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Abstract

Background: Predicting drug-protein interactions from heterogeneous biological data sources is a key step for in
silico drug discovery. The difficulty of this prediction task lies in the rarity of known drug-protein interactions and
myriad unknown interactions to be predicted. To meet this challenge, a manifold regularization semi-supervised
learning method is presented to tackle this issue by using labeled and unlabeled information which often
generates better results than using the labeled data alone. Furthermore, our semi-supervised learning method
integrates known drug-protein interaction network information as well as chemical structure and genomic
sequence data.

Results: Using the proposed method, we predicted certain drug-protein interactions on the enzyme, ion channel,
GPCRs, and nuclear receptor data sets. Some of them are confirmed by the latest publicly available drug targets
databases such as KEGG.

Conclusions: We report encouraging results of using our method for drug-protein interaction network
reconstruction which may shed light on the molecular interaction inference and new uses of marketed drugs.

Background
Developing a new drug is an expensive and time-con-
suming process that is subject to a variety of regulations
such as drug toxicity monitoring and therapeutic effi-
cacy. Meanwhile, there are thousands of FDA-approved
drugs in the market and drugs in later phases of clinical
trials. Finding the potential application in other thera-
peutic categories of those FDA-approved drugs by pre-
dicting their targets, known as drug repositioning, is an
efficient and time-saving method in drug discovery [1].
Additionally, predicting interactions between drugs and
target proteins can help decipher the underlying biologi-
cal mechanisms. Therefore, there is a strong incentive
to develop powerful statistical methods that are capable
of detecting these potential drug-protein interactions
effectively.

Various methods have been proposed to address the
drug-target prediction problems in silico. One common
method is to predict the drugs interacting with a single
given protein based on the chemical structure similarity
in a classic classification framework. Keiser et al. [2,3]
proposed a method to predict targets of proteins based
on the chemical similarity of their ligands. This kind of
approach, however, does not take advantage of the
information in the protein domain. Another widely-used
method is molecular docking [4] which requires the
non-trivial modeling of 3D structure of the target pro-
tein. Unfortunately the 3D structures of many proteins
are not available [5], e.g., very few GPCRs have been
crystallized.
Recently, some new approaches are proposed to per-

form drug-target prediction using both the chemical
(drug chemical structure) and genomic (protein struc-
ture) spaces information [3,6,7]. In [6] the two spaces
are encoded together by defining a pair wise kernel
which is then fed to the support vector machine (SVM)
for classification. The drawback of this kernel
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framework is that there will be a huge number of sam-
ples to be classified (i.e., number of drugs multiplies
number of proteins) which poses significant computa-
tional complexity. Another problem is that the negative
drug-protein pairs are selected randomly without experi-
mental confirmation. Yamanishi et al. [7] developed a
bipartite graph model where the chemical and genomic
spaces as well as the drug-protein interaction network
are integrated into a pharmacological space. In the
bipartite model, the known interactions in the training
data are labeled as +1 while all other unknown drug-
protein pairs in the training data are assumed as non-
interactions with label 0. Then three different classifiers
are available: new drug candidate versus known target
protein, known drugs versus new target protein and
new drug candidate versus new target protein candidate.
More recently, Bleakley and Yamanishi [8] proposed a
state-of-the-art bipartite local model (BLM) by trans-
forming edge-prediction problems into well-known bin-
ary classification problems. Nevertheless, the first flaw of
the bipartite model, like the kernel SVM method [6], is
that the unknown interactions of the drugs and proteins
in the training data are all assumed non-interaction and
cannot be inferred. We also prefer only one classifier to
predict whether one drug-protein pair interacts or not.
Lastly, all the methods did not utilize a wealth of unla-
beled information to assist prediction.
In this paper, a semi-supervised learning method -

Laplacian regularized least square (LapRLS) [9] is
employed to utilize both the small amount of available
labeled data and the abundant unlabeled data together
in order to give the maximum generalization ability
from the chemical and genomic spaces.
Further, the standard LapRLS is improved by incor-

porating a new kernel established from the known drug-
protein interaction network (NetLapRLS). In our frame-
work, the known interactions are labeled as +1 and all
other unknown pairs are labeled as 0 to indicate they
are going to be predicted. Two classifiers are trained on
the drug and protein domains respectively and then are
combined together to give the final prediction. Com-
pared with a naive weighted profiled method, the pro-
posed drug-protein interaction methods based on
LapRLS and NetLapRLS obtain better results than using
the labeled data alone. And the proposed NetLapRLS
which incorporates drug-protein network information
provides superior performance than standard LapRLS.

Results and discussion
Cross validation results analysis
The weighted profile method, standard LapRLS and
NetLapRLS were evaluated on the four classes of target
proteins including enzymes, ion channels, GPCRs and
nuclear receptors. We carried out a ten-fold cross-

validation by splitting the golden standard interaction
dataset into 10 subsets. Each fold was then taken in turn
as a test set and the remaining nine folds are used as
training set. For example, there are 54 drugs and 26 pro-
teins in the nuclear receptor data set with 90 known
interactions. In each cross-validation, the 80 drug-protein
pairs are used as the training data while the remaining
1,324 drug-protein pairs including the 10 positive inter-
actions are designated as the testing data set. Thus the
training sample is very small compared with the testing
data set. This motivates us to employ the semi-supervised
method that can utilize the information from the unla-
beled samples to predict drug-protein interaction. The
performance is evaluated using receiver operating curve
(ROC) analysis [10]. For simplicity, we set bd = bp = 0.3,
gd1 = gp1 = 1, and gd2 = gp2 = 0.01 for NetLapRLS. These
parameters can be better selected by a further cross vali-
dation. If gd2 and gp2 are set to be 0, NetLapRLS becomes
the standard LapRLS method. Table 1 shows the AUC
(area under the ROC curve), sensitivity and specificity.
The sensitivity and specificity are defined as TP/(TP+FN)
and TN/(TN+FP), respectively. The cutoff for calculation
of sensitivity and specificity is set to select the top pairs
with the same number of the test set.
From Table 1 and Figure 1, we can see that LapRLS

and NetLapRLS methods, which use unlabeled informa-
tion, provided better performance with respect to AUC
score and sensitivity. Among the four data sets, the two
semi-supervised learning methods provided the highest
sensitivity scores in enzyme data set because there are
most known interactions. The known interaction num-
ber is a key factor of our semi-supervised methods since
the testing data set is much larger than training data set
in our cross-validation setup. The proposed NetLapRLS
which incorporates the drug-protein interaction network
information obtained better result than the standard
LapRLS, especially with respective to the sensitivity
which is dramatically improved. On the four data sets,
the sensitivity from NetLapRLS performed better than
LapRLS by 42%, 100%, 108% and 31% respectively and,
demonstrated the importance of network information.
The improvement in sensitivity of NetLapRLS over
LapRLS is most significant in ion channel data set
because the inner-connection in the ion channel drug-
protein interaction network is most complete according
to the proportion of unreachable paths between drugs
and proteins [7]. Yildirim et al. [11] concluded that
there are an overabundance of ‘follow-on’ drugs from
the topological analyses of current drug-protein net-
work, that is, drugs that target already known proteins,
i.e., me-too drugs. With the drug-protein network being
completed fastly by high-throughput experimental and
computational approaches, this network information is
becoming critical in drug discovery.
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Comparison with bipartite local model [8]
Recently, Bleakley and Yamanishi [8] extended Yama-
nishi’s bipartite method [12] to bipartite local model
which is considered as state-of-the-art. The predictions
from the drug domain and protein domain using SVM
are combined together to form a final prediction by a
maximum operation. We also employed this kind of
integration by a mean operation. However, we used a
semi-supervised learning method to handle the classifi-
cation with small samples labeled which is difficult for
traditional supervised classifiers. For instance, in the
above cross-validation experiment of the nuclear recep-
tor data set, the semi-supervised classifier is trained on
80 positive samples in order to make predictions on
1,324 unlabeled samples. In the BLM, the ten-fold
cross-validation is performed on the drug and protein
domains separately. The known interactions between
the selected drugs and proteins are labeled as interac-
tion while interactions between the drugs and proteins
for training are regarded as non-interaction. Though we
consider the undetermined relationship between drug-
protein pair should not be labeled as non-interaction,
we adopt the cross validation method in the BLM for
the sake of comparison in the same condition. The com-
parison is performed in terms of AUC, area under preci-
sion-recall (AUPR), sensitivity, specificity and PPV as
shown in Table 2. Sensitivity, specificity and PPV are
calculated when the top one percentile in the prediction
score is chosen as a cutoff because high-confidence pre-
diction results are more useful in practical applications.
We observed that BLM method outperformed our
NetLapRLS in AUC and AUPR scores, but the perfor-
mances of our NetLapRLS are comparable with BLM in
sensitivity, specificity and PPV.
Semi-supervised learning method is superior to the

traditional supervised learning method when labeled
samples are small along with large unlabeled samples

available. In this cross validation setup, the unknown
interactions are labeled as non-interaction in the train-
ing data set. So our NetLapRLS did not get good results
in AUC and AUPR scores compared with BLM because
most of samples are labeled. However, NetLapRLS still
gave good prediction results in sensitivity, specificity
and PPV. This indicated that NetLapRLS can provide a
list of drug-protein interaction candidates with high
confidence.

Enzyme
Table 3 shows the list of the top 5 predicted drug-pro-
tein pairs, with annotation given in the KEGG database
[13]. Searching the latest version of KEGG drug data-
base and Drugbank [14], we found that the fifth highest
scored drug-protein pair (D00097 and hsa5743) in Table
3 is annotated as an interaction. Figure 2 shows the pre-
dicted top 50 scoring drug-protein interaction network
on the enzyme data using the all known interactions as
the training data set.

Ion channel
Table 4 shows the list of the top five predicted drug-
protein pairs on the ion channel data set, with annota-
tion given in the KEGG database [13]. In the latest
version of KEGG drug database, the targets of drug
D00477 (rank 2 in table 4) include SCN1A, SCN2A,
SCN3A, SCN4A, SCN5A, SCN8A and SCN9A. The tar-
gets of drug D00552 are SCN10A, SCN1A, SCN2A,
SCN3A, SCN4A, SCN5A, SCN8A and SCN9A. Thus,
our predicted target of D00552 is confirmed (rank 3 in
Table 4). The targets of drugs D00477 and D00552 are
very similar which can be explained by their common
chemical structures in Figure 3. Based on the chemical
structure similarity, we predict that SCN10A is also a
target of drug D00477 (rank 2 in table 4), as the interac-
tion between SCN10A and D00552 is known. Rank 5 in

Table 1 Statistics of the prediction performance

Data Methods AUC Sensitivity(%) Specificity(%)

* Enzyme Combining weighted profile 92.2 6 99.9

LapRLS 95.0 53 99.9

NetLapRLS 98.3 75 99.9

* Ion channel Combining weighted profile 90.7 17 99.7

LapRLS 96.1 36 99.8

NetLapRLS 98.6 72 99.9

* GPCR Combining weighted profile 86.9 13 99.7

LapRLS 93.4 24 99.8

NetLapRLS 97.1 50 99.8

Nuclear receptor Combining weighted profile 81.0 11 99.4

LapRLS 85.0 16 99.4

NetLapRLS 88.8 21 99.5

The AUC is the area under the ROC curve, normalized to 100. The cutoff for sensitivity and specificity is set to select the number of the interactions in the test
data.
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table 4 predicts GABAR2 is one of the targets of drug
D00546. This prediction is reasonable because in Drug-
bank D00546 is annotated to interact with GABAR1
which is very similar with GABAR2 in sequence and
function. Figure 4 shows the predicted top 50 scoring
drug-protein interaction network on the ion channel
data set using the all known interactions as training
data set.
GPCRs
Table 5 shows the list of the top five predicted drug-
protein pairs on GPCRs data set, with annotation given

in KEGG database. Based on the most recent KEGG
database, the predictions of rank 2 and 3 in Table 5 are
confirmed. Additionally, six predicted new targets
(hsa146, hsa147, hsa150, hsa151, hsa152 and hsa155) of
drug adrenaline (D00095) from the newly predicted
interactions with 50 highest scores are also annotated as
an interaction in the latest KEGG drug database. Ranks
4 and 5 in Table 5 predict both D02345 and D00283
target protein DRD3. In Drugbank, D02345 and D00283
are annotated to interact with protein DRD1, DRD2,
and DRD4. Because DRD3 is very similar with those
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Figure 1 ROC curves of cross validation. ROC curves of the semi-supervised learning and the combining weighted profile methods for four
classes target proteins: enzymes, ion channels, GPCRs and nuclear receptors.
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proteins in function, our method predicts DRD3 is also
the target of drugs D02345 and D00283. This result
demonstrated our method employed the information
from protein domain. Figure 5 shows the predicted top
50 scoring drug-protein interaction network on the
GPCRs data set using the all known interactions as the
training data set.
Nuclear receptor
Table 6 shows the list of the top 5 predicted drug-protein
pairs on nuclear receptor data set, among which four pre-
dictions are about drug D00348. In Drugbank, drug
D00348 is annotated to interact with protein (retinoic
acid receptor, alpha). The two predicted targets with the

Table 3 Top 5 scoring predicted drug-protein interactions
for the enzyme data set

Rank Pair Annotation

*1 D00528 Anhydrous caffeine

hsa1549 cytochrome P450, family 2, subfamily A, polypeptide 7

*2 D00542 Halothane

hsa1571 cytochrome P450, family 2, subfamily E, polypeptide 1

*3 D00437 Nifedipine

hsa1559 cytochrome P450, family 2, subfamily C, polypeptide 9

*4 D00410 Metyrapone

hsa1585 cytochrome P450, family 11, subfamily B, polypeptide 2

*5 D00097 Salicylic acid

hsa5743 prostaglandin-endoperoxide synthase 2

Figure 2 Predicted enzyme interaction network. Diamonds and circles represent drugs and target proteins, respectively. Blue and red lines
indicate known interactions and newly predicted interactions with 50 highest scores, respectively.

Table 2 Results of BLM and NetLapRLS based on cross validation experiments 5 times

Data Methods AUC AUPR Sensitivity(%) Specificity(%) PPV(%)

* Enzyme BLM 96.8(0.1) 85.2(0.2) 83.2(0.2) 99.82(0.002) 82.3(0.2)

NetLapRLS 95.6(0.3) 82.6(0.6) 81.0(0.5) 99.80(0.005) 80.2(0.5)

* Ion channel BLM 97.2(0.1) 83.2(0.4) 28.0(0.03) 99.96(0.001) 96.4(0.1)

NetLapRLS 94.7(0.3) 82.5(0.5) 28.4(0.14) 99.98(0.005) 98.1(0.5)

* GPCR BLM 94.4(0.3) 65.0(1.6) 28.0(0.8) 99.83(0.02) 83.9(2.4)

NetLapRLS 93.1(0.3) 66.0(1.5) 29.2(0.8) 99.87(0.03) 87.5(2.4)

Nuclear Receptor BLM 84.1(0.9) 58.4(2.2) 14.0(0.6) 99.89(0.04) 90.0(3.9)

NetLapRLS 85.6(1.8) 51.6(2.3) 15.1(1.0) 99.97(0.07) 97.1(6.1)

The AUC and AUPR scores are normalized to 100. The cutoff for sensitivity, specificity and PPV is set to choose the top one percentile in the predictoin score as
positive.
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highest scores (hsa5915 and hsa5916) of drug D00348 are
both from retinoic acid receptor class. Those proteins are
probably as the targets of the same protein due to their
similarity in sequence and function. Figure 6 shows the
predicted top 50 scoring drug-protein interaction net-
work on the nuclear receptor data set with the all known
interactions as the training data set.

Conclusions
In this work, we presented a semi-supervised learning
method NetLapRLS for drug-protein interaction predic-
tion by integrating information from chemical space,
genomic space and drug-protein interaction network
space. Our method has no use of the negative samples and
predicts the interaction of each drug-protein pair. The
results we obtained when predicting human drug-target
interaction networks involving enzymes, ion channels,
GPCRs, and nuclear receptors demonstrated the superior
performance of NetLapRLS. Furthermore, recently added
drug-target interactions to the KEGG immediately allowed
us to confirm some strongly-predicted drug-target interac-
tions on the four data sets obtained using our method.
This enhances the strength of our proposed method for
realistic drug-target prediction application.

The ideal way to use semi-supervised learning for pre-
dicting compound-protein interactions is to incorporate
information from different biological spaces by a multi-task
kernel and is fed to classical semi-supervised learning.
However, the implementation of such a large scale semi-
supervised learning method will be computationaly costly.
Our future work, will incorporate more sophisticated and
biologically relevant information into the kernel similarity,
such as side effect [15], to improve the prediction accuracy.

Methods
Semi-supervised learning (SSL) has been attracting
much research attention in the machine learning com-
munity [16]. SSL provides better prediction accuracy by
using unlabeled information. Here we employ a data-
dependent manifold regularization framework which
uses the geometry of the probability distribution [9].
One of the implementations of this framework is the
Laplacian regularized least squares (LapRLS) which is
simple and has comparable performance with Laplacian
regularized support vector machine.

Consider the drug dataset = …{ }d dnd1, , and the target

protein dataset = …{ }p pnp1, , where nd and np are the

numbers of the drugs and proteins in the study respec-
tively. An interaction pattern of drug di and target protein

pj is represented by a binary label matrix Y∈ ×Bn nd p . . If

drug di is known to interact with target protein pj, Yij = 1
otherwise Yij = 0. Given the ‘gold standard’ drug-target
interactions, the goal is to infer their unknown interac-
tions. Two classifiers will be trained using LapRLS on the
chemical and genomic spaces separately, followed by a
combination of the two classifiers. A supervised learning
method is suitable in this case. However the known inter-
actions from public databases are still extremely small
compared to the whole drug-target interaction space.
Another issue is that we only have the information of the
interactions, but do not know which drug target pair has
no interaction, i.e., no negative samples in the training

Table 4 Top 5 scoring predicted drug-protein interactions for the ion channel data set

Rank Pairs Annotation

*1 D00438 Nimodipine

hsa779 calcium channel, voltage-dependent, L type, alpha 1 S subunit, beta 2

*2 D00477 Procainamide hydrochloride

hsa6336 sodium channel, voltage-gated, type X, alpha subunit(SCN10A)

*3 D00552 Ethyl aminobenzoate

hsa6331 sodium channel, voltage-gated, type V, alpha subunit(SCN5A)

*4 D02272 Quinidine sulfate

hsa3738 potassium voltage-gated channel, shaker-related subfamily, member 3

*5 D00546 Desflurane

hsa2555 gamma-aminobutyric acid (GABA) A receptor, alpha 2(GABAR2)

Figure 3 Chemical structures. Chemical structures of drug D00477
and D00552 (from KEGG).
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process. Herein we first test a simple supervised weighted
profile method. Then the standard LapRLS and drug-pro-
tein interaction network incorporated NetLapRLS are
extended to predict the drug-protein interaction.

Materials
The data used here is downloaded from (http://web.
kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/) [7]. Here
below we provide a brief description.
• Chemical data
The chemical structure similarity between compounds
are calculated by SIMCOMP [17] using chemical

structures fetched from KEGG LIGAND database. SIM-
COMP provides a global similarity score by the ratio
between the size of common substructures and the size
of the union structures of two compounds. Applying
this operation to all compounds pairs, we constructed a

similarity matrix denoted Sd
n nR d d∈ × which represents

the chemical space information.
• Genomic data
A normalized Smith-Waterman score is calculated to
indicate the similarity between two amino acid
sequences of target proteins which were obtained from
the KEGG GENES database. All protein pairs similarities
are computed to construct a similarity matrix denoted

Sp
n nR p p∈ × which represents the genomic space.

• Drug-protein interaction data
At the time of the paper [7] was written, Yamanishi et
al. [7] found 445, 210, 223, and 54 drugs targeting 664
enzymes, 204 iron channels, 95 GPCRs, and 26 nuclear
receptors, receptively, and the known interactions are
2926, 1476, 635 and 90.

Combining weighted profiles
The method of combining weighted profiles follows the
idea that the label of the new sample is determined by
its similarity with the training samples. For a drug di, its

Figure 4 Predicted ion channel interaction network. Predicted ion channel interaction network. diamonds and circles represent drugs and
target proteins, respectively. Bule and red lines indicate known interactions and newly predicted interactions with 50 highest scores, respectively.

Table 5 Top 5 scoring predicted drug-protein interactions
for the GPCRs data set

Rank Pair Annotation

*1 D02358 Metoprolol

hsa154 adrenergic receptor, beta 2

*2 D00095 Adrenaline

hsa155 beta3-adrenergic receptor agonist

*3 D00371 Theophylline

hsa135 adenosine A2a receptor antagonist

*4 D02354 Thiethylperazine

hsa1814 dopamine receptor D3

*5 D00283 Clozapine

hsa1814 dopamine receptor D3(DRD3)
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interaction f(di, pj) with a protein pj in ℙ is predicted
with the following formulation:

f d p s d di j
d

d i k

k

n

kj
i

d

, ,( ) = ( )
=

∑1

1
N

Y (1)

where sd(di, dk) is a chemical structure similarity score

from Sd and Ndi is a normalization term defined as

Nd d i k
k

n

i

d
s d d= ( )

=∑ ,
1

. Meanwhile, for a protein pj , its

interaction f(pj , di) with a drug di can also be calculated
in the genomic space by:

f p d s p pj i
p

p j k

k

n

ik
j

p

, ,( ) = ( )
=

∑1

1
N

Y (2)

where sp(pj , pk) is a genomic sequence similarity

score from Sp and Npj is a normalization term defined

by Np p j k
k

n

j

p
s p p= ( )

=∑ ,
1

Note that Equations (1) and

(2) are estimating the interaction of the same drug-
protein pair (di ~ pj) from different data sources. The
two predictions should be combined to give the final
prediction by

f d p
f d p f p d

i j
i j j i

,
, ,( ) =

( ) + ( )
2

(3)

The drug-protein pairs (di, pj) in f d pi j,( ) (di, pj) with
high scores are predicted to interact each other. The
original weighted profile method is used in [7]. However
their predictions in the two spaces are not fused. Figure
7 shows the method of combining weighted profiles
provides better prediction than methods using the single
space on the four data sets.

Figure 5 Predicted GPCRs interaction network. Predicted GPCRs interaction network. diamonds and circles represent drugs and target
proteins, respectively. Blue and red lines indicate known interactions and newly predicted interactions with 50 highest scores, respectively.

Table 6 Top 5 scoring predicted drug-protein interactions
for the nuclear receptor data set

Rank Pair Annotation

*1 D00348 Isotretinoin

hsa5915 retinoic acid receptor, beta

*2 D00348 Isotretinoin

hsa5916 retinoic acid receptor, gamma

*3 D00182 Norethindrone

hsa2099 estrogen receptor 1

*4 D00348 Isotretinoin

hsa6256 retinoid X receptor, alpha

*5 D00348 Isotretinoin

hsa6257 retinoid X receptor, beta
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LapRLS and NetLapRLS for drug-protein interaction
prediction
In LapRLS and NetLapRLS, the data-dependent regulari-
zation terms are normalized Laplacian operation on
graphs. Herein two undirected graphs of drug domain
and protein domain including both labeled and unla-

beled samples are represented by Kd
n nR d d∈ × and

Kp
n nR p p∈ × , where the set of nodes or vertices is

W
S K

d
d d d d

d d

= +
+

 
 
1 2

1 2

. and the set of edges is ℰd = {edmn},

ℰp = {edmn} respectively. Each drug di or protein pj is
treated as the node on the graph and the weight of edge
edmn{epmn} is wdmn(wpmn).
Typically, the weight measures the similarity between

two nodes. In our case, the drug domain similarity
Wd = {wdmn} is obtained by combining the chemical
similarity Sd and drug-target interaction network. The
protein domain similarity Wp = {wpmn} is derived by
combining the genomic similarity Sp and drug-protein
interaction network spaces. The chemical similarity Sd
and genomic similarity Sp have already been introduced
in Section Materials.

Next we need to extract the information from the
drug-protein interaction network space. The underlying
assumption made here is that if two drugs share more
target proteins, they are more similar. For example, in
Figure 8, the blue line means the known drug-protein
interaction while the red line represents the interaction
to be predicted. So drug D2 shares 3 same proteins with
drug D1 while drug D3 shares a common protein with
drug D1. Drug D1 interacts with Protein P4. Based on
the assumption here, we can infer that it is more prob-
able that drug D2 interacts with protein P4 than drug
D3 does. So another similarity matrix for drug domain
from drug-protein interaction network

W
S K

p
p p p p

p p

=
+
+

 

 
1 2

1 2

. can be established whose each entry

is the number of proteins shared by drug di and dj.
Similarly, we can also derive the network similarity

matrix Dd k m
m

n
k k wd

d
, ,( ) =

=∑ 1
whose each entry is the

number of drugs shared by protein pj and pi. Though
drug-protein interaction network was also used in [7],
our method employs a different way to extract informa-
tion from the network. The shortest path concept is

Figure 6 Predicted nuclear receptor interaction network. Predicted nuclear receptor interaction network. diamonds and circles represent
drugs and target proteins, respectively. Blue and red lines indicate known interactions and newly predicted interactions with 50 highest scores,
respectively.
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used in [7] while we utilize the number of common
nodes shared by two proteins(drugs) to indicate a new
similarity measurement.
Now the drug domain similarity Wd can be derived

from the chemical similarity and drug-protein network

similarity by linear combination Dp k m
m

n
k k wp

p
, .,( ) =

=∑ 1
.

Similarly, the protein domain similarity Wp can be

obtained by L D D I D W Dd d d d n n d d dd d
= = −− −

×
− −1 2 1 2 1 2 1 2/ / / /Δ . Com-

pared with the standard LapRLS, our NetLapRLS

incorporates drug-protein network information into the
prediction model. In the following paragraph, we just
describe the method NetLapRLS from which the stan-
dard LapRLS can be deduced by setting gMd2 = gp2 = 0.
Given the similarity matrices of drug domain and pro-

tein domain, we first perform Laplacian operation on
the two graphs which is required by our semi-supervised
learning method. The node degree matrices Dd and Dp

are two diagonal matrices with their (k, k)-element

defined as L D D I D W Dp p p p n n p p pp p
= = −− −

×
− −1 2 1 2 1 2 1 2/ / / /Δ and
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Figure 7 The ROC curves of combining weighted profile. The ROC curves of combining weighted profile, weighted profile from chemical
and genomic spaces on GPCR data.
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Fd
n nR d p∈ × . The Laplacian operation of the two graphs is

defined as Δd = Dd - Wd and Δp = Dp - Wp respectively.

The normalized graph Laplacians are Fp
n nR p d∈ × .

respectively.
NetLapRLS defines a continuous classification func-

tion F that is estimated on the graph to minimize a cost
function. The cost function typically enforces a trade-o
between the smoothness of the function on the graph of
both labeled and unlabeled data and the accuracy of the
function at fitting the label information for the labeled
nodes. Herein we extend NetLapRLS to the matrix
form. The two continuous classification functions are

defined by F F Y F F L F
F

d d d d d
T

d d
d

J Trace* min= ( ) = − + ( )

2 

and F Wd d d
* *=  . Let’s first address the prediction Fd on

the drug domain. The cost function of NetLapRLS is
defined as follows

d
n nR d p∈ × (4)

where     


d d d d d
T

d d d d
d

nd np
Trace* arg min { ( )}= − +

∈ ×
R

Y W W L W


2
is

Frobenius norm and Trace is the trace of a matrix.
Representer theorem [18] shows that the solution is a
linear combination

− −( ) + =W Y W W L Kd d d d d d d d   0

Substituting this form into equation (4), we arrive at a
convex differentiable objective function with respect to
variable  d d d d d

* = +( )−W L W Y1

F W W L W Yd d d d d d
* = +( )− 1 (5)

The derivative of the objective function vanishes at the
minimizer:

F W W L W Yp p p p p p
T* = +( )−


1

(6)

which leads to the following solution:

F
F F

*
* *

=
+ ( )d p

T

2
(7)

Then we get the prediction from the drug domain in
the following form:

F W W L W Yd d d d d d
* = +( )− 1 (8)

Similarly, we can also derive the prediction in the
protein domain by

F W W L W Yp p p p p p
T* = +( )−


1

(9)

In the end, the predictions from drug and protein
domains are combined into

F
F F

*
* *

=
+ ( )d p

T

2
(10)
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