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Abstract

Background: Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of
biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on
the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were
developed to facilitate such an integration of data and are often used to annotate biosimulation models in
systems biology.

Results: We provide a framework to integrate representations of in silico systems biology with those of in vivo
biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup
Language. We developed the SBML Harvester software that automatically converts annotated SBML models into
OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We
utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify
models based on the biological phenomenon they represent and provide a means to establish a basic qualitative
layer on which to express the semantics of biosimulation models.

Conclusions: We establish an information flow between biomedical ontologies and biosimulation models and we
demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the

verification of models as well as expressive queries. Establishing a bi-directional information flow between systems
biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span

levels of granularity from molecules to organisms.

Background

Systems biology focuses on the analysis of whole biologi-
cal systems and interactions occuring within them. For
this purpose, it transcends classical boundaries between
domains and levels of granularity and follows an integra-
tive approach towards the discovery of biological knowl-
edge. Instead of reducing complex biological phenomena
to their basic parts, systems biologists perceive and study
these phenomena as components of a network of interre-
lated processes spanning multiple domains [1]. The
methods used to investigate systems’ behavior rely on the
integration of multi-scale data across levels of granularity,
the “integration of in-silico, in-vitro, and in-vivo research”
[2], and the construction of computational models to
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predict and simulate complex systems’ behavior. Key
challenges that systems biology research faces today are
to integrate data within and across domains and levels of
granularity, to integrate data that is available in different
formats and locations, to provide validation procedures
for computational biosimulation models as well as to
develop standards for the exchange and integration of
models, simulations and results [1-4].

To address these challenges, the research community
has proposed standard languages for modelling and
model exchange, and has developed common commu-
nity standards for the annotation of models. In particu-
lar, the Systems Biology Markup Language (SBML) [5],
the Cell Markup Language (CellML) [6] and the BioPAX
standard [7] are standardized model exchange languages
that aim to facilitate basic interoperability between the
research results that are produced by different research
communities. To support the adoption of standard
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languages, tools that are capable of validating models
with respect to their specification language [8-11] or
additional guidelines and constraints associated with a
modelling standard [12] are available. Model annotation
standards include the Minimum Information Required
in the Annotation of Models (MIRIAM) [13]. MIRIAM
specifies which information should be added as meta-
data to systems biology models and other resources. A
part of this metadata is intended to refer to the biologi-
cal phenomena that a model intends to represent. For
this purpose, the annotations can be made using an
identifier that belong to an external resources such as a
biomedical terminology or ontology. Ontologies focus
on a qualitative description of the biomedical domain
and are commonly represented in formal languages
which facilitate automated discovery of contradictory
statements and flexible access to knowledge through
automated reasoning.

Most efforts in using ontologies in systems biology
modelling are currently limited to the annotation of
models with ontologies in which the terms from ontolo-
gies are treated as metadata. We argue that an integra-
tion of the research areas of systems biology modelling
and biomedical ontologies can establish an information
flow [14] between them. Such an integration can make a
significant contribution towards achieving the aims of
system biology while addressing some of the key chal-
lenges systems biology faces today. Information flow
from biomedical ontologies to systems biology would
enable biosimulation modelling and simulation frame-
works in systems biology to access the information that
is available in data repositories through biomedical
ontologies and use this information both to enrich and
constrain the scientific analyses of biological systems.

From the perspective of systems biology, the main dif-
ference between annotation with ontologies and integra-
tion with ontologies is that annotations are metadata
about a model, a simulation or a particular result, while
integration entails that the ontologies are used as a com-
ponent of a model, a simulation or a result. In particu-
lar, when biosimulation models are integrated with
ontologies, it becomes possible to translate the structure
of a model (within a certain modelling language) into a
representation of the biological phenomena that the
model represents. An explicit ontological commitment
[15] of a modelling language is a formal specification of
how a model’s structure corresponds to the structure of
the represented phenomena.

Using automated reasoning, the restrictions employed
by biomedical ontologies can be applied to verify the
biological consistency of biosimulation models, i.e.,
whether or not a model represents phenomena that are
biologically possible. Ultimately, integration of computa-
tional models and biomedical ontologies, combined with
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the possibility for model verification, may lead to a gen-
uine standardization of the semantics of modelling lan-
guages based on the biology represented through their
use: modelling languages would contain a knowledge-
based layer that formally represents the structure of and
the interactions within a biological system.

Here, we demonstrate a method to integrate biosimu-
lation models in systems biology with representations of
in vivo biology as described by biomedical ontologies in
a common formal framework such that information can
flow between both disciplines. To evaluate this frame-
work, we apply it to all computational models in the
BioModels Database [16] (release 18) that are available
in SBML [5] and annotated with biomedical ontologies
using the MIRIAM community standard [13]. We pro-
vide an ontological analysis of the SBML and specify its
ontological commitment [15], i.e., we formalize how the
structure of a model in SBML determines the structure
of the biological phenomena it represents. We imple-
ment the result of our analysis and developed the SBML
Harvester software, which converts annotated SBML
models into OWL. We use the SBML Harvester to cre-
ate a formal representation of 269 computational models
contained in the BioModels Database. Based on this
representation, we verify the consistency of the models
and their annotations with respect to the biological phe-
nomena they represent. After establishing the consis-
tency of both, we use the converted models to
demonstrate how reasoning over biomedical ontologies
can address data integration problems that systems biol-
ogy faces today: we use the knowledge base of computa-
tional models to perform complex biological queries
that cross multiple domains and levels of granularity
and we demonstrate how to retrieve model elements
that represent specific biological phenomena. To achieve
these goals, we employ automated reasoning in the
expressive description logic underlying the Web Ontol-
ogy Language (OWL) [17] and automatically infer infor-
mation from the combined knowledge base that consists
of multiple large biomedical ontologies as well as the
representation of 269 computational models and their
biological semantics.

The SBML Harvester software, a web interface to
access the SBML Harvester as well as the ontologies we
created are freely available under a BSD license at
http://sbmlharvester.googlecode.com.

Results

Definitions and scope

The main goal of our proposed framework is the inte-
gration between in silico biosimulation models and
representations of in vivo biological phenomena
expressed through biomedical ontologies. For this pur-
pose, our method relies on the availability of systems
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biology resources that are annotated with terms from
biomedical ontologies or resources that can be mapped
to biomedical ontologies.

We draw a distinction between representations of in
vivo versus in silico phenomena. Representations of in
vivo phenomena directly represent biological phenom-
ena. Representations of in silico phenomena, on the
other hand, focus on representing a particular biosimu-
lation model, and biological phenomena are represented
only as a secondary consequence, since the biosimula-
tion model is an in silico representation of in vivo phe-
nomena. In this manuscript, in vivo representations also
include representations of in vitro phenomena, since
these methods also deal directly with biological phe-
nomena and molecules.

We use the term biosimulation model to describe a
mathematical abstraction that is intended to represent
the structure, functions, capabilities and qualities of a
class of biological systems. A biosimulation model can
be expressed in a biosimulation modelling language and
executed within a simulation framework. A biosimula-
tion modelling language is a formal or semi-formal lan-
guage that is a component of a biosimulation modelling
framework and can be used to specify a biosimulation
model. Biosimulation modelling frameworks provide a
set of explicit constraints and assumptions about how
biosimulation models represent the structure of biologi-
cal systems and may include guidelines for the docu-
mentation and implementation of software systems that
support the modelling framework. For example, biosi-
mulation modelling frameworks can fix a specific theory
of space and time based on which biological systems are
represented within the simulation framework. Simula-
tion frameworks can further define the methods by
which connections and transitions in biological systems
are performed, or they may include assumptions about
the basic types that can be used to represent biological
systems. Types include both basic data types (such as
Integer or Double) and the classes expressed using con-
ceptual modelling languages (such as sbml:Model).
Examples of biosimulation models are Guyton’s model
on circulatory regulation [18] or the model of the cell
cycle in yeast [19] contained in the BioModels Database
as model BIOMD0000000087. The model
BIOMD0000000087 is expressed in the modelling lan-
guage SBML. Although SBML is primarily intended as a
lingua franca for the exchange of models and not as a
modelling language in itself [5], we will refer to SBML
as a biosimulation modelling language within the con-
text of our work. Other biosimulation modelling lan-
guages include CellML, MATLAB or BioPAX. Many of
these languages evolved into or form part of biosimula-
tion modelling frameworks and include guidelines,
resources and software tools for the creation,
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visualization, simulation, documentation and distribu-
tion of biosimulation models.

Model ontology

In our method, we employ an upper-level ontology (see
Figure 1), both for the in silico domain of models and
for the domain of biology. Upper-level ontologies pro-
vide general classes that are applicable in any domain
[20]. The upper-level ontology for biosimulation models
is used to facilitate the integration between modelling
frameworks and must accommodate the types of entities
occurring in these frameworks. The upper-level ontol-
ogy’s role for in vivo types is to facilitate the integration
of data and knowledge across domains and levels of
granularity.

Figure 1 shows our upper-level ontology for both the
in silico domain of models (on the bottom) and for the
domain of in vivo biology (on the top). In the first com-
ponent of the model ontology (bottom part of Figure 1),
we include the class Model entity and its two subclasses
Model and Model component. To satisfy our SBML-spe-
cific use-case, we create an application-specific exten-
sion of this ontology that contains the SBML classes
sbml:Model as subclass of Model and sbml:Species, sbml:
Compartment and sbml:Reaction as subclasses of Model
component. These classes are extensions to the upper-
level ontology and do not form a part of it. The second

* Thing
* Biological entity
| = Physical object
= chebi:Molecular entity
= go:Cellular component
= cl:Cell
* fma:Anatomical entity
" Process
" go:Biological process
= Function
= go:Molecular function
= Quality
" pato:Quality
* Model entity
* Model
* sbml:Model
* Model component
" sbml:Compartment
® sbml:Species
* sbml:Reaction

biomedical
reference
ontologies as
extensions

—

classes for
~ sbml types

—

Figure 1 Taxonomy of a basic upper-level ontology to
facilitate integration of in vivo and in silico entities. Our basic
upper-level ontology distinguishes between representation of in
vivo entities (Biological entity) and in silico entities (Model entity). The
sub-classes of Biological entity included in the upper-level ontology
are Physical object, Process, Function and Quality. These classes are
further extended by classes from biomedical reference ontologies
(e.g., classes from ChEBI, Celltype, FMA, GO and PATO). Sub-classes
of Model entity include Model and Model component, and these
classes can be extended with SBML-specific classes.
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part of our ontology (upper part of Figure 1) consists of
five classes: the class Biological entity, and its four sub-
classes Physical object, Quality, Function and Process.
The class Biological entity represents particulars, i.e.,
things that cannot be further instantiated [21]. A pro-
cess has temporal parts and unfolds through time, while
a physical object exists with all its parts at a time point
[22]. A quality is an attribute or characteristic of either
a physical object or a process [23,24] and we call the
potentials or capabilities of physical objects “functions”
[25]. The four sub-classes of Biological entity are closely
interlinked. Physical objects can have qualities and parts
whilst functions are determined by an entity’s qualities
and parts [26]. These functions can then be realized by
processes [27]. On each level of distinction in our ontol-
ogy, the classes are declared as disjoint: two classes are
disjoint if they cannot have an instance in common.

As an extension to our upper-level ontology, each
class in the ontology is further extended with biomedical
domain ontologies. We assert the class Biological process
of the Gene Ontology (GO) [28] as a subclass of Process,
the Molecular function class of the GO as a subclass of
Function, the Cellular component class of the GO as
well as all classes from the Celltype Ontology [29], the
Chemical Entities of Biological Interest (ChEBI) ontol-
ogy [30] and the Foundational Model of Anatomy
(FMA) [31] as subclasses of Physical object and all
classes from the PATO ontology [23] as subclasses of
Quality.

We further introduce and use a set of binary relations,
i.e., relations that have two arguments which are filled
by instances of classes in our ontology. The part-of and
has-part relations are applicable to both in silico and in
vivo entities. We use the part-of relation to assert, as
axioms, that model components must be part of a
model, that physical objects can only have physical
objects as part and that processes can only have other
processes as part. The participates-in relation relates
physical objects to the processes in which they partici-
pate and has three sub-relations, based on the different
modes of participation distinguished in SBML: has-
input, has-output and has-modifier. The has-input
relation is used to assert that an individual participates
in the beginning of a process, has-output to assert that
an individual participates in the end of a process, while
has-modifier is used to assert that an individual is
essential for a process, participates throughout its occur-
rence and is not permanently changed by the process
[5]. The function-of relation is used to assign a function
to a physical object and the realizes relation can be
used to assert that a process realizes a function. The
occurs-in relation is used to denote the physical object
at which a process occurs. Finally, the quality-of rela-
tion is used to relate a quality to the individual it is a
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quality of. Here, we assume that a quality is always the
quality of exactly one individual. The relations in the
model ontology together with associated axioms and
inverse relations are listed in table 1.

Our main contribution arises from establishing the
link between in silico model entities and in vivo entities
in biology. For this purpose, two relations in Table 1 are
used to relate model entities to those biological entities
they represent. The represents relation links model
entities, including whole models and model components,
to physical objects and the model-of relation links mod-
els (but not model components) to the physical objects
they represent. The use of these two relations allows us
to specify what is being represented by a computational
model and how the components and structure of mod-
els in their modelling languages reflect the components
and structure of the represented part of the world.

Formalizing models

Based on the upper-level ontology we developed, we
analyze the kinds of entities that are used within a mod-
elling language as well as the kinds of relations in which
these entities can stand and explicitly assert what kind
of biological entities are represented by a language ele-
ment (i.e., sow an element of a modelling language
refers to the world). Such an analysis establishes an
explicit correspondence between the representation of in
silico methods employed in biosimulation models and
the in vivo phenomena that they intend to represent
and makes the ontological commitment [15,32] of a
modelling language explicit. To perform such an analy-
sis, classes from several biomedical ontologies can be
employed, depending on the modelling framework and
the kind of phenomena that the models in this frame-
work represent. To establish the ontological commit-
ment of a modelling language, we assume that models
are artifacts of human creation and they attempt to
represent possible ways that the world, or a part of the
world, could be [33]. The modelling language and its

Table 1 List of relations in the model ontology

Relation Domain Range Inverse
part-of Thing Thing has-part
participates-in  Biological entity Process has-participant

function-of Function Physical object has-function
realizes Process Function realized-by
occurs-in Process Physical object has-process-occuring
quality-of Quality Biological entity has-quality
input-of Physical object Process has-input
output-of Physical object Process has-output
modifier-of Physical object Process has-modifier
represents Model entity  Physical object

model-of Model Physical object




Hoehndorf et al. BMC Systems Biology 2011, 5:124
http://www.biomedcentral.com/1752-0509/5/124

semantics provide constraints and a structure for the
description of these worlds, while a particular model
characterizes a class of possible biological scenarios. The
result of our formalization is a formal characterization
of the distinctions that are made by a modelling lan-
guage as well as how the structure of a model within
this language reflects the structure of the biological phe-
nomena it represents.

For the purpose of this analysis, we assume that every
model entity represents a class of physical objects. For
example, a model can be a model of the Eukaryotic cell
or of entities that have the capability for Apoptosis. We
assume that model entities that capture the dynamic
aspects of a model (such as a Reaction in SBML) repre-
sent capabilities of physical objects that are realized
through processes.

We utilize the MIRIAM compliant annotations of bio-
simulation models to generate ontology-based represen-
tations of these models. In our implementation, we
currently restrict our analysis to annotations that use
qualifiers that connect a model entity to a class of biolo-
gical entities using the BioModels.net biology qualifiers
is, isVersionOf, hasVersion, hasPart and isPartOf [34],
since these enable us to directly link model entities to
existing biomedical ontologies: the qualifier is is
intended to be used whenever a model entity exactly
represents the annotated entity, isVersionOf and hasVer-
sion are intended to be used whenever the model entity
represents a subclass of the annotated entity, isPartOf is
intended to be used when a model entity is always part
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of some instance of the annotated entity and hasPart is
used when a model entity always has some instance of
the annotated entity as part. In the Methods section, we
present the details about our automatic method for gen-
erating OWL representations from the SBML files pro-
vided by the BioModels Database and their MIRIAM
annotations.

As a single example, Figure 2 illustrates parts of the
automatically created representation of a specific model
of adenylate cyclase inhibition (BIOMD0000000082)
within our ontological framework. The left side of Fig-
ure 2 shows a simplified and abbreviated snippet of the
model’s SBML representation. While the model
BIOMDO0000000082 includes one compartment, six
reactions, ten parameters and ten species, we list only
one of the model’s reactions and three species in Figure
2. The right side of Figure 2 illustrates the representa-
tion of the in vivo phenomena as produced by the
SBML Harvester software. We label the class of entities
that BIOMD0000000082 represents “World of
BIOMDO0000000082”. The SBML Harvester software
that we described earlier connects the SBML model to
the in vivo phenomena it intends to represent using the
represents relation. In Figure 2, assertions of the repre-
sents relations are illustrated as black dashed lines.

The process of transforming parts of SBML models
into OWL makes some aspects of SBML’s semantics
explicit which are currently implicit in the SBML text.
For example, the SBML model BIOMD0000000082 has
a single compartment, “cell”, which is annotated with

BIOMDO0000000082.xm

reaction
listOfReactants

GTP binding with DRG

GTP
DRG

listOfProducts:
'DRG_GTP"

model.. Thomsen1988_AdenylateCyclase_Inhibition
listOfCompartments.

compartment cell" > = m
listOfSpecies

species GTP cell

species DRG cell

species DRG_GTP
listOfReactions

] 4

-y World of N

BIOMD0000000082
_\

cell

Figure 2 Schematic representation of a part of the representation generated for BIOMD0000000082. Here, we demonstrate part of the
transformation of the specification of the model BIOMDO0000000082 (in silico, on the left) into a representation of in vivo phenomena (on the
right). Each line represents an explicit assertion we create and by which knowledge that is currently implicit in the SBML code is made explicit in
an ontology-based, formal representation. The World of BIOMD0000000082 has, as a part, a Cell (represented by the model's component). The Cell
has, as its parts, three species (represented by “GTP”, “DRG" and "“DRG_GTP"). The reaction “GTP binding with DRG" represents a process that
occurs in the World of BIOMD0000000082 and has as input the objects represented by “GTP” and “DRG’, and has as output the object
represented by “DRG_GTP”". The input and output relations for processes are inferred from the SBML list of reactants and products, respectively.
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the class Cell (GO:0005623). We make explicit that
this model represents a physical object that has a cell as
part. Furthermore, species in the SBML model are
linked to compartments and we make the assertion
explicit that species that are linked to a compartment
represent physical objects which are located in the
object represented by the compartment. For example, all
species in BIOMD0000000082 are linked to the com-
partment “cell” and therefore all physical objects that
these species represent are located in the Cell repre-
sented by the compartment. We assert that, if a species
is annotated with a class C using the is or isVersionOf
qualifiers , it represents a kind of C. For example, the
species “GTP” is annotated (using the is qualifier ) with
the ChEBI class GTP (CHEBI:15996) and therefore we
assert that the species labelled “GTP” represents GTP
that resides in the cell represented by the compartment.
In the right side of Figure 2, the nesting of entities
represents parthood relations.

We assume that reactions in an SBML model are
intended to represent processes. In
BIOMD0000000082, “GTP binding with DRG” is a
reaction that is annotated (using the isVersionOf quali-
fier) with GTP binding (GO:0005525). Based on this
information, we assert that a GTP binding process
occurs in World of BIOMD0000000082. Furthermore,
based on the list of reactants, products and modifiers
listed in an SBML model, we assert inputs (using the
has-input relation), outputs (using the has-output rela-
tion) and modifiers (using the has-modifier relation) to
the process. For example, the species “GTP” and “DRG”
are listed as reactants of “GTP binding with DRG”.
Based on this information, we assert that the reaction
“GTP binding with DRG” represents a GTP binding pro-
cess that has two entities as input: the entity represented
by the species “GTP” and the entity represented by the
species “DRG”. Similarly, we formalize the list of pro-
ducts of “GTP binding with DRG” and assert that the
reaction represents a GTP binding that has a physical
object as output which is represented by the species
“DRG_GTP”. In Figure 2, inputs of reactions are illu-
strated with red lines and outputs are illustrated with
dashed red lines. The Methods section describes the
precise method for formalizing SBML models.

We developed the SBML Harvester software that
automatically converts SBML models into OWL using
this method and our basic model ontology. The Har-
vester creates an integrated representation of both the
structure of a model and the biological phenomena that
a model intends to represents. We applied this software
to the BioModels Database, release 18, and automati-
cally converted 269 models. The result of this conver-
sion is a knowledge base (which we will refer to as
BioModels knowledge base within this manuscript)
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composed of more than 90,000 classes which are char-
acterized based on more than 800,000 logical axioms (i.
e., axioms restricting either classes or object properties).
The knowledge base includes the GO [28], the ChEBI
Ontology [30], the Celltype Ontology [29], the Founda-
tional Model of Anatomy [31] and the PATO Ontology
[23], all of which are freely available from the OBO
Foundry ontology repository [35]. In addition to these
ontologies, we create two classes for each model, com-
partment, species or reaction, one for the in silico entity
represented within SBML, the other for the in vivo
entity characterized through biomedical ontologies.
Furthermore, in some cases, a class of concentrations,
charges or amounts is created for species. The details of
the conversion process are described in the Methods
section. The knowledge base and the software to convert
SBML models are available as supplementary material
on our project website.

Consistency verification

Automated reasoning over the BioModels knowledge
base provides a means to verify models and their anno-
tations. Upon applying this analysis to the formalized
BioModels Database, we detect several contradictions in
the knowledge base. These contradictions arise from
annotations in 27 models. For example, in a model of
the mitotic cell cycle (BIOMD0000000056) we identify
6 annotations as problematic: the model contains a
compartment annotated with Cel/, in which the species
“SPN” annotated with spindle assembly (GO:0051225)
is located. According to our analysis, however, species
represent physical objects, while Spindle assembly is a
kind of process. Consequently, the annotation of a spe-
cies with a process class will cause an inconsistency that
we automatically detect. Another type of consistency
violation in the same model relates to the annotation of
a reaction which is annotated with a class of physical
objects. The reaction “Assoc with NET1P to form
RENTP” is annotated with RENT complex, a subclass of
cellular components. However, according to the method
we propose, a reaction may represent something that
has a RENT complex as participant, but it cannot repre-
sent a kind (i.e., a subclass) of physical object.

Kinds of consistency violations

Mixing physical objects, functions and processes

The most basic problem that leads to a contradictory
class definition is the disjointness of physical objects,
functions and processes. We assume in our analysis that
species and compartments represent physical objects,
while reactions represent functions or processes. How-
ever, in some cases, a species is annotated with a func-
tion or process with the intended meaning that the
species is a physical object that either has the annotated
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function, or a species that has some function that is rea-
lized through the annotated process. For example, in
BIOMD0000000008, the species “protease” is anno-
tated with Peptidase activity (GO:0008233) with the
intention that the species represents Peptidase, i.e.,
molecules with the function Peptidase activity.

In most cases, an automated reasoner is capable of
disambiguating the intended meaning. For models in the
SBML, the following three interpretations are disjoint:

« the model is a subclass of C,

« the model is a subclass of things that have the
function C, and

« the model is a subclass of things that have a func-
tion that must be realized by C.

In each of these alternatives, C is interpreted differ-
ently: as a kind of physical object, a kind of function or
a kind of process. Because all these interpretations of C
are disjoint, an automated reasoner will eliminate two
options and select exactly one [36].

A similar list of possible interpretations of annotations
can be created for SBML’s reactions. Although the
incorporation of these disjunctive interpretations of
annotations would lead to a formally consistent knowl-
edge base, incorrectly annotated model entities would
not cause an inconsistency anymore and therefore pre-
vent us from automatically identifying incorrect annota-
tions through automated reasoning. In our SBML use
case, we perform a disjunctive interpretation for annota-
tions to Model, but not for annotations to Species, Com-
partment or Reaction.

Extending features of modelling languages

In some cases, inconsistencies in the knowledge base indi-
cate the use of modelling language features for purposes
different from what may have been intended by the lan-
guage designers. For example, in BIOMD0000000087,
SBML'’s species elements are used to represent temporal
stages. The model BIOMD0000000087 is a model of the
cell cycle in yeast [19] and includes a compartment anno-
tated with Nucleus that contains, among others, the spe-
cies G1, G2, S and M annotated with GI phase, G2 phase,
S phase and M phase, respectively. Within the model, the
amounts of these species can be either 0 or 1, and the
initial amount of G1 is 1 and the initial amounts of G2, S
and M are 0. The values of these species serve as a basic
representation of temporal stages of the cell cycle, and the
species’ values are used as preconditions for reactions
within the model. While the choice to represent stages of
the cell cycle as species will not lead to biologically incor-
rect models and may be motivated by limitations in
the simulation environment, our method can be used to
identify the cases in which the intended use of SBML by
modellers does not coincide with the ontological
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representation of SBML features. With an appropriate
extension of the biology qualifiers that can be used to link
model entities to biological entities, we would be able to
incorporate such model annotations.

Biological impossibility

A third kind of contradictory class definition that we
can automatically identify is due to a violation of biolo-
gical constraints. For example, recently added definitions
of classes in the GO [37] define an ATPase activity
(G0:0004002) as a Catalytic activity that has Water
and ATP as input, ADP and phosphate as output and is
a part of an ATP catabolic process. Water and ATP are
classes in the ChEBI ontology that cannot have common
instances and therefore should be declared as disjoint
classes, although such a restriction is not yet included in
ChEBI. Similarly, although the GO class definitions do
not explicitly state that ATP and Water are the only
inputs of an ATPase activity, such a restriction may be
added to the GO. To demonstrate the utility of ontolo-
gies for identifying biologically inconsistent classes, we
add the assertion that Water, ATP and Alpha-D-glucose
6-phosphate are disjoint as well as the definition of
ATPase activity to the knowledge base that we
generated.

When querying for models containing contradictory
definitions in this extended knowledge base, we obtain
BIOMD0000000176 and BIOMD0O000000177 as a
result. The models BIOMD0000000176 and
BIOMD0000000177 are models of anaerobic glycolysis
in yeast [38] and both contain a species labelled “ATP”
that is the input of a reaction labelled “ATPase”. The
reaction “ATPase” is annotated with ATPase activity.
The species “ATP”, however, is annotated with Alpha-
D-glucose 6-phosphate (CHEBI :17665), not with ATP.
Based on the definition of ATPase in the GO (and the
additional assertions we add to the knowledge base), the
class that is represented by the ATPase reaction
becomes unsatisfiable, and this problem is automatically
identified through reasoning. In the two models, the
cause of the inconsistency is an incorrect annotation of
the species “ATP” with Alpha-D-glucose 6-phosphate
instead of ATP. As ontologies are further extended with
expressive class definitions [37,39,40], more of these
annotation problems can automatically be identified and
subsequently corrected.

A consistent representation of knowledge is necessary
to utilize automated reasoning. The correction of the
problems that we identified in the annotations and mod-
els contained in the BioModels Database requires sub-
stantial knowledge about both the model structure and
their applications. Therefore, we do not perform a man-
ual repair of the identified inconsistencies and ignore
the 27 models that contain contradictory class defini-
tions in further analyses.
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Knowledge discovery and composition

Retrieving models

We utilize the resulting knowledge base for automated
reasoning to perform inferences across the combination
of models and the biological phenomena they intend to
represent. Since these phenomena are described using
biomedical reference ontologies, inferences can take the
information contained in these reference ontologies into
account to perform queries across multiple connected
domains as well as distributed knowledge bases. Table 2
shows a list of queries for the BioModels knowledge
base, including the number of results. We obtained
these results using the Pellet OWL reasoner [41] and
the Protege ontology editor [42].

Using inference over both ontologies and the forma-
lized model structures, we are able to ask detailed
queries, most of which are currently not possible with
the current BioModels Database query interface. In
addition, use of automated reasoning enables us to uti-
lize the biological semantics of models explicitly, in con-
trast to search methods based on lexical matching that
rely on names and terminology.

The most basic question we can ask is the retrieval of
models which represent an entity of a certain kind. For
example, we can query for models (or parts of models)
that represent the Cell cycle and, based on the ontology-
based annotation of models and our conversion, we
retrieve 14 models.
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Via the integration of biomedical ontologies into our
framework, we can also perform queries that rely on the
ontologies” axioms. For example, we are able to query
for models that represent biological processes in which
sugar (CHEBI :16646) participates. This query depends
on the ChEBI ontology [30], the Gene Ontology (GO)
[43] as well as the complex ontology-based descriptions
that result from the application of our method. As a
result of performing this query over the ontological
representation of the BioModels Database, we obtain 54
models (e.g., BIOMD0000000015, a model of purine
metabolism).

Retrieving model components

We can further refine our query to retrieve all parts of
this model that represent processes involving sugar and
retrieve 29 reactions. For example, the reaction labelled
“pyr” has 5-O-phosphono-alpha-D-ribofuranosyl dipho-
sphate (CHEBI:17111) as input, which is a kind of
sugar. We can extend this query further: we can add
restrictions taken from reference ontologies (e.g., query
for sugars that have a phosphorus atom as part; sugars
that have an oxoacid as functional parent) or add
restrictions arising from the model (e.g., sugars located
in a cell; sugars that are the input of biosynthetic pro-
cesses that have ATP as output).

Bridging levels of granularity

Combining the inferences over the biomedical ontolo-
gies and the representation of computational models

Table 2 List of examples for querying the BioModels knowledge base

Query Query string #
results
Contradictory defined entities Nothing 4,899
Models which represent a process involving sugar model-of some (has-part some (has-function some (realized- 54
by only (has-participant some sugar))))
Parts of BIOMD0000000015 that represent processes part-of some BIOMD0000000015 and represents some (has- 29
involving sugar function some (realized-by only (has-participant some
sugar) ) )
Model entities that represent the cell cycle represents some (has-part some (has-function some 14
(realized-by only ‘cell cycle’)))
Model entities that represent mutagenic central represents some (has-part some (’has role’ some ‘central 2
nervous system drugs in the gastrointestinal systems nervous system drug’ and ‘has role’ some mutagen and part-of
some ‘Gastrointestinal system’)
Model entities that represent catalytic activity involving represents some (has-function some (realized-by only 4

sugar in the endocrine pancreas

(realizes some ‘catalytic activity’ and has-participant

some (sugar and contained-in some (part-of some ‘'Endocrine
pancreas’)))))

List of examples for querying the BioModels (release 18) knowledge base. The results of these queries are based on automated reasoning (i.e., deductive
inference). Every result listed in the table is the result of a formal proof that is based on the constraints formalized in the SBML Harvester software, the
annotation assertions of models in BioModels and the knowledge contained in biomedical ontologies.

If an answer to any of the queries is incorrect, then this inaccuracy must be the consequence of either an incorrect assertion in a biomedical ontology, an
inappropriate use of SBML model elements, an incorrect model, a faulty model annotation or a mistake in our assumptions about SBML'’s ontological

commitment.

Quantifying these cases and correcting the underlying problems requires a manual analysis of the models and their annotations, and we intend to collaborate
with the BioModels Database curators on identifying and correcting possibly incorrect model annotations. The SBML Harvester software can further provide the

means to verify models before inclusion in the BioModels Database.
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enables the specification of queries of high biological
complexity as well as using automated reasoning over
biomedical ontologies to bridge levels of granularity.
For example, we can query our ontology for any model
that represents the uptake of any mutagenic central
nervous system drug by the gastrointestinal system.
Using the terms Mutagen (CHEBI:25435) and Cen-
tral nervous system drug (CHEBI:35470) from the
CHEBI ontology as well as Gastrointestinal system
(FMA:71132) from the FMA enables us to retrieve a
model of the tolerance to pressor effects in caffeine
uptake (BIOMD0000000241).

Furthermore, we can use ontologies to perform
queries for anatomical or physiological phenomena and
retrieve specific molecular biosimulation models that
satisfy the specified conditions. For example, we can
query the BioModels knowledge base for models that
represent catalytic activities involving sugar in the endo-
crine pancreas and obtain a model of phosphofructoki-
nase and glycolytic oscillations in the pancreatic beta-
cell [44] (BIOMD0000000236) as result. This model
has a compartment annotated with Type B cell of pan-
creatic islet (FMA:70586), and according to the FMA,
these cells are part of the Pancreatic islet which is part
of the Endocrine pancreas. Furthermore, this compart-
ment contains several species annotated with subclasses
of Sugar (e.g., D-fructose 6-phosphate) which are inputs
and outputs of reactions that represent catalytic activ-
ities (e.g., 6-phosphofructokinase activity).

Since we have combined multiple models in a single
ontology, we can ask for connections between models
based on connections between the biological phenom-
ena they represent. This has the potential to lead to a
powerful ontology-based method for composing models.
For example, we can query our ontology-based frame-
work for kinds of processes that are part of the cell
cycle and then ask for models or model components
that represent them. Based on these components, we
could then construct a new model that consists of the
components necessary to represent the cell cycle. A
method for automatically or semi-automatically generat-
ing models based on ontology-based queries is a viable
area for future research.

Performance of reasoning

To apply our method within software systems such as
simulators, or utilize it as part of an analysis method, it
is critical that queries be answered efficiently, especially
when a large number of queries are considered. Our
method uses automated reasoning in OWL, and, in the
worst case, the time needed to answer queries increases
exponentially with the number of logical axioms in the
ontology [45]. Using the Pellet OWL reasoner [41] on
hardware consisting of two Intel® Xeon® 2.4 GHz quad-
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core CPUs with 24 GB memory, classification of the
BioModels knowledge base requires more than one hour
while the time required to answer queries depends on
the query’s complexity and ranges between 1 and 30
minutes in our experiments.

To address this problem, we leverage recent research
around the development of OWL profiles [46] that
restrict OWL’s expressivity in order to improve the
speed of automated reasoning and, in particular, to
guarantee polynomial-time reasoning. To utilize reason-
ing in these profiles, we use the EL Vira software [47] to
perform an automatic conversion of the BioModels
knowledge base into the OWL EL [46,48] profile and
then applied the CEL reasoner [49]. Using CEL after
applying the EL Vira modularization approach, we were
able to classify the BioModels knowledge base in less
than one second and perform queries in 3 to 10
milliseconds.

Discussion
Limitations and related work
Ontologies in systems biology
The potential to utilize biomedical ontologies for the
discovery and integration of models has been recognized
within the systems biology community, and several
efforts make use of ontologies. Both domain-specific
ontologies that target a particular aspect of systems biol-
ogy are being developed and applied, and ontologies for
several areas of biology are used to annotate, retrieve
and compose biosimulation models. For example, the
Systems Biology Ontology (SBO) [50] is applied,
amongst others, within the SBML [5] to describe and
restrict model components. The Model Format Ontol-
ogy (MFO) [12,51] further provides structural restric-
tions and constraints for the SBML and the BioPAX
standard [7] is based on an ontology for representing
pathways and reactions. The KiSAO and TEDDY [52]
domain ontologies can be used to characterize the
dynamic aspects of systems’ behavior. Model reposi-
tories, including the BioModels Database [16], contain
large corpora of models, some of which are richly anno-
tated with classes from biomedical ontologies.
Annotations of biosimulation models with biomedical
domain ontologies are already widely being applied for
knowledge extraction and discovery [53-55] as well as
model composition [56-60]. Statistical methods and
semantic similarity [61] can be used to rank models,
identify similarity between model components and sug-
gest modules that can be recombined into new models.
Methods based on semantic similarity provide a power-
ful means to identify and discover associations between
entities that are annotated with ontologies and rank
them based on how similar two entities are with respect
to a certain similarity metric. However, semantic
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similarity methods use the intended meaning of ontol-
ogy-based annotations only indirectly and often rely on
distance measures between nodes in graphs, information
content or set comparisons [62]. Our method, on the
other hand, uses the intended meaning of model anno-
tations directly through deductive inference. The use of
deductive inference guarantees absolute certainty about
inferred statements [63], provided that the biomedical
ontologies and model annotations that were used for
the inference are correct. For example, all results to
queries that we list in Table 2 are the result of a formal
proof across the combination of biomedical ontologies
and the formalized models in our knowledge base.

Automated reasoning can reveal complex relations
between both model entities and terms in biomedical
ontologies, while similarity-based approaches have the
potential to suggest genuinely novel hypotheses that
cannot be derived from existing knowledge. Conse-
quently, our method can complement existing knowl-
edge extraction and knowledge discovery methods in
systems biology: first, ontology-based annotations are
verified, formalized and additional knowledge inferred
through automated inference, as described in our
method; in a second step, established methods for
knowledge discovery, ranking and model composition
can be utilized based on the verified and enriched repre-
sentation generated through our method.

Similarly to our method, the Rule-Based semantic
Mediation (RBM) method [51] has been used to apply
automated reasoning and enrich the knowledge available
within a biosimulation model. To achieve this goal,
RBM uses the MFO [12] to represent the syntax of
SBML in OWL, embeds several biological databases in a
common ontology-based model, adds an expressive core
ontology about the biological domain that is being mod-
elled and interrelates syntactic information and knowl-
edge contained in the core ontology using rules.
Through the combination of these methods, RBM can
partially automate the model annotation process and it
has been demonstrated that RBM is able to infer novel
and biologically meaningful relations between the enti-
ties that are represented within a model [51]. In contrast
to our method, RBM does not formalize and implement
the ontological commitment of the modelling language
itself nor does it provide a foundation of model entities
in an upper-level ontology that integrates in silico and
in vivo entities. Furthermore, RBM does not yet utilize
the large number of pre-existing biomedical ontologies
for inferences. Instead, RBM relies on the creation of a
core ontology containing expressive axioms to capture
the constraints in the biological domain. We make use
of biomedical ontologies that rarely use expressive
axioms and their weak formalization limits the capabil-
ities of our method for verification and knowledge
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extraction. Therefore, a combination of our approach
with RBM is a viable subject for future research.

Further related work on data integration in systems
biology and biosimulation includes the work on BioPAX
[7] and its integration with SBML [64] as well as the
integration of SBML with the Taverna workflow system
[65]. While we have not used these approaches to
improve our framework yet, we plan to combine our
framework with different methods for data integration
in systems biology in the future.

Availability of model annotation

A bottleneck in our method is the availability of ontol-
ogy-based annotations for systems biology resources.
While our method can be used to generate complex
definitions from these annotations and verify them with
respect to biomedical ontologies, it relies on the avail-
ability of ontology-based annotations. To annotate mod-
els, software tools such as semanticSBML [56], Saint
[66], Metannogen [67] and other MIRIAM-aware mod-
elling tools [68-70] and annotation libraries [71] will
continue to play a prominent role. The software we
developed could be added as a component to existing
model annotation frameworks to verify the annotations
which are added by curators, and we make our source
code available for this purpose.

Complexity and expressivity of automated reasoning
Another limitation of our work is the complexity of rea-
soning over ontologies in OWL. To address this pro-
blem, we have used a method of converting the
ontology created by the SBML Harvester to OWL EL, a
fragment of OWL that enables polynomial-time auto-
mated reasoning. However, OWL EL does not support
the use of the universal quantifier ("only”), negation or
inverse relations, and queries that involve these OWL
constructs can no longer be performed. In our conver-
sion, we make use of the universal quantifier to relate
functions to the processes that can realize them. The
use of universal quantification is required to ensure that
functions can remain unrealized [39,72] (i.e., there is not
always a process that realizes a function). As a conse-
quence, we can no longer answer queries for the phe-
nomena represented by SBML’s Reaction model
elements since we use universal quantification in their
formalization (see Methods section) and these axioms
are lost after conversion to OWL EL.

However, although the use of the universal quantifier
is applied in several biomedical ontologies [73,74] and
applying it in our framework will improve interoperabil-
ity with these ontologies, we may also replace the uni-
versal quantification with another construct (involving,
for example, existential quantification) to enable more
expressive queries at the cost of interoperability with
some ontologies. For this purpose, we implemented an
option in the SBML Harvester software to create OWL
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EL ontologies as output. When this option is activated,
the universal quantifier is replaced with an existential
quantifier in the formalization of process- and function-
based annotations and we import only ontologies
(including our upper-level ontology) that we converted
into the OWL EL fragment using the EL Vira software
[47]. Investigating alternative formalizations of the con-
straints employed in the SBML Harvester to improve
query performance and expressiveness is an important
subject for future research in collaboration with the
users of our system.

Upper-level ontologies

We utilize a basic upper-level ontology, as shown in Fig-
ure 1, and we intend to expand this ontology in the
future. In the case of SBML, the MFO [12] represents
the structural constraints of the modelling language and
can be used to extend the in silico entities within our
upper-level ontology (lower part of Figure 1). Estab-
lished ontologies such as the General Formal Ontology
(GFO) [21,22], the Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE) [75], the Suggested
Upper Merged Ontology (SUMO) [76] or the Basic For-
mal Ontology (BFO) [77] are comprehensive upper-level
ontologies and can replace the in vivo side in our
upper-level ontology. While established upper-level
ontologies can provide more classes for in vivo entities
as well as useful axioms and distinctions [20] that could
improve our method further, they can also enforce a
philosophical commitment that is not necessarily shared
across domains and communities [78-81]. Therefore, we
utilize a minimal upper-level ontology that specifically
addresses our use-case and which can be mapped to
existing upper-level ontologies if and when needed. In
the upper-level ontology we employ, we only commit to
those distinctions that are necessary for implementing
and demonstrating our method. In the future, we intend
to collaborate with other researchers, the developers of
tools for processing model annotations and the users of
our system to provide a more comprehensive framework
that can accurately represent all the types of entities
that are used within specific modelling frameworks.

An ontology-based layer for model exchange and
verification

While it is uncertain whether a single standard repre-
sentation and exchange language for systems biology
models will ever be agreed upon, there is a great poten-
tial for unifying the semantics of these languages on
their ontological level. In other words, a model of Apop-
tosis can be represented using SBML, CellML, MatLab,
Fortran, and several other languages, and agreeing on a
single common language that is suitable for all purposes
and simulators is as unlikely as agreeing on a single pro-
gramming language. However, agreeing on the meaning
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of “Apoptosis” and formally specifying this meaning
using a class Apoptosis seems much more achievable, in
particular as Apoptosis is already specified and defined
in ontologies such as the GO. Consequently, while the
syntax of model representations may never be combined
in a single uniform format, their underlying ontological
commitment may provide a means for achieving genuine
interoperability and integration between models and
modelling languages. Annotation of computational mod-
els alone will not achieve this goal, since genuine inte-
gration requires a framework for information flow
between the structure of the model and the biological
phenomena it represents. Despite considerable efforts in
semantically representing and characterizing models
[50,56-58], such an integration has not yet been
achieved. The framework we propose demonstrates a
strategy for integrating parts of systems biology and bio-
medical ontology, and we believe it has the potential to
address some of the key challenges that systems biology
faces today.

Identifying only 27 models that violate the formal con-
straints we place on the use of SBML and its annota-
tions demonstrates the great care that the BioModels
Database curators have used in their model annotation
efforts. Based on this well-curated database, we could
demonstrate that our framework has the potential to
facilitate the verification of the biological consistency of
model annotations through automated reasoning. Since
model annotations are currently used as metadata, a
verification of the models based on their annotations is
not yet common. Consequently, the majority of the con-
tradictions we identify arise from the model annotations
and not the models per se. However, if the model anno-
tations would cease to be treated as metadata and
become part of a standard according to which models
can be verified, our method could be of utility to cura-
tors in their annotation task as well as aid in the discov-
ery of modelling problems.

We have identified three major kinds of inconsisten-
cies in the BioModels Database. The first group of
inconsistencies is due to our ontological analysis of
SBML and the resulting restrictions we place on the use
of its components. In particular, while we assume that
some language elements in SBML refer exclusively to
physical objects, functions or processes, it is possible to
refer to physical objects through their function (e.g.,
objects with the function to secrete insulin), or to func-
tions through the processes that occur when the func-
tion is realized (e.g., functions that are realized through
ATP binding processes). Although we show how our
analysis could be extended to accommodate these three
alternative interpretations in each case, such an exten-
sion would hide other problems in the BioModels
knowledge base from automated discovery. Instead, an
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appropriate extension and use of annotation qualifiers
[13,34] could help to provide a consistent and verifiable
transformation of annotated SBML models into OWL.

A second group of inconsistencies arises through the
use of SBML language features for purposes different
from what they are commonly used for. In particular,
we have identified a model in which SBML’s species are
used to simulate a basic theory of . In this model, spe-
cies represent temporal intervals and are consequently
annotated with Process terms. The underlying ontologi-
cal commitment of SBML’s use in such a model is sub-
stantially different from the constraints that we make
explicit through our analysis, and consequently, we can-
not consistently incorporate this model in our knowl-
edge base. To accommodate these models, the
modelling language could be extended to include addi-
tional features when not available (such as an explicit
representation of temporal stages that can be used to
constrain reactions within a model) or additional model
annotation qualifiers can make such complex relations
between model elements and their intended meaning
explicit.

Finally, the third group of consistency violations is due
to constraints in biomedical ontologies that further
restrict biosimulation models and their annotations.
Consistency violations of this group arise when a model
represents biological phenomena that are impossible
according to the current knowledge of biology, as
expressed in biomedical ontologies. To detect problems
of the third kind, the first two groups of problems must
be resolved and expressive, richly formalized ontologies
must be used.

Extension to other modelling languages and domains

To apply our framework across modelling languages, the
part of our model ontology that represents in silico enti-
ties must be extended to accommodate the kinds of
model entities that are used in other modelling lan-
guages. In addition, the ontological commitment of such
modelling languages must be made explicit. For exam-
ple, to apply our method to CellML, our model ontology
must be extended with CellML specific types. Based on
such an extended ontology, the correspondence between
the structure of CellML models and the structure of the
biological phenomena that they represent must be estab-
lished. As a result, models in different modelling lan-
guages can be compared based on an ontological
characterization of the biological phenomena they
represent.

To achieve this goal rapidly, conversion methods
between modelling languages can be used, such as a
conversion between CellML and SBML [82]. The
CellML2SBML effort establishes a mapping from
CellML language elements to identifiers, units,
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compartments, species, parameters, reactions and rules
in SBML, and consequently, our SBML conversion
could be used to provide a representation of models
converted through this method. However, both for the
tasks of consistency verification and data retrieval, a
CellML-specific ontological analysis would be preferable
to the use of such a translation, since some features of
CellML may be lost through a conversion into another
modelling language.

A further extension of our method is to incorporate
the dynamic aspects of modelling. Models, according to
our analysis, represent static entities in which only the
capabilities for processes are present.

Simulations of models, on the other hand, represent
processes in which the entities represented by the model
components participate. For this purpose, a simulator
can trigger the functions of model entities that represent
physical objects, and, as future work, the complex rela-
tions between biosimulation models, the simulations
and the structures and processes that both represent
can be made explicit. For this purpose, our method
could be extended to accommodate the Minimum Infor-
mation About a Simulation Experiment (MIASE) [83]
standard and could apply a similar approach as we
demonstrated here with SBML to the SED-ML language
[84]. The extension of our method to incorporate biosi-
mulations and their results is subject to future research.

Conclusions

We have demonstrated how to formalize the biological
meaning of models in systems biology. We used this for-
malization to both validate and verify the biological con-
sistency of models, as well as to demonstrate semantic
retrieval of biosimulation models based on the structure
of the biological phenomena they represent. Together,
these capabilities have the potential to improve access
and understanding of models, and ultimately to inte-
grate biosimulation knowledge across domains and
levels of granularity.

For large-scale analyses and applications, we demon-
strate that a reduction into a tractable fragment of
OWL (OWL EL) is required so that inferences can be
performed efficiently. Our method is applicable to any
kind of information that can be represented using
SBML and annotated with biomedical entities using the
BioModels.net biology qualifiers. We have applied our
method to the BioModels Database as well as to Yeast-
Net, a consensus metabolic network for yeast [85], and
make the resulting OWL ontologies as well as the
SBML Harvester software we created freely available on
our website.

While ontologies in biomedicine have traditionally
been limited to single domains [35], recent achieve-
ments contributed to making these ontologies
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interoperable by characterizing their relations [74,86],
specifying the semantics of ontology representation
languages used for biomedical ontologies [87,88] and
incorporating axioms that link the classes of one ontol-
ogy to classes in other ontologies [37,40,89]. The links
between the classes of multiple ontologies provide rela-
tions that facilitate data integration across domains,
levels of granularity and species. Similar dimensions of
data integration are faced by systems biology. There-
fore, an integration of biomedical ontologies and sys-
tems biology models can provide a formal
representation framework based on which the data
relevant to the study of biological systems can be inte-
grated across domains, granularity and species, and
made available to scientific analyses of biological
systems.

Methods

Formal ontology, ontological commitment and the
axiomatic deductive method

An ontology is the specification of a conceptualization
of a domain and is used to make the meaning of
terms in a vocabulary explicit [15]. A conceptualiza-
tion is a system of categories accounting for a particu-
lar view on the world [15]. The relation between a
vocabulary and a conceptualization is the ontological
commitment of a language: the ontological commit-
ment assigns a category from the conceptualization to
each term in a vocabulary. Therefore, the ontological
commitment of a language specifies the meaning of
terms in a vocabulary, i.e., it determines sow a term
refers to the world and what kind of phenomenon it
represents.

A specification of a conceptualization in a formal lan-
guage follows the axiomatic-deductive method [63,90].
A term t in a vocabulary can be defined through an
explicit definition : a definition of ¢ is a statement in
which ¢ does not appear and which can be substituted
for every occurrence of ¢ in other statements. Terms
that occur in #’s definition must again be defined based
on other terms. Eventually, a set of primitive terms
remains which are not defined further. Instead, the pri-
mitive terms are characterized through a set of sen-
tences which are assumed to be true in the investigated
domain, and these sentences constitute the axioms of
the ontology. Ideally, the axioms are chosen in such a
way that, through the use of deductive inference, all sen-
tences that are true in the investigated domain can be
inferred from the axioms [90].

SBML conversion
In the conversion method applied by the SBML Har-
vester, every element E of the SBML language represents
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a class Rep(E) and we assert that E SubClassOf :
represents some Rep (E). We use the following
rules to restrict Rep(E) further:

+ If a model M is annotated (using the BioModels.
net biology qualifiers is, isVersionOf or has-
Version) with the physical object classes Oy,..., O,
we assert: Rep (M) SubClassOf: has-part
someO; and ... and has-part someO,,.
+ If a model M is annotated (using the BioModels.
net biology qualifiers is, isVersionOf or has-
Version) with the function classes Fj,..., F,, we
assert: Rep (M) SubClassOf: has-part some
(has-function somefF;) and ... and has-
part some (has-function someF,).
« If a model M is annotated (using the BioModels.
net biology qualifiers is, isVersionOf or has-
Version) with the process classes Py, ..., P, we
assert: Rep (M) SubClassOf: has-part some
(has-function some (realized-by onlyP;))
and ... and has-part some (has-function
some (realized-by onlyP,)).
« If a compartment C in a model M is annotated
(using the BioModels.net biology qualifiers is,
isVersionOf or hasVersion) with the physical
object classes Oy, ..., O,, we assert: Rep (C) Sub-
ClassOf:0; and andO, and part-of
some Rep (M).
« If a species S in a compartment C is annotated
(using the BioModels.net biology qualifiers is,
isVersionOf or hasVersion) with the physical
object classes Oy, ..., O,, we assert: Rep (S) Sub-
ClassOf:0; and andO, and part-of
some Rep (C).
- If S has an initial concentration, we further cre-
ate the restriction: Rep (S) SubClassOf:
has-quality some PATO:0000033, where
PATO:0000033 is the quality labelled
Concentration.
- If S has an initial charge set, we create the
restriction: Rep (S) SubClassOf: has-
quality some PAT0:0002193, where
PATO:0002193 is the quality labelled Charge.
- If S has an initial amount set, we create the
restriction: Rep (S) SubClassOf: has-
quality some PATO:0000125, where
PATO:0002193 is the quality labelled Mass.
« If a reaction R in a model M is annotated (using
the BioModels.net biology qualifiers is, isVer-
sionOf or hasVersion) with the function classes
Fy, .., F,, we assert: Rep (R) SubClassOf: has-
function someF; and ... and has-function
someF, and part-of some Rep (M).
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« If a reaction R in a model M is annotated (using
the BioModels.net biology qualifiers is, isVer-
sionOf or hasVersion) with the process classes
Py,..., P, we assert: Rep (R) SubClassOf: has-
function some (realized-by onlyP;) and
. and has-function some (realized-by
onlyP,) and part-of some Rep (M).
« If a model entity E is annotated (using the BioMo-
dels.net biology qualifier isPartOf) with an entity
E, we assert: E SubClassOf: part-of some Rep
(E), where Rep(E) is the class that E would repre-
sent if it was annotated with the biology qualifier
isVersionOf.
« If a model entity E is annotated (using the BioMo-
dels.net biology qualifier hasPart) with an entity E,
we assert: E SubClassOf: has-part some Rep
(E), where Rep(E) is the class that E would repre-
sent if it was annotated with the biology qualifier
isVersionOf.

Ontology, reasoning and model processing infrastructure
To perform the formalization of models, we used the
Gene Ontology, the ChEBI Ontology, the Celltype
Ontology and the PATO Ontology, all of which are
freely available from http://obofoundry.org. Our software
is implemented in Groovy and relies on the Manchester
OWL API [91], the Pellet OWL reasoner [41], the Jena
RDF library [92] and the libSBML [8].
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