information.
Using the median CIPHER score (0.33) of the entire data-
set as cut-off, we then categorized these genes into genes
associated with phenotypically similar diseases (Pheno-
sim genes with CIPHER scores ≥0.33; n = 238) and genes
associated with phenotypically divergent diseases (Phen-
odiv genes with CIPHER scores < 0.33; n = 234). We
defined essential genes (n = 2366) as previously described
[4], by retrieving a list of human orthologs of mouse
genes that resulted in lethal phenotype in embryonic and
postnatal stages upon knockout as catalogued in Mouse
Genome database [20]. Of the essential genes 811 were
associated with human diseases and are classified as
essential disease genes while 1555 essential non-disease
genes were categorized as essential genes (Figure 1).

Human protein interaction network
We constructed a human protein interaction network
using a modified version of CRG interactome [15]. CRG
interactome is by far the largest protein interaction net-
work including protein-protein interactions supported by
at least one direct experimental evidence demonstrating
physical association between two human proteins. To val-
idate proper annotation of the proteins, we retrieved
Entrez gene identifiers for all the proteins that were listed
in the CRG interactome with Ensembl gene identifiers.

After removing entries that lacked Entrez gene identifi-
ers, the modified CRG interactome consisted of 10,092
proteins with 79,211 interactions.

Tissue expression
In order to examine differences in tissue distribution
among the shared and specific genes, and the Phenosim
and Phenodiv genes and co-expression with their interac-
tors (from the human interaction network) we used pre-
viously described dataset of complete set of interactions
with details of cells and tissues in which each interaction
can occur [15]. This dataset was derived based on GNF
Atlas expression data [16] which details tissue expression
patterns of genes across 79 different non-disease human
tissues. As previously described [15] we determined the
expression of interactors for AKT1 in disease tissues-
schizophrenia (GSE17612), colorectal cancer
(GSE14333), breast cancer (GSE19615) and ovarian can-
cer (GSE18520). The datasets of disease tissues from
patients were retrieved from NCBI Gene Expression
Omnibus [21]. Expression of interactors of CLINT1,
PMS1, PHB and RRAS2 were determined in schizophre-
nia, colorectal cancer, breast cancer and ovarian cancer
disease tissues respectively. The interactors are consid-
ered co-expressed if they are expressed together in tissues
in the datasets considered.

Gene Ontology
Overrepresentation of Gene Ontology (GO) categories
[22] was determined using the GOSim package from Bio-
conductor. Statistical significance estimation for overrep-
resented GO categories in real datasets (phenodiv and
essential genes) was done by considering all GO catego-
ries without defining any levels in the GO hierarchy in
order to avoid loss of information. We considered only
categories with at least 5 total genes to prevent categories
appearing to be significantly over-represented due to
chance.

Statistical Analysis
We compared the measures of centrality- degree, close-
ness, betweenness and eccentricity, between different
classes of genes by Mann-Whitney U tests. Correlation
between phenotypic similarity, as determined by CIPHER
score and the measures of centrality was determined
using Spearman's rank correlation. Different classes of
disease genes were compared for disease essential genes
using Fisher's Exact test. For GO analysis the number of
genes in real dataset (N) with GO classifications was
determined. In each GO category the number of genes in
real dataset was counted. From the total number of genes
represented in GOSim a set of N genes were randomly
sampled and the number of genes present in each GO
category was counted. This was repeated 10,000 to gener-
ate "randomly expected gene lists" for each GO category.
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Statistical significance was estimated as the ratio of num-
ber of times a GO category had more number of expected
genes than observed for the real dataset genes to the
number of random gene lists considered. Statistical anal-
yses were performed using R.
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