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Abstract

Background: Stochastic effects can be important for the behavior of processes involving small population
numbers, so the study of stochastic models has become an important topic in the burgeoning field of
computational systems biology. However analysis techniques for stochastic models have tended to lag behind
their deterministic cousins due to the heavier computational demands of the statistical approaches for fitting the
models to experimental data. There is a continuing need for more effective and efficient algorithms. In this article
we focus on the parameter inference problem for stochastic kinetic models of biochemical reactions given discrete
time-course observations of either some or all of the molecular species.

Results: We propose an algorithm for inference of kinetic rate parameters based upon maximum likelihood using
stochastic gradient descent (SGD). We derive a general formula for the gradient of the likelihood function given
discrete time-course observations. The formula applies to any explicit functional form of the kinetic rate laws such
as mass-action, Michaelis-Menten, etc. Our algorithm estimates the gradient of the likelihood function by reversible
jump Markov chain Monte Carlo sampling (RIMCMC), and then gradient descent method is employed to obtain
the maximum likelihood estimation of parameter values. Furthermore, we utilize flux balance analysis and show
how to automatically construct reversible jump samplers for arbitrary biochemical reaction models. We provide
RIMCMC sampling algorithms for both fully observed and partially observed time-course observation data. Our
methods are illustrated with two examples: a birth-death model and an auto-regulatory gene network. We find
good agreement of the inferred parameters with the actual parameters in both models.

Conclusions: The SGD method proposed in the paper presents a general framework of inferring parameters for
stochastic kinetic models. The method is computationally efficient and is effective for both partially and fully
observed systems. Automatic construction of reversible jump samplers and general formulation of the likelihood
gradient function makes our method applicable to a wide range of stochastic models. Furthermore our derivations
can be useful for other purposes such as using the gradient information for parametric sensitivity analysis or using
the reversible jump samplers for full Bayesian inference. The software implementing the algorithms is publicly
available at http://cbclics.uciedu/sgd

Background

It is becoming increasingly apparent that stochasticity,
whether intrinsic or extrinsic, plays an important role in
the dynamics and behavior of biological systems. In sys-
tems biology and the study of gene expression [1-3], the
consequences of stochasticity can manifest in numerous
ways such as slow promoter kinetics leading to gene
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transcription bursting [4,5], finite-number effects and
mRNA translation bursting [6-9], propagation of noise
in gene regulatory cascades [4,10], and phenotypic
switching [11,12]. In some cases, biological systems
evolve to minimize the effects of noise such as through
negative feedback loops [13-15], but there is also evi-
dence that biology exploits randomness such as to cre-
ate phenotypic diversity in populations thus allowing
better adaptation to changing environments [16-18].
With the growing awareness of stochasticity in biology
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and the increasing use of stochastic models in computa-
tional systems biology, there is a need to develop new
analysis and computational techniques for studying,
understanding and designing these stochastic models.

One particular analysis technique and challenge in
computational systems biology is the inference of rate
parameters from experimental data for a specified bio-
chemical system [19]. Parameter inference for continu-
ous deterministic models has a considerable body of
research literature and can often be converted into an
optimization problem for which many computational
methods are available [20]. The strategies of these meth-
ods can be classified as either deterministic or stochas-
tic. Deterministic strategies are generally only applicable
for specific mathematical formulations of the model
where a statement about the existence of the global
optimum can be guaranteed along with a constructive
algorithm to find it. Many problems are not that well-
defined so stochastic strategies are popular including
stochastic gradient descent [21], simulated annealing
[22-24], evolutionary computation [25], and other heur-
istics. Regardless, considerable computational effort is
required for all of these methods as many simulations of
the continuous deterministic model are performed. A
discrete stochastic model is essentially a more adequate
description for a biochemical system, but it has the dis-
advantage of being computationally expensive to simu-
late as well as requiring numerous independent
simulations to be performed in order to calculate expec-
tation values of various model outputs [26-28]. These
computational challenges mean that approximation
techniques are frequently used for parameter inference
including simplification of the stochastic model [29] and
approximate inference such as using the chemical Lan-
gevin equation [30] in place of the Markov jump process
[31,32]. Recent research has shown that parameter infer-
ence for stochastic models is feasible given time course
observations of the system, even if only a partial set of
molecular species are observed [32,33]. However the
current algorithms, based on the Bayesian framework,
are typically time-consuming due to the need of sam-
pling high dimensional space. Therefore there are signif-
icant challenges in applying the method to real systems,
such as gene regulatory networks [34].

Most proposed methods for parameter inference in
stochastic biochemical models consider how to calculate
the maximum likelihood for the rate parameter values
given a stochastic model and observational data. Except
for the simple models, the likelihood function is compu-
tationally intractable, so these methods either perform
exact inference on an approximated model where the
likelihood computation is tractable, or they approximate
the likelihood with a more tractable function, or some
combination of the two. Tian et al. [35] considered the
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simulated maximum likelihood (SML) method that esti-
mates likelihood by generating samples from many
simulations of the stochastic model. The ratio of sam-
ples matching observations to the total number of sam-
ples is used to estimate the transitional density and the
log-likelihood. Then a genetic algorithm is used to
obtain the optimal rate parameter values that minimize
the log-likelihood function. While the SML approach is
straightforward, it is computationally expensive because
it requires a large number of simulations of the stochas-
tic model. Similarly, approximate Bayesian computation
also requires the stochastic model to be simulated, but
it avoids calculating the likelihood function by compar-
ing simulated data with observations using a rejection
sampler [36,37]. In a similar framework, Yosiphon et al.
[38] used a simulated annealing procedure in an MCMC
algorithm to estimate the parameters in stochastic mod-
els of reaction networks. Reinker et al. [39] proposed a
method utilizing a hidden Markov model to approxi-
mate the stochastic model that takes observational error
into account. Boys et al. [33] showed how full Bayesian
inference can be performed on the stochastic Lotka-Vol-
terra model along with performance of various Markov
chain Monte Carlo (MCMC) algorithms. Interestingly
they showed that with partially observed data, i.e., only
one of the two species in the model, they can still make
inferences about all three rate parameters in the model;
though it is unclear how well this would work on larger
models with many parameters. Wilkinson and colleagues
have investigated additional methods including using
diffusion approximations [29,31] and incorporating mul-
tiple data sources [40].

In this paper, we describe an alternative method for
parameter inference in discretely observed stochastic
kinetic models. Instead of calculating and approximating
the likelihood function as in the previous methods, we
focus on estimating the gradients of the likelihood func-
tion with respect to the parameters. In particular, we
propose a general methodology for efficiently estimating
the gradients using reversible jump Markov chain
Monte Carlo (RIMCMC). RIMCMC is an extension of
the standard MCMC method that allows for generating
samples on spaces of varying dimensions [41]. An
implementation challenge for RIMCMC is the lack of a
general way to construct the jump proposals such that
detailed balance is preserved [42]. For stochastic kinetic
models, the jump proposal corresponds to moves that
change the number and the time of reactions that occur
between two observations of the system. For most mod-
els, there is an infinite set of possible reaction processes
(constrained by the observation data) that can occur
between two time points, and the probabilities of differ-
ent reaction paths depend upon the rate parameter
values. Utilizing the research in flux balance analysis for
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metabolic networks [43-45], we provide an algorithm so
that jump proposals can be automatically constructed
from any standard biochemical model, thus allowing
RJMCMC to be used without requiring any manual ana-
lysis by the modeler.

The availability of the gradient information allows for
inference of the rate parameters of stochastic kinetic
models using gradient descent-based methods. We
implement a steepest gradient descent method for para-
meter inference using the estimated gradient informa-
tion in a MATLAB software package http://cbcl.ics.uci.
edu/sgd. We demonstrate the utility of our algorithms
using two example stochastic models, including a birth-
death process and a gene auto-regulation model.

Methods

Stochastic kinetic model of reaction systems with discrete
states

Consider a general reaction system involving M reac-
tions R;, R,,..., Ry and K species S;, S»,..., Sg- We denote
the state of the reaction system by X = (xy,....xx) where
x, is the number of species S,. Each reaction R; has an
associated rate law, represented by a hazard function #;
(X, O) (also called rate function), where ® = {0,} is a set
of parameters associated with the reactions. Suppose the
reaction system takes the following form

Ry tuy Sy +upnSy + -+ upeSg = 1Sy + 01,8, +-+ v Sk
Ry i1y Sy +1UpnSy + oo+ UypSg = 151S) + 1558, + -+ 1, S

1.1)

Ryp Sy +uppSy -+ UpeSk = VanSy + VppSy + oo+ VpiSi

where u,, and v,, are the positive integer stoichiome-
tries associated with reaction R, for reactant S,, repre-
senting the amount of species S, that decrease and
increase respectively when reaction R, occurs. Eq. (1.1)
can be represented more compactly as US — VS, where
U = [u;] and V = [v;] are M x K matrices. We define
the net effect reaction matrix A = V - U, which reflects
the net change of species numbers associated with
reactions.

Asumming the reaction system is in well-stirred con-
dition with a fixed volume, we can introduce the master
equation model, also known as “chemical master equa-
tion (CME)” in the biochemical modeling field [26],
which describe the time evolution of the state probabil-
ity using a set of ordinary differential equations. The
CME can be derived for any biochemical reaction sys-
tem using the standard continuous time Markov process
theory. Denote P(X;t) the probability of the system in
state X at time t. For an infinitesimal time increment At,
P(X;t + At) can be written as the sum of probabilities of
the number of ways in which the system can reach or
leave the current state:
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P(X;L+Ar):ihi(X—A,,G))P(X—Ai;r)At+[l—ih,(x,®)m}>(x;t) (1.2)
i=1 i=1

where A; denotes the ith row of the net effect matrix
A, and hy(X, ©) is the hazard function, determining the
rate of probability transition out of state X due to reac-
tion type i. In the limit of At — 0, Eq. (1.2) adopts the
standard master equation form,

d .
P(X,0)= ; Hy (P(X 1), (1.3)
with

M

Hy o= D[ hX,0065,  , ~h(X,0)5, | 1.9

=

Suppose all possible system states (usually countably
infinite) are ordered and represented by indices 1, 2,...,
etc. Then Eq. (1.3) can be rewritten as dP — PE, where
ﬁ(t) is a row vector with P;(¢) representing the prob-
ability of the i-th state at time ¢.

For reactions that obey mass-action law kinetics, one
rate parameter 6, is associated with each reaction type i,
and consequently the hazard function has the form of

|
nx.0)=0, [T ¢

Y _g h(X),
(xg—urg)! r (%)

(1.5)

where u,, is the stoichiometry coefficient of reactants
a in reaction R,. Forms of other rate laws for chemical
kinetics, e.g. the Michaelis-Menten model, can be found
in [46]. Although we will focus our discussion on the
hazard function in the form of Eq.(1.5), the following
analysis can handle more general cases as long as the
explicit functional form of the hazard function is known.

Gradient of the likelihood function with discrete
observations

Our goal is to estimate the rate parameters of a stochas-
tic model based on the observations at a set of discrete
time points. Suppose we have observations {Xr(¢;),
Xr(£3),...Xr(t,,,)} of the system at m discrete time points
{t1, L.ty for a subset of species I' € {1,..,K}. We say
the system is fully observed if I' = {1,...,K}, and partially
observed otherwise. Denoting the likelihood of the
observations for a given set of rate parameters by L
(Xr(t1), Xr(t2),....X1(t,,); ®), we estimate the rate para-
meters by maximizing the likelihood function.

For simplicity of discussion, consider first a single
time interval [¢,, t,,;] with full observations available at
the start and the end of the interval, denoted by X()
and X(t,1) respectively. Let L(X(¢,), X(¢,1);®) denote
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the likelihood of observing X(t;) and X(£,;) under a
model with parameters ®. In Appendix, we show that
the gradient of the likelihood function with respective to
parameters can be calculated using the following for-
mula, for any stochastic system with a master equation
Eq. (1.3)

(2.1)

9 alikk aloglik k'
—L(X(t), X(t1):;©)=E E T, + E = Ny w
30, ( ( 5) ( ;+1) ) 397 Kt “, aer (2

where Ty is the time duration of the system at state k,
and Ny,  is the number of transitions from state k to k’
occurred during the interval. Both T} and Nj ;- are ran-
dom variables, and can be viewed as the sufficient statis-
tics of the model. E[-] represents the expectation of the
random variables. The formula suggests that we can cal-
culate the gradient of the likelihood function by estimat-
ing the expectations of the two sulfficient statistics.

For the biochemical reaction system in Eq. (1.1), sup-
pose J reactions have occurred during the time interval
[ts ts.1] with the types and the corresponding times of
the reactions denoted by ZE = {(Rj,fj) li=12,..J}.
Then by Eq. (2.1), the gradient of the likelihood function
can be rewritten as

o[ dh(X(9).©)
agr*E[(% t) 89,»

s L R XG)O) anexipe )| 22
5 D,y |
2| g, (X(0)6) o0y o

where X(t ), which is fully specified by =, denotes the
state of the system between (/j:[jx1)ho(X,0)= Zh X,0),
and o=t =t,.Eq. (2.2) can also be written in
an alternative form

a _ [d
- £ 5y 1085 (21306, X0,.,0) | (2.3)
where
7(E] X(t,), X(te1), ©) = exp[ () — t)ho(X(1,)) ]
HhR (X)) exp[ ~(F 1 ~ T )ho(X(E))) ]
is the likelihood of the reaction process E. If all the

reactions follow mass-action law in Eq.(1.5), the gradient
formula can be further written as

oL - xq(ts)!
—— =FE (ts —t ) __*a\*s):
90, ! (a\uHO} (xq(ts)—urg)!
" (2.4)
; -
1 . xq(tj)!
—X8,p —(tiy —t;) ——
jzzl 0, R; JHL T {ago} (xa(tj)—um)!
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Now return to the general case where the observations
are available at multiple time points from a subset of the
species. The above formula for calculating gradient can
still hold if we view the entire duration of the observa-
tions as a single time interval. However, the expectation
in Eq. (2.3) is now taken on the systems states whose
distribution is conditioned on the observations at the
intermediate time points.

In general, the expectation in Eq. (2.3) cannot be cal-
culated exactly. Instead we utilize a sampling method to
approximate the expectation. More specifically, we sam-
ple the latent path conditioned on the parameters and
the observations, and then calculate the quantity in Eq.
(2.3) by averaging over the sampled paths to obtain the
gradient. The same strategy also applies to the partially
observed case, as long as the reaction paths are sampled
conditioned on the partial observation data.

Reversible jump Markov chain Monte Carlo sampling
To calculate the gradient, we need to find an efficient
way to sample the latent reaction processes conditioned
on the observations. One commonly used sampling
method is the stochastic simulation algorithm (SSA)
[26], which can be used as a rejection method to discard
samples that do that match the end state. The SSA
method is computationally inefficient for generating
samples between two measurements when the total
number of possible states is high (as in the case of the
biochemical reactions), because the chance of a sampled
trajectory matching the end state is typically small and
consequently most of the samples will likely be rejected.
Here we use the framework of RIMCMC [41] to sam-
ple the latent process. RIMCMC is a generalized
MCMC method that can construct a sampler between
models of different dimensions, which in our case corre-
sponds to reaction paths with different number of reac-
tions. To sample latent paths in biochemical reaction
systems, the RIMCMC method [33] first generates an
initial reaction path that is consistent with the observa-
tions. Then RIMCMCM constructs a Markov chain by
a) proposing a new sample path by adding or deleting a
specific set of reactions from the current path, and b)
determining whether to accept the new sample or keep
the previous one according to an acceptance probability.
Therefore, to construct a RIMCMC sampler, we will
need to consider three issues: 1) how to generate the
initial path; 2) how to propose a set of reactions for addi-
tion or deletion; and 3) how to determine the acceptance
probability of a new path. Note that both the initial path
and the proposed path have to match the observations at
the start and the end of the interval, implying that only a
subset of the reactions can be used for either
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initialization or addition/deletion. While the RIMCMC
sampler exists for some specific reaction systems [33],
usually taking advantage of the domain-specific knowl-
edge, the challenge, however, is to find a general method
that can work for any arbitrary reaction system.

Next we address the three issues mentioned above,
and describe a general method to automatically con-
struct a RIMCMC sampler for an arbitrary reaction
system.

1) Generating an initial reaction path using integer
programming

The first issue of generating the initial path is relatively
easy to address. Let r be a vector representing the num-
ber of each reaction type occurred within the initial
path. To match the observations at the start and the
end of each interval, r has to satisfy certain constraints.
Fortunately, all these constraints are linear, and thus we
can use linear integer programming to find a solution.
In practice, we used the GNU Linear Programming Kit
(GLPK library) [47], which is incorporated into our
MATLAB package using the interface GLPKMEX [48].
2) Proposing a new sample by adding or removing
reactions

After an initial path is generated, our next step is to use
proposal moves to add or remove reactions. Before
describing our method, we first introduce two concepts
that are used in studying biochemical reaction systems.
Definition 1: Elementary Mode

An elementary mode (EM) of a biochemical reaction net-
work is a set of reactions that does not alter the observed
number of molecular species. Formally, an elementary
mode qy, is a column vector of non-negative integers that
satisfies ATq, =0, where A = A ( the net-effect reaction
matrix) when all species are observable, and is a sub-
matrix of A with columns corresponding to the observed
species when only a subset of species are observable.
Definition 2: Null Set

The null set is a set consisting of all independent elemen-
tary modes, denoted by {G,,q5,....G} -

Note that the null set is usually different between the
fully and the partially observed case because of the dif-
ferent A matrix used.

Elementary modes analysis is well studied in metabolic
networks theory and is used to find the flux distribution
of the metabolic network at a steady state [49]. Various
tools have been developed to identify EMs [43-45]. In
this work, we used the metatool package [44] to calcu-
late the null set of any specific reaction network, which
has been shown to be efficient for large networks.

Provided with a valid reaction path and the null set,
we then proceed to generate a new sample by taking
one of the following three move types. After randomly
choosing an elementary mode ¢, from the null set,

Page 5 of 16

1. With probability a;, add the set of reactions in
G, with random reaction times uniformly distribu-
ted within the interval.

2. With probability a,, remove one set of randomly
selected reactions in ¢, from the current path
within the interval.

3. With probability 1-a;-o,, randomly move the
time of all reactions.

Using ¢, ensures that the proposed reaction path is
always consistent with the observations. However, there
are two additional conditions for a new sample path to
be valid: 1) the number of any reaction type must be
positive after the move, and 2) the population numbers
for all species remain positive throughout the whole
process. If either of the two conditions is violated, we
set the likelihood of the new sample path to be zero and
reject the new sampled path. The proposal probability in
RJMCMC for different moves is set be to oi; = oy = 0.25
in practice. Note that the initial path and the null set
only need to be calculated once, and thus they only
impose a modest computational burden on the sampling
algorithm.

3) Determining acceptance probability

Next we address the third issue on how to determine
the acceptance probability of a proposed sample. We
discuss the fully observed case first, and then the par-
tially observed case.

Fully observed case

The observations at m discrete time points break the
entire observation window into m-1 subintervals.
Because all species are observed, the reaction path at
each sub-interval is completely independently of each
other conditioned on the observations. The reaction
path at each sub-interval can therefore be sampled inde-
pendently using RIMCMC. Let E denote the current
reaction path and E denote the proposed reaction path.
The probability of accepting the new path is specified by
min(1, AR,), with p = 1, 2, or 3 denoting the type of the
move

1=7”(:_|®)><0‘—2 I:rq"'fr]-! /(rj+qk,j)!j|,
n(EO) aj -
{]‘qh,]#O}
7(20)  «a -
{ls, =0}
_=(=10)
> aEle)

where 7(Z|0), defined in Eq. (2.3), is the likelihood of
sample path Z, r; is the number of type j reaction in the
current sample path, g ; denotes the number of reac-
tion type j in the elementary mode ¢, and 7 is the
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time length of the sub-interval. Appendix, Algorithm 1
provides the pseudo-code for the fully observed case.
Partially observed case

In the partially observed case, observations are only
available for a subset of the species. Different from the
fully observed case, the reaction paths at different sub-
intervals are now correlated, caused by unobserved spe-
cies. Consequently, RIMCMC can no longer be applied
independently for each sub-interval.

To account for the correlation, we use a new strategy
in which the reaction paths at two consecutive sub-
intervals are sampled together at each sampling step
using correlated moves. Let {g;’}, k € (1, K') be the null
set corresponding to the partially observed case. Note
that adding/deleting the set of reactions in (jk only
ensures that the observed species’ numbers remain
unchanged, but not the unobserved species. Suppose we
are to update the reaction path following the time point
t;. We first generate a new sample path in the i-th inter-
val [t;, ¢;,1] using the same reversible jump moves as
described for the fully observed case, with a randomly
chosen elementary mode. If the move changes the unob-
served species numbers at time ¢;,;, we subsequently
update the (i+1)-th interval using a complementary
move that keeps the system state at the end of the sec-
ond interval unchanged. For example, if move type 1 (or
2) is chosen to update the first interval with an elemen-
tary mode g%, move type 2 (or 1) will be applied to the
second interval to remove (or add) the same elementary
mode g% The complementary moves guarantee that the
new reaction paths proposed for the two sub-intervals
do not change the species numbers, including those of
the unobserved species, at the end of the second inter-
val. As with the fully observed case, the two conditions
of a valid path (positive reaction type number and posi-
tive species number) must be satisfied, otherwise the
proposal move will be rejected. The acceptance prob-

ability is calculated as min(l,%AR;; .AR;fl)/ , where

p’ denotes the complementary move type of p. In this
way, the state of unobserved species at time ¢; (i = 2,...,
m) can be updated sequentially. An additional step is
used to update the state at the first observation time
point £;, which is done by keeping the species number
at the end of the first interval fixed and changing the
start state according to the proposed move. Appendix,
Algorithm 2 provides the pseudo-code of using
RJMCMC for the partially observed case.

Stochastic gradient descent algorithm

Given the estimated gradient of the likelihood function,
we use the method of steepest descent to find an opti-
mal solution of the parameters. At each step of the
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algorithm, we first generate sample paths using the
RJMCMC algorithm at current parameter values. After
burn-in, we calculate the gradient of the likelihood func-
tion using the formula in (2.4). The estimated gradient
is then used to update the parameter values until con-
vergence. A simple strategy for choosing the step size is
to set it to be a constant. Although this works well for
simple systems, it sometimes induces over-shooting of
the parameter values or slow convergence during the
gradient descent. When this happens, we adaptively
adjust the step size within a certain range according to
the gradient value. An overview of the stochastic gradi-
ent descent algorithm is given in Appendix, Algorithm 3.

Results

Next we illustrate the utility of our algorithm using two
example reaction systems. In both cases, we simulated
the reactions of the system using the stochastic simula-
tion algorithm, and recorded the species numbers at a
set of discrete time points, which were treated as obser-
vations of the system. Our method was then applied to
infer the rate parameters for each system based on these
observations.

Example 1: Birth-death process
We first applied our algorithm to a well-studied birth-
death process, which can be seen as a simplified model
of production and degradation of a single molecular
species [34]. The reactions are

Iy
R :A>QD
ky
R,: @O —>A.

We assume that R; and R, follow the first-order and
zeroth-order mass-action law respectively. Denote the
number of A molecules by 74, thus the hazard function
is given by &y = kyny and hy = ky. The net-effect reac-
tion matrix of the system is A = (-1, 1)*. Consequently,
the null set of the system contains only one elementary
mode ¢ =(1,1), i.e. the combination of R, and R,.

We generated observations by simulating the reaction
process using SSA with different parameter sets (ky, k») =
(0.03,0.6), (0.06, 0.6), (0.1, 0.6), (0.1, 0.3) and (0.03, 0.2).
For each parameter set, four observation datasets were
generated that differ on the total observation time (7)
and the observation interval (Af) (see Table 1).

We first examined the convergence property of the
RJIMCMC sampler with the different datasets generated
with the first parameter set. Figure 1 shows the trace
plots and autocorrelations of the total number of reac-
tions in the sample paths. In all cases, we found the
RJMCMC sampler is efficient and induces good mixing
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Table 1 Parameter inference result for the birth-death
model

Dataset  (0.03 0.6)* (0.06 0.6)* (0.1 0.6)* (0.03 0.1)* (0.03 0.2)*
(m At)

(21 2) 0.030 061 0.041 036 0.101 047 0.0350.167 0.02 0.28
(51 2) 0030078 0077075 012063 00320074 0029 0.15
(215) 0026 051 0082067 012069 00260092 0028 0.21
(101 10) 0.026 051 0.040 042 0.067 043 0.024 0.094 0.026 0.175

*True values of parameters
m : total number of observations; At: the time between two observations.

of sample paths, with convergence occurring typically
within 100 samples. As expected, larger correlation
length is observed for data with longer observation
intervals (Figure 1d and 1f).

We applied the SGD algorithm to estimate the two
rate parameters for each dataset. The convergence
criterion is set to be that the relative changes of all
parameter values are less than 0.005. We used 1000
samples after a burn-in of 100 samples to estimate
the gradient for a given set of parameter values. The
estimated parameters for each dataset are summarized
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in Table 1. In all cases, the inferred parameters
showed a good agreement with the true values,
although the accuracy of the estimation clearly corre-
lates with the number of observations and the obser-
vation time intervals. For datasets with larger
observation interval and fewer data points, larger var-
iation is the observed for the inferred value between
different datasets, indicating the parameters are less
constrained in these cases (results not shown). Addi-
tional file 1, Figure S1 shows a typical gradient des-
cent run using the one of the datasets generated with
(k1, k3) = (0.03,0.6), which consists of 21 data points
with a total time period of T = 40. We observed that
the parameters converge very quickly during the gra-
dient descent, typically within 20 steps for our tested
random start values.

Example 2: Prokaryotic auto-regulatory gene network

The second model we tested is a prokaryotic auto-regu-
latory gene network in which dimmers of a protein
repress its own gene transcription by binding to a regu-
latory region upstream of the gene. The system,
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involving both transcription and translation, can serve as
a simple, yet illustrative, example of gene regulation
[31,39]. The reactions in the network are given below:

R1:DNA + P, — DNADP,,
R, : DNAP, — DNA +P,,
R; : DNA — DNA + mRNA,
R,: mRNA - O,

R5:2P = Py,

R¢: P, — 2P,

R, : mRNA — mRNA +P,
Ry: PO

Here DNA, P, P, and mRNA represent promoter
sequences, proteins, protein dimmers and messenger
RNA respectively. In this model, mRNAs and proteins
are synthesized by transcription and translation pro-
cesses (R3 and R;), and destroyed by degradation (R,
and Rg). The proteins can form a dimmer P, (R5 and
R¢), which binds and unbinds to DNA (R; and R,).
When a protein dimmer binds to the promoter, it
represses mRNA production. Overall, the network
implements a self-regulatory mechanism to control the
synthesis of the protein product, suppressing the tran-
scription when the protein product is abundant. Note
that DNA, = DNA + DNA.P, is a conserved quantity in
the system. The rate functions of reactions are assumed
to follow mass-action law with rate parameters k; to kg,
e.g. hy = ky-P,DNA.

We applied our algorithm to both the fully and par-
tially observed cases. We generated 10 datasets as obser-
vations within a time window of [0 50) with (k,....,kg) =
(0.1, 0.7, 0.143, 0.35, 0.3, 0.1, 0.9, 0.11, 0.2, 0.1). Datasets
D, - Ds have total copy number DNA, to be 10 with the
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time interval between observations (At) from 1.0 to 0.1.
The other five datasets Dg - D1, are generated with
DNA, = 2. Detailed information of the datasets is shown
in Table 2. For the partially observed case, we assume
that only three of the species, mRNA, P and P,, are
observed. In addition, we assume that the total copy
number DNA; is known to avoid systematic bias in the
sampling the system. While using the same datasets in
the fully observed case, we only retain the observations
corresponding to mRNA, P and P,. Hereinafter, we
denote the datasets by D;*, D,* etc.

For the fully observed case, the net effect reaction
matrix is, shown with the corresponding reactions and
species

Rl R2 R3 4 RS R6 R7 RB

-1 1 0 0 0 O 0 ) DNA

1 -1 0 0 0 0 O O [DNAP,
AT=l0 0 1 -1 0 0 0 O |mRNA

0 0 00 -2 2 1 -1| P

-1 1.0 0 1 -10 0] P,

The corresponding null set contains four elementary
modes, consisting of the following four pairs of reac-
tions: R; - Ry, R3 - Ry, Rs - Rg, and R, - Rg.

We focus our analysis on datasets D; - Ds, of which
the observation intervals range from 1.0 to 0.1. The
results from datasets Dg - D, are similar. The conver-
gence property of the RIMCMC sampler is shown in
Figure 2. It shows the RIMCMC sampler is efficient and
induces good mixing for all the datasets, with conver-
gence occurring typically after 200 samples. The correla-
tion lengths between the samples are smaller for the
more densely observed dataset (D5 with Az = 0.1). The

Table 2 Parameter inference result for auto-regulatory gene network model (Fully observed case)

¢} k; k3 ky ks ke k kg Average % Err.
Datasets *0.1 0.7 0.35 0.3 0.1 0.9 0.2 0.1)
Dy, At=10 0.114 0.81 0.346 0.229 0.051 0418 0.221 0074 242
D, At =10 0.094 0.72 0435 0.344 0.052 0485 0.265 0.119 242
Ds, At =05 0.113 0.82 0408 0.321 0.075 0.75 0.226 0.095 14.7
D, At =05 0.113 0.71 0.276 0.253 0.086 0.77 0.223 0.100 114
Ds, At = 0.1 0.079 0.74 0.349 0.286 0.101 0.86 0.183 0.094 64
De, At =10 0.095 042 0.321 0277 0.10 0.73 0.235 0.104 12.7
D, At=10 0.097 0.90 0.35 0335 0.079 092 0312 0.12 17.8
Dg, At = 0.5 0.120 040 0.52 038 0.092 0.998 0.215 0.081 229
Do, At = 0.5 0.116 0.96 041 041 0.101 1.01 0.144 0.094 19.3
Dio, At = 0.1 0.052 091 0277 0.35 0.128 093 0.137 0.075 254

* True values of parameters

Total observation time window = 50. For datasets D;-Ds: DNAt = 10; Dg-D;o:DNAt = 2.

Average % Err. = (|ki - k; truel/Ki true)i
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correlation length increases for the datasets with
increasing At, suggesting the need of using larger sample
size for sparse observed datasets.

We applied the stochastic gradient descent method to
estimate the rate parameters given the observations. The
initial parameter values were randomly chosen between
0.1 and 10. We used 5000 samples to calculate the gra-
dient with a burn-in size of 200. The estimated para-
meters for each dataset are summarized in Table 2. We
observed a good agreement between the estimated and
true values for most of the parameters. Also we
observed that there is differences in the estimation accu-
racy for different parameters, with some (e.g. ky, k3 and
k,) showing consistently better results than others
(Additional file 1, Figure S2). The estimation of k5 and
ks showed large deviation for the first two datasets with
large observation interval (D; and D,, Table 3), but
improved with finer-sampled data. This is likely due to
the faster dynamics of the two reactions (Rs and Rg)
than other reactions in the system.

Next we applied our algorithm to the partially
observed case. The convergence property of the
RJMCMC sampler for the partially observed case is
shown in Figure 3. Compared with the fully observed
case, the autocorrelation length in the partially observed
case is typically longer, but the RIMCMC sampler can
still induce good mixing for each dataset with ade-
quately large sample size.

The parameter inference results are summarized in
Table 3. We found that the accuracy of the inferred
parameter varies for different datasets. For the densely
observed dataset Ds*, the estimated values of all eight
parameters are similar to those in the fully observed
case and close to the true values. But for more sparsely
observed datasets, the average percent of error of the
inferred parameters increases significantly (compared to
the fully observed case) for some of the datasets (D;*
and D,*). The parameters k; and k,, which are asso-
ciated with the unobserved species, showed large varia-
tions between different datasets. In general, the results
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Table 3 Parameter inference result for auto-regulatory gene network model (Partially observed case)

Datasets k; k> k3 ks ks kg k; kg Average % Err.
*0.1 0.7 0.35 0.3 0.1 0.9 0.2 0.1)
D; ,At=1.0 0.102 047 044 0214 0.040 0326 0400 0.156 46.1
D;, At=1.0 0.090 0.70 0440 0.348 0.052 0483 0.263 0.119 246
D;, At =0.5 0.125 091 0402 0316 0.077 0.78 0.230 0.097 16.2
DZ, At =0.5 0.188 0.64 0413 0.250 0.072 0.64 043 0.196 499
D;, At =0.1 0.078 0.76 0.350 0.300 0.103 0.88 0.188 0.097 56
D;, At=1.0 0.108 041 0303 0247 0.131 0955 0214 0.107 16.5
D;, At=1.0 0.079 0.56 0.383 0332 0.073 0.82 0.228 0.099 14.0
D;, At=0.5 0123 041 0.55 0.386 0.079 087 0213 0.085 245
D;, At =0.5 0.103 0.81 0419 0421 0.102 1.04 0.142 0.097 16.0
Dl* 0 At=0.1 0.075 075 037 030 0.13 096 025 0.11 13.7
* True values
Datasets D;*-D;o* correspond to D;-Dqq in Table 3 but with speices mRNA, P and P, only.
Average % Err. = <|k¢ - ki, rruel/ki, truedi
p
a C e
o
g | ] g .
nts =}
8 N
(2] < 7
c B = o
g 8 1
o i
5 S o
X «— o
u— o 8
5 . = 8 1
@ i =4
€ o
Ec S S
z < 3 8]
T T T T T T T T T T T T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Sample Sample Sample
b d f
Q Q
B ©
@
c ©
L o ©
c S
9 -
S <
£ 21
>
<< N
i g
N
o o
[ T T T T T T oc T T T T T T
0 100 200 300 0 100 200 300 0 100 200 300
Lag Lag Lag
Figure 3 Property of the RIMCMC sampler for the partially observed case of the auto-regulatory gene network. Panel a, ¢, and e plot
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observed.
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showed that parameter inference with partially observed
data is more difficult than the one with fully observed
data, and to achieve good estimation accuracy, more
observations with small observation intervals will be
needed.

Additional file 1, Figure S3 shows the changes of para-
meters and gradients during one gradient descent run
for the most sparsely observed dataset D; and D;* with
the dataset (copy number of each species) shown in
Additional file 1, Figure S4. Some of the parameters (e.g.
ko and k¢) showed slow convergence during gradient
descent in both fully and partially observed cases, which
may reflect a flat likelihood surface in the corresponding
parameter direction and an inherent difficulty in identi-
fying these parameters.

Discussions

Recently there has been a growing interest in describing
biological systems using stochastic models. However,
most of the parameters in the stochastic models are
unknown and difficult to measure. In this paper we
described a maximum likelihood method to infer the
parameters of a stochastic kinetic model directly from
observations. Our method works by estimating the gra-
dient of the likelihood function first, and then searching
for an optimal solution by iteratively updating the para-
meters along the gradient descent direction. We devel-
oped a general RIMCMC algorithm to sample the latent
reaction path in a constrained setting, where the reac-
tion path has to match the observations given at the
two ends of a time interval. The sampled reaction paths
are used to calculate the gradient of the likelihood func-
tion using a formula that we derived. The availability of
the gradient information makes it possible to develop
other algorithms to solve the maximum likelihood esti-
mation problem, in addition to the steepest descent
method that we implemented. Furthermore, the avail-
ability of the gradient information also enables other
possible applications such as parameter sensitivity analy-
sis, which has already attracted considerable interest in
deterministic modeling [50,51].

Our method is significantly faster than the SML
method [34], which is also a maximum likelihood based
parameter inference method. SML uses two steps to
estimate parameters. First, it estimates the transition
density on reaction species numbers after a given time
interval, using a SSA-based sampling methods. The esti-
mated transition density is then used to calculate the
likelihood function. Because the gradient of the likeli-
hood function is not directly available, SML uses a
genetic algorithm to solve the maximum likelihood pro-
blem. Comparing the SML and our method for the
birth-death example, we tested the CPU time used to
generate a new sample for both methods, eg. SSA for
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SML (unconstrained) and RIMCMC for SGD, which is
approximately the same. However, SML uses 3 x 10*
evaluations of transition density to reach a solution. By
contrast, SGD typically requires less than 20 evaluations
of the gradient before convergence. If we ignore the
computational time of the gradient descent steps, overall
SGD achieves a reduction of computational time by an
order of 10 * compared to SML.

In terms of accuracy, our approach, based on exact
sampling, should be less biased than approximation-
based methods. In this regard, we compared SGD to the
method by Golightly et al. [31], who used a diffusion
approximation to calculate the transition density. Com-
paring the results obtained by both methods on the
same datasets (in courtesy of Dr. Golightly), we note
that the estimated values for k; and k, by our method
are closer to the true results in all three test datasets
while the result from [31] are biased toward low values,
although the estimates for other parameters from the
two methods are similar (Additional file 1, Table S1).
Interestingly, k; and k, are associated with low copy
number of reaction species (DNA and DNA.P,). We
also tested the method in [31] with the datasets of
DNA, = 2 and found that the algorithm gives worse
results, especially for the first two parameters (result not
shown). This reflects the advantage of our method and
possibly the limitation of the diffusion approximation,
which assumes that the values of the hazard functions
are approximately constants between two observation/
latent states. This assumption is not valid if the copy
numbers of species are small in the reactions. For exam-
ple, in case of DNA, = 1, reactions R; and R, can only
happen alternatively and this clearly violates the approx-
imation assumption.

Our method is closely related to the full Bayesian
approach proposed by Boys et al. [33] as both methods
use RIMCMC to sample the reaction process. Compar-
ing to the method by Boys et al., our method offers two
improvements. First, we provide a general method for
RCMCMC sampling, which can be applied to an arbi-
trary biochemical reaction system, while the previous
method is only tailored to a specific reaction system
(more specifically, the Lotka-Volterra system). Second,
the gradient-based method is significantly faster than
the full Bayesian method as sampling the parameter
space is often computationally challenging. However,
the Bayesian approach offers certain advantage over the
maximum likelihood method in that it provides a pos-
terior distribution of the parameters rather than just an
optimal solution. In this regard, we note that the general
RJMCMC sampling method we developed can be
easily extended for Bayesian inference after introducing
additional Metropolis-Hasting steps for sampling
parameters.
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Conclusion

In this paper, we proposed a new algorithm for inferring
rate parameters in stochastic models and tested it using
simulated data. Although few biological systems with
measurements of species numbers across multiple time
points are currently available, this type of data will likely
become more common in the future, given rapid
advances in single cell measurement technology
[9,52,53]. The method could also be applied to cell col-
ony data, e.g. in [54], which proposed some interesting
models involving stem cell homeostasis process. As we
observed, the current RIMCMC sampler can be ineffi-
cient in some cases with large observation intervals.
One possible improvement of the current algorithm is
to use more efficient sampling algorithm, for example,
the blocking updating scheme in [33]. It is evident that
significant challenges remain in dealing with true biolo-
gical systems, including measurement noise, uncertainty
in models, and sparsity of the data. However, studying
stochastic systems with parameters inferred directly
from data should be able to lead to a better understand-
ing of the systems than the current approach of manu-
ally setting these parameters.

Appendix
Derivation of the formula on calculating the gradient of
the likelihood function
Consider the time interval [¢, £,,1] with full observations
available at the start and the end of the interval, denoted
by X(t;) and X(¢,,1) respectively. To calculate the likeli-
hood function L(X(Z,), X(t.,1);®), we discretize the time
interval into N subintervals and denote the system
states at these discrete points by {X'|i = 0,...,N}, where
X° = X(¢,) and XV = X(¢,,,) are two observations, and all
other X' s are intermediate states and not directly
observable.

After the discretization, the likelihood function
becomes, after using the Markov property of the process

L(X(t,), X(t41);©) = 2 P(x°, X!, xN |©)

X’\ll
(A1)
= 2 P(XO)HP(X"+1|X",®)
X, x N i=0

For sufficiently large N, from the master equation Eq.
(1.3), the conditional probability can be approximated
by p(X"'|X',0)= Sy yin + Hyi yindt, where dt =
(¢ + 1 - t)/N and oy, x 1s the Kronecker delta function.

We are interested in the gradient of the likelihood
function instead of calculating the likelihood function
explicitly. So we take the partial derivative of L(X(¢),
X(t,,1);@) w.r.t. the parameters,

Page 12 of 16

AL(X(15) X(t541):0) _ 3
30, 26,

2 [P(X )HP(X’”|X @)]

X1 XN i=0 (A2)
= z p(x° x',-- xN‘@){ Zlog(b ixn THy Xﬂdt)}
X1, x N7
Note that when N — o,
oH x '
; #dt ifX'=X
ﬁlog(éxr/x +Hy ydt) = r ‘
——logH if X'#X
90, g x x if
Therefore
AL(X(15) X(1541):0)
(2%
-y [px“x‘- XN \9)2 a”X MAX s, )73103532(?1,)@) (A.3)

OH i dlog Hy o’
=E T+ Y RN
[; 96y )(%)( 96r M

where T is the time duration of the system at state &,
and Ny, , is the number of transitions from state k to k’
occurred during the interval. Both T} and Nj - are ran-
dom variables, and can be viewed as the sufficient statis-
tics of the model. E[-] represents the expectation of the
random variables. For hazard functions of the form
(1.5), a’a"g k _ _p (k) and
equation (2.1) and (2.4) follow.

The formula can also be derived by the time ordered
product expansion described in [55] without resorting
to time discretization, as shown below. This result (Eq.
A.3) suggests that the gradient of the likelihood function
can be calculated by estimating the expectation of the
two sufficient statistics. Note that the formula is quite
general and holds for any stochastic system obeying the
master equation (Eq. 1.3).

dlogHy, 1’

30, =1/6,, thus

Derivation of the RIMCMC algorithm based on the time
ordered product expansion of master equation
Representing the probability vector of system state as
P(t), the master equation (Eq. 1.3) can be written in a
compact matrix form, using column vector notation (in
this section),

@ =HD(t),

where H is the time evolution matrix, of which the
elements are uniquely determined by the stoichiometry
matrix and the hazard functions.

The formal solution of master equation is

P(t)

=exp(Hr) P(0).
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The probability of system evolving from a parti-
cular start state to an end state is given by the
corresponding elements of the probability matrix
[exp(HT)] « (1=0),x,(i=) - The time evolution matrix H is
usually an infinite dimension matrix, for there are
usually no upper bound for the species numbers.

The time ordered product expansion (TOPE) formula,
which originates from quantum field theory, is useful to
make series expansion of the matrix exponential. If
we decompose the evolution matrix into two parts,
H = Hy + Hy, the TOPE formula gives [55]

exp((Ho +Hy)r )

[jdwjdrk jdt exp( = ) Ho)H, exp((ty = ty1)Ho) -+ Hy exp(ty Ho)}
0

k=0

|i"-drk".dr, = J-drﬁo[ T, =t ]exp(f,zllo)lllexp[rk 1Ho)- lllexp(rollo):|,

where 1y = t1, 71 = t - t; etc. A proper choice is to
decompose H into diagonal and off-diagonal matrices
H=H-D,ie Hy=-Dand H, = H. This leads to the
TOPE formula

exp(r(ﬁf— D))
J’drkJ-drk e Idrub

where D represents the diagonal part (non-negative)
and H is the off-diagonal part of the matrix. The terms
inside the integral, conditioned on a given Markov jump
process, is the likelihood (or probability density) of the
process. In case of reaction systems, a process corre-
sponds to a set of reaction events. Thus the kth order
integration gives the total probability of all reaction
events with k reactions. We note that the TOPE formula
provides a possible way to estimate the matrix exponen-
tial (probability matrix) by Monte Carlo integration by
randomly casting reaction events and summing up the
likelihood.

In the fully observed case, the likelihood function is
the product of the likelihood of each sub-interval,

rﬂ -t ]exp( r,(D)Hexp(—rk \D)-- Hexp[—roD)}

LI | {x,(t )1 31= HLs(e | a(ti11), %a(0))

H[exp( i

The likelihood for each sub-interval can be denoted as

(H D), (1) (0)-

Lt 1) %t )) = exple(H=D)], 1, i)

:i[fdrkjdz,, ' Idruxs[ T, -t ]exp[ rAD]Hexp( T1D)-+ Hexp( 7,D)
k=0 0
=2[2n(s(<w,>)\e)/vh .

R EAC)
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where 7 = t,,1 - L, and in the last step of the above
equation we approximate the integration by a Monte-
Carlo integral with m(E({r;, £;})|6,) to be the likelihood of
latent process E({r;, ¢;}) (see Eq. 2.3) which is con-
strained by start/end observation (x,(t;,1) and x,(t;)) and

k

Vie= o G i )
reaction type r. V; is the multiplication of two parts: the
first part arises from the simplex integration of the time
variables, which can be viewed as the measure of inte-
gration space when we convert the integration to sum-
mation; the second part is a combinatorial factor
resulting from the permutation invariance of the same
reaction type in a given reaction path.

Recalling that in the RIMCMC algorithm, we generate
samples with different number and type of reactions via
the Metropolis-Hasting steps. The ratio between 7(-)/ Vy
of two samples gives the same acceptance probability as
in Eq. (2.5).

Assuming all the reaction follows mass-action law, we
can derive the gradient of the likelihood function using
TOPE formula. We can write A and D matrix in terms

of the component of each reaction type, i.e.
H= 29 H:,D = ZHD Thus

in which #, is the number of

i
0, Q(TTEXNT(FF D) 1,00, zfdr,,jdr, 1 jdeO[ZTp ]

k=00 o =0

3 e
- Dy B oD . .
x[ E D e 0, Hye "0l — E WD P ,0,D,e Poe "‘D] .
= 70 «

9,[[1,} )
X, X
z,e,[ﬁh

branching ratio for reaction r in state X’. Then

We define b, = =(S1mxex) ) ey Which is the

a A
0, 20, exp[t(H= D), (., )x,(0.)

o K I
=), e
k=0 p=0 k=0 p=0
Thus,
9 H-D
a0, P D)l )
o Kk 1 o k
=;;;5 bi(r)) H (1) (1) Z{; P ey

which gives the gradient formula in Eq. (2.1), (2.4) and
(A.3), since the average of a frequency gives the
probability.

Algorithm 1. Pseudo-code of RJIMCMC algorithm
for fully observed case

Input observations {n(t;)} and generate initial path for
each interval using GLPK;
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Calculate the null set {q'y} with the net-effect reaction
matrix A;
for iter = 1: maxiteration
Randomly choose an elementary mode q.;
Jor i = 1: number of time intervals
Randomly choose a move type p and update the
reaction path in sub-interval [t, t;,;) according to q,,;
Calculate the number of each reaction type r,,
if min(r,,) == 0, AP = 0; break
else
for j = 1: ] (total number of reactions within the
interval)
if (xg5— uRj,a) is negative for any a € (1,2,...
K),
AP = 0; break
else
Calculate the intermediate species number
after the reaction: Xq,jx1 =%, = AR
endif
endfor
AP = min(1, AR;,);
endif
if AP > rand(0,1)
Accept the new path;
endif
endfor
endfor

Algorithm 2. Pseudo-code of RIMCMC algorithm
for partially observed case
Input observations {nr(t;)} and randomly specify state
for the unobserved species, generate initial path for each
interval with GLPK;
Calculate the null set {Z;;g} using the partial reac-
tion matrix A,
for iter = 1: maxiteration
Jor i = 1: number of time intervals
Randomly choose an elementary mode ﬁk and a
move type p; Update the reaction path in sub-interval
(t;, t;11) according to ﬁk,
Calculate the number of each reaction type:
r,i,,if min(r,il) =0, AP = 0; break
else
for j = 1: number of reactions within the ith
interval
if (x5 — UR,/a) is negative for any species a
AP = 0; break

else
Calculate the intermediate species number
after the reaction: Xg,jy1 = Xq,j — ARj,a;
endif
endfor

endif
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ifxa, J+1== xa(tt-{-l)
AP = min(1, AR;,);
else
Update the second interval via complemen-
tary move p’
Calculate the number of each reaction type:
rirl
l_'f min(r”;'l) == (0, AP = 0; break
else
Jor j’ = I: number of reactions within
the (i + 1th interval
if (%4, — uR]_,,u) is negative for any
species a AP = 0; break
else
Calculate the intermediate species
number after the reaction: X, j+1 = Xq,j' — AR].,,a;
endif
endfor
endif
Calculate AR;;rl for th(f new path and the
acceptance probability AP = min(],a—pAR;7 . AR;,J'rl );
endif p
if AP > rand(0,1)
Accept the new path;
endif
endfor
endfor

Algorithm 3: Stochastic gradient descent
algorithm
Input: time-course data {Xr(ti)}l?il

Output: set of inferred parameters {0,}

1. Initialize the reaction path using GLPK and set
initial values of rate parameters;

2. Sample the latent paths for the entire observation
interval with reversible jump MCMC

-For fully observed case: sample latent paths for
each interval s| (0, m-1) using Algorithm I;

-For partially observed case: sample latent paths
for each paired intervals and separately for the first
interval using Algorithm 2;

Calculate the gradient of each sample path

9log(r(¥10)) according to Eq. (2.3) after burn in;

3. Calculate the gradient by averaging over sample
paths;
4. Update parameter values by gradient descent step:

0,"=0,+n 90,
Sor all r, where 1 is the step size;

5. If convergence condition (to be specified) is not
satisfied, return to step 2.
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