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Environmental versatility promotes modularity in
genome-scale metabolic networks
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Abstract

Background: The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular
organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily
combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-
product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks
that need to sustain life in one or more chemical environments. For such networks, we define a network module
as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This
definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links
between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of
an organism’s biomass compounds from nutrients in this environment. An organism’s metabolism is highly
versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the
modularity of metabolic networks.

Results: Using recently developed techniques to randomly sample large numbers of viable metabolic networks
from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that
differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules
and more reactions that are organized into modules. Most or all reactions in a module are associated with the
same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process
nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular
than even our most versatile networks.

Conclusions: Our work shows that modularity in metabolic networks can be a by-product of functional
constraints, e.g., the need to sustain life in multiple environments. This organizational principle is insensitive to the
environments we consider and to the number of reactions in a metabolic network. Because we observe this
principle not just in one or few biological networks, but in large random samples of networks, we propose that it
may be a generic principle of metabolic network organization.

Background
The architectures of most multi-cellular organisms are
strikingly modular. On the one hand, such modularity
can be spatial. Organisms are partitioned into organs
and tissues whose cells have specialized functions [1,2],
and where cells of similar types are in close proximity.
Such spatial modularity also exists within cells.

Examples include organelles, spatial modules that allow
specialized tasks to be performed in localized regions of
a cell. Spatial modularity can be thought of as functional
specialization according to spatial localization.
On the other hand, modularity can be topological, as

research of the last ten years has shown. Such modular-
ity is evident in biological networks such as protein-pro-
tein interaction networks [3,4], transcriptional regulatory
networks [5], or metabolic networks [6-10]. In these sys-
tems, the networks - viewed as graphs - contain mod-
ules that are subsets of nodes strongly connected to
each other but weakly connected to the remaining net-
work. This kind of modularity does not involve explicit
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spatial location but nevertheless relies on a notion of
proximity (of nodes in a network). If nodes within a
module tend to be involved in the same biological or
biochemical function, then both spatial and topological
modularity point to a general architectural principle:
The parts of an organism that perform specific tasks or
functions are grouped into modules that can function
semi-autonomously.
The prevalence of modularity (both spatial and topo-

logical) in living systems might have several ultimate
evolutionary origins (see Ref. [11] for a recent review).
One long-standing idea is that modularity facilitates
adaptation, in particular by enhancing the frequency at
which new and useful traits appear, and by increasing
their heritability. Indeed, modules that are semi-autono-
mous entities can be easily modified, added, replaced, or
rearranged in a system through a process that has been
called evolutionary tinkering [12-14]. In this view, mod-
ularity would be favored by natural selection because it
modifies the rate of adaptation [15-17]. This scenario
predicts that directional selection will bring forth organ-
isms and networks that are highly modular; it can be
particularly relevant for the evolution of complex traits
[17,18]. A specific realization of this scenario arises in
models of genetic network evolution when the environ-
ment is fluctuating and structured; modularity can then
arise as a result of selection for a high rate of adaptation
in changing environments [19,20]. But modularity in
this scenario need not even require environmental
change. In particular, it can emerge from innovations
that allow adaptation to new ecological niches, as sug-
gested by studies of metabolism [9,10], or from innova-
tions that increase fitness, as suggested from gene
network studies [21].
In other scenarios for the origin of modularity, natural

selection on the rate of adaptation does not shape mod-
ularity; instead modular architectures follow from devel-
opmental constraints, or from other phenomena related
to epistasis and pleiotropy [11]. In such scenarios, mod-
ularity can be the mere consequence of selection on
other traits, but researchers do not agree on how gen-
eral this scenario could be [22].
In the present work we focus on metabolism, and

show that modularity in genome-scale metabolic net-
works may be a by-product of phenotypic constraints.
We will show that this scenario is likely to be very gen-
eral in metabolism for traits related to an organism’s
ability to live in different environments. We refer to this
ability as an organism’s metabolic versatility, and explain
it further below. Specifically, we view metabolism as a
complex chemical reaction network inside an organism
and ask this question: Among all possible metabolic
reaction networks with high versatility, do most have
modular architectures?

In contrast to many other networks [23,24], metabolic
networks do not just have a static graph structure, but a
function that involves the flow of molecules through
them. This function can be used to define modules in a
network based on fully coupled sets of reactions, as
explained in the Methods and Results sections [25-29].
We will measure a network’s modularity by several
indices based on these modules, and relate this modu-
larity to versatility, a metabolism’s ability to sustain life
in different environments. Some organisms are meta-
bolic specialists and can live in few environments, others
are generalists that can thrive in many different environ-
ments. General principles of how a metabolic network
must change as an organism’s versatility varies remain
elusive. One might try to find such principles by study-
ing a broad panel of living organisms that differ in ver-
satility. However, any association between versatility and
some other observable quantity, such as modularity,
would leave open whether the association between the
two is driven by evolutionary forces that act not on ver-
satility but on some other, unknown network property.
To avoid this difficulty, we can take advantage of our

ability to create random samples of metabolic genotypes
with specific properties, including versatility. (More pre-
cisely, the genotypes we consider are discretized binary
metabolic genotypes, representations of genotypes that
are suitably simplified for our purpose, as explained in
Methods.) This approach [30] allows us to examine the
consequences of versatility for network modularity, in
the absence of any other influences. We shall find that
the ability to thrive in increasing numbers of environ-
ments is strongly associated with greater modularity of
metabolic networks. Our observations support the idea
that elementary properties of metabolic networks, such
as their ability to sustain life in multiple environments,
can contribute to shaping metabolic network structure
and in particular modularity, without the need to con-
sider evolutionary dynamics or selection on a rate of
adaptation.

Modeling framework
For our study, we use genome-scale metabolic network
modeling. The set of chemical reactions that can take
place in an organism and their associated metabolites
define the organism’s metabolic network. Each reaction
is typically catalyzed by an enzyme that allows the trans-
formation of substrate molecules into product mole-
cules. With the advent of genome-scale metabolic
network modeling [31-34], it has become possible to
compute which target products can be synthesized by a
given set of enzymes, assuming that the network is in a
metabolic steady state, and that specific nutrients are
available to the network from the environment. The
relevant computational method is based on balancing
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metabolic flux - the rate at which a reaction converts
substrates into products - for all reactions, and is thus
called flux balance analysis (FBA) [32,35]. Its predictions
are usually in good agreement with experimental data
[36-38], except where enzymes are mis-regulated, such
that a network cannot attain optimal metabolic fluxes
through all its reactions. (Such mis-regulation can be
sometimes eliminated during laboratory evolution
experiments [37,39], if growth rate maximization is the
sole objective of the experiment.)
An organism’s set of enzyme coding genes, identified

here with a list of reactions, can be viewed as a discre-
tized binary metabolic genotype; for brevity we refer to
it from here on as the organism’s genotype or metabolic
genotype. Specifically, given a total universe of N possi-
ble reactions, any genotype can be represented by a
string of N bits, G = (b1, b2, ..., bN) as illustrated in
Additional File 1 Figure S1a. If enzyme i is encoded in
the organism’s genome, then bi = 1, while bi = 0 other-
wise. In this framework, the space of all metabolic geno-
types contains 2N elements. Following previous work
[30,40], we here take the universe of reactions to
encompass all known enzyme-catalyzed chemical reac-
tions, as represented in publicly available databases
[41,42]. This set of reactions is most likely incomplete,
but nevertheless sufficiently comprehensive to produce a
vast space of metabolic genotypes, where each genotype
contains a subset of these reactions.
If an organism can grow in a specific chemical envir-

onment (defined through the nutrients it contains), its
metabolic network is able to produce all of its biomass
precursors (see Methods); we then call the organism
(and by extension its metabolic network) viable. This
leads us to define an organism’s phenotype via its ability
to synthesize biomass in a number of given chemical
environments. Note that the mapping from genotype to
phenotype in our approach is completely determined by
the FBA framework. Previous research has shown that
this map is highly degenerate, meaning that a huge
number of genotypes will produce the same phenotype;
indeed, many reactions in a metabolic network are typi-
cally non-essential and can be replaced by other reac-
tions. Furthermore, genotypes of identical phenotype are
such that small genotypic changes (a reaction deletion,
addition, or exchange) connect these genotypes into a
vast graph; we refer to this graph as a genotype network.
A consequence of this connectivity property is that gra-
dual evolution of genotypes is possible, while leaving the
phenotype unchanged [30,40]. For this reason, genotype
networks can facilitate evolutionary changes and adapta-
tion of genotypes [43]. Such properties seem to be gen-
eric properties of well-studied genotype to phenotype
maps, and have been found in many systems. These
include RNA and proteins, where the genotype is the

sequence and the phenotype is the secondary or tertiary
structure [44-46], as well as gene regulatory networks
whose genotype specifies a pattern of genetic interac-
tions and whose phenotype corresponds to a gene
expression pattern [47].
To characterize metabolic networks of a given pheno-

type, we cannot examine all genotypes because of their
astronomical number. Instead, we use a Markov Chain
Monte Carlo (MCMC) [48] approach to sample a space
of genotypes or subsets thereof. This approach is based
on performing random walks within that subspace, as
illustrated in Additional File 1 Figure S1c. At each step
of such a random walk, a small change is applied to the
current genotype and the phenotype of the changed
genotype is computed; if the phenotype fulfills a pre-
specified criterion, the current genotype is updated; if
not, the change is rejected, and the current genotype is
kept. With appropriate precautions [30] this procedure
will create uniform samples of the accessible space of
genotypes with a desired phenotype.

Results
Fully Coupled Sets of reactions are proxies of pathways
The analysis of modularity in large graphs or networks
is a mature field. Not surprisingly, multiple different
measures of modularity have been developed [8,49-54].
Identifying all modules of a large network can be com-
putationally intractable, that is, NP difficult [55,56]. For-
tunately, metabolic networks are special, because their
analysis can go beyond graph-based representations.
The reason is that metabolic networks synthesize bio-
mass, and this function of metabolic networks can be
quantified by studying the flow or flux of matter
through each reaction in a network. Doing so permits
an analysis of modularity that is based on network func-
tion, not just topology. Here we take advantage of the
notion of coupling between reaction fluxes to identify
sets of reactions that form a metabolic module. Such
sets have been referred to as reaction/enzyme subsets or
correlated reaction sets or Fully Coupled Sets [25-29].
Hereafter we will use the term Fully Coupled Set (FCS)
only. These sets define metabolic network modules that
are both biochemically sensible [28,29,57,58] and com-
putationally tractable [28]. By definition, two reactions
are in the same FCS if the ratio of their fluxes is fixed
when considering all possible steady-state flux distribu-
tions through the metabolic network. Determining all
FCSs of a large metabolic network can be done effi-
ciently using linear optimization (see Methods). We
note that the different FCSs in a metabolic network are
disjoint, and that not all of a network’s reactions need
to belong to an FCS (see Methods).
The simplest possible FCS involves reactions in a lin-

ear biochemical pathway, arguably the most intuitive
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form of a functional module in biochemistry. However
pathways with branches and cycles can also form FCSs
[28]. For illustration, Figure 1 represents the largest FCS
containing a cycle that arises in the E. coli metabolic
network; it includes reactions that are involved in cell
envelope biosynthesis.
We first asked how modules, as defined by FCSs,

relate to conventional biochemical pathways, the classi-
cal functional modules of metabolism. To this end, we
mapped reactions in many different FCSs onto biochem-
ical pathways, as defined by standardized annotations
[41,59]. We relied on annotations in the Kyoto Encyclo-
pedia of Genes and Genomes database (KEGG) [41], a
comprehensive metabolic database that annotates bio-
chemical reactions as belonging to a list of pathways.

For the metabolic network of E. coli, we find that reac-
tions in the same FCS typically belong to a common
pathway. To quantify whether this property was statisti-
cally significant, we implemented the following test.
For each FCS, we identified the pathway annotation

for all of its reactions. Because each reaction can be
annotated as belonging to multiple pathways, we identi-
fied for each FCS the pathway annotation that is shared
by most of its reactions. We defined the quantity Q as
the fraction of reactions that are annotated as belonging
to that pathway, and computed Q for each FCS in the
metabolic network of E. coli. We observed that in most
FCSs (50 percent, corresponding to 50 of 100 FCSs in E.
coli) all reactions belonged to the same pathway, and
nearly 75 percent of FCSs had more than 75 percent of
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Figure 1 Example of a FCS in the E. coli metabolic network. We display a FCS of 12 reactions in the E. coli metabolic network that is
branched and contains a cycle. In this figure, the (hyper) edges represent reactions involving metabolites. Green edges represent irreversible
reactions and red edges represent reversible reactions. To reduce clutter, the ubiquitous high degree metabolites such as ATP, NADH, etc. have
been omitted from this figure. Abbreviations of metabolite names are as follows: 26dap-M = meso-2,6-Diaminoheptanedioate; ala-D = D-Alanine;
ala-L = L-Alanine; glu-D = D-Glutamate; glu-L = L-Glutamate; peptido_EC = Peptidoglycan subunit; uaagmda = Undecaprenyl-diphospho-N-
acetylmuramoyl-(N-acetylglucosamine)-L-ala-D-glu-meso-2,6-diaminopimeloyl-D-ala-D-ala; uaccg = UDP-N-acetyl-3-O-(1-carboxyvinyl)-D-
glucosamine; uacgam = UDP-N-acetyl-D-glucosamine; uagmda = Undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-
diaminopimeloyl-D-alanyl-D-alanine; uama = UDP-N-acetylmuramoyl-L-alanine; uamag = UDP-N-acetylmuramoyl-L-alanyl-D-glutamate; uamr =
UDP-N-acetylmuramate; udcpdp = Undecaprenyl diphosphate; udcpp = Undecaprenyl phosphate; ugmd = UDP-N-acetylmuramoyl-L-alanyl-D-
gamma-glutamyl-meso-2,6-diaminopimelate; ugmda = UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-alanine.
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their reactions belonging in the same pathway. This
strong association of reactions in an FCS with one path-
way is not expected by chance alone, as a randomization
test shows (P < 0.001). Thus, most of the FCSs in E. coli
can be viewed as biochemical pathways or parts thereof.
The same analysis can be applied to random samples

of metabolic networks with specific properties, as gener-
ated by our MCMC sampling procedure (see Methods).
Specifically, we first identified FCSs from 1000 in silico
metabolic genotypes viable in all of the 89 carbon
source environments we consider (see Methods). In this
analysis, we observed that in most FCSs (74 percent,
corresponding to 45,893 of 62,148 FCSs examined) all
reactions belonged to the same pathway, and nearly 80
percent of FCSs had more than 80 percent of their reac-
tions in the same pathway (see Additional File 1 Figure
S2). Just like E. coli, the strong association is not
expected by chance alone, as a randomization test
shows (P < 0.001; see Methods). Thus, both for E. coli
and for our random samples, most FCSs can be viewed
as biochemical pathways or as parts thereof. To illus-
trate such FCSs, Additional File 1 Figure S3 shows the
most frequent FCS comprising five or more reactions
that we found in our sampling. This FCS occurred in
898 of the 1000 metabolic genotypes. All its reactions
belong to histidine metabolism (Q = 1).

Both measures of modularity M and s increase with
versatility
We next asked quantitatively how network modularity is
affected by environmental versatility. To answer this
question, we defined two indices of network modularity,
which we call M and s. The first index is the number M
of reactions in a network that belong to FCSs. Then we
calculate the average <M>for a sample of networks gen-
erated by our MCMC procedure, where each network in
the sample needs to be viable in a given set Venv of che-
mical environments (see Methods). We consider Venv as
an index of environmental versatility for these metabolic
networks. In our analysis, we study up to 89 minimal
chemical environments that differ only in the sole car-
bon source they contain (see Methods and Additional
File 2 Table S1). In other words, Venv indicates the num-
ber of sole carbon sources from which these networks
can synthesize all essential biomass precursors. To see
how our observations depended on the sets of carbon
sources used, we investigated different choices for these
sets, where sets of fewer carbon sources were nested
within sets of more carbon sources (see Methods for
further details).
In Figure 2a we show how <M> depends on versatility

Venv, both on average (yellow dots), and for multiple dif-
ferent nested sets of carbon sources (symbols with dif-
ferent colors and shapes). The analysis is based on

metabolic networks with the same number of reactions
as E. coli [42]. The data show that greater versatility
leads to higher values of the modularity index; this
trend is clear when considering the average over all
choices of carbon sources, and also when considering
the different nested sets.
As a network’s versatility rises, does an increase in M

- the number of reactions in FCSs - occur through an
increase in the size of the FCSs, or through an increase
in the number of FCSs, while their size remains
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Figure 2 A higher modularity index M and a greater number
of modules s are by-products of increasing environmental
versatility. The Environmental Versatility Index (Venv, horizontal axis
in both (a) and (b)) denotes the number of minimal environments
in which a genotype is forced to be viable. The modularity index M
(vertical axis in (a)) for a genotype gives the number of reactions
contained in the FCSs of that genotype. The number of FCSs
(modules) in a metabolic network genotype is denoted by s
(vertical axis in (b)). The figure shows that with increasing Venv, both
M and the number of modules s in a genotype increase. The data
shown here are based on MCMC sampled genotypes with n = 831
reactions (as in the in silico E. coli metabolic model), and 10
different choices for nested sets of environments when requiring
viability on more and more environments. Each choice of nested
set is displayed with a different color and symbol in (a) and (b).
Each of the 10 nested sets, as well as their average (line shown for
visual guidance), show a clear rise in the average of M (panel a) and
the average of s (panel b) as one increases Venv.
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constant? To address this question, we next studied the
number of FCSs, which we denote by s, our second
index of modularity. We applied the procedures we
described earlier to the same genotypes as before, aver-
aging now the number of modules (FCSs) rather than
the number of reactions in these modules.
Figure 2b shows the average number of modules,

which we denote as <s>, for the same 1000 metabolic
genotypes, the same choices of Venv, and the same
nested sets of environments as above. The figure shows
that greater versatility leads to higher values of this
modularity index. This holds for the averages over dif-
ferent nested sets (yellow dots), and also without aver-
aging, i.e., for different nested sets of carbon sources
(symbols of different shapes and colors). Both <M> and
<s> show a monotonic increase with Venv but with pos-
sible deviations from linearity.
The results of Figure 2 were obtained from networks

whose number n of reactions equaled that of the E. coli
metabolic network, i.e., n = 831 [42]. Additional File 1
Figures S4 and S5 show that the patterns we see are not
sensitive to the number of reactions in a network. Speci-
fically, Additional File 1 Figure S4 shows that the aver-
age number of reactions in FCSs, <M>, increases with
versatility Venv also for networks with n = 500 (Figure
S4a) and n = 700 (Figure S4b) reactions. The sole differ-
ence to the data of Figure 2a is that the increase of
<M>is beginning to level off as Venv reaches the largest
values investigated here, in particular for n = 500. Addi-
tional File 1 Figure S5 shows that the average number
of modules, <s>, also increases with versatility at n =
500 (Figure S5a) and n = 700 (Figure S5b) reactions.
However, in contrast to the trend for <M> in Additional
File 1 Figure S4, the increase in <s> does not slow down
for the largest values of Venv we have examined.

Modular architecture of the E. coli metabolic network
So far we have shown averages of our modularity mea-
sures M and s based on samples of random networks of
a given versatility. In such a sample, modularity has a
distribution, where some networks are more modular,
and others less so. We can use this distribution to ask
whether the modularity observed in the metabolic net-
work of an organism such as E. coli is atypically high or
low. In other words, the distribution of modularity aris-
ing in our samples of in silico metabolic networks can
provide a null hypothesis to evaluate whether a biologi-
cal network shows unusual modularity.
Figure 3a shows the distribution of the total number

M of reactions in modules, and Figure 3b shows the dis-
tribution of the number s of modules (FCSs) in a sample
of 1000 random networks with n = 831 reactions (the
same as E.coli [42]), where each network is able to sus-
tain growth on the 89 different sole carbon sources as

given in Ref. [29]. This phenotype constitutes the in
silico E. coli metabolic phenotype we use. The figure
also shows the values of M and s for the metabolic net-
work of E. coli. The data from the network sample
allows us to test the null hypothesis that M or s for E.
coli could have been drawn from the sample. We find
that M is atypically large, being in the top 3 percentile
of our MCMC sample. This allows us to reject the null
hypothesis at a P-value of P = 0.028. Based on this ana-
lysis, we conclude that the metabolic network of E. coli
is more modular than expected.
The architecture of the E. coli metabolic network has

higher modularity than anticipated, but the large value
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Figure 3 Distribution of M and of the number of modules s for
genotypes of phenotype with Venv = 89 in an ensemble and
comparison with E. coli. The horizontal axis shows the modularity
index M in (a) and the number of modules s in (b). The vertical axis
shows the frequency of genotypes with the corresponding value of
M (panel a) and s (panel b) in a random sample of 1000 genotypes
(n = 831 reactions each, as in the in silico E. coli metabolic model)
that are viable in Venv = 89 different minimal environments. In both
panels, the histogram is displayed along with estimates of M and s
for E. coli. From (a), we can reject at a p-value of 0.028 the
hypothesis that the modularity index M of E. coli is drawn from this
same distribution. Thus, E. coli can be considered as atypically
modular.
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of M may come from either a greater number of FCSs
or from an increased size of the FCSs. Figure 3b shows
that the number of FCSs in E. coli is just slightly above
the position of the distribution’s peak in our ensemble,
well within one standard deviation. From this observa-
tion one can conclude that the atypically high modular-
ity of the E. coli network stems from the fact that E. coli
has larger modules (FCSs) but not much more modules
than typical networks allowing growth on 89 carbon
sources.

Reactions in versatility-dependent FCSs are just
downstream of nutrients
Thus far, we saw that metabolic networks sustaining
growth on more nutrients have higher modularity, that
is, more reactions contained in modules and more mod-
ules (FCSs) (see Figure 2). We surmised that these addi-
tional reactions would be closely linked to the
additional nutrients that metabolic networks must uti-
lize as their versatility increases. In other words, these
reactions and the modules they reside in presumably
are needed to metabolize these nutrients, and may thus
occur just downstream of them. To inquire whether
this is the case, we compared the FCSs of genotypes
with maximal versatility (Venv = 89) to FCSs of geno-
types with Venv = 1. Specifically, we first extracted the
reactions that belonged to FCSs and that occurred in
more than 50 percent of the genotypes in each of the
two samples. Call these sets of reactions R89 and R1, for
the ensembles with Venv = 89 and Venv = 1, respectively.
At a qualitative level, we find that about 90% of reac-
tions in R1 also belong to R89. We then examined the
reactions that belong to R89 but that are not part of R1,
and called this set of reactions R89\R1. Are the reactions
in R89\R1 immediately downstream of the nutrients?
The notion of downstream can be made quantitative
through the Scope algorithm [60,61]. A reaction of
scope distance one can use the nutrients as its only sub-
strates, a reaction of scope distance two can use pro-
ducts of reactions at scope distance at most one, and so
on. (See Methods for a more detailed explanation of
this scope distance.) We applied this algorithm to com-
pare the scope distances of reactions in R89\R1 to the
scope distances of all reactions in our universe of reac-
tions. Figure 4 shows a distribution of these distances
for both groups of reactions. It indicates that reactions
associated in R89\R1 generally have smaller scope dis-
tance than other reactions. A statistical test (see Meth-
ods) shows that this difference is significant with a p-
value of 10-5. In sum, reactions of modules involved in
increased versatility tend to be more closely down-
stream of nutrients, suggesting that they typically belong
to pathways metabolizing such nutrients. To illustrate
this property with concrete examples, we determined

which FCSs in R89\R1 involved any of the 24 reactions
occurring at scope distance 1 in Figure 4b. These FCSs
have various sizes that range from 2 to 4 reactions. In
Additional File 1 Figure S6 we show the three largest of
these FCSs, all of them with 4 reactions, together with
the pathways they belong to. These FCSs are linear
pathways containing reactions of scope distance 1, 2, 3
and 4; they metabolize the nutrients fucose, rhamnose
and 3-hydroxycinnamic acid.
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Figure 4 The increase in modularity with Venv can be
attributed to reactions that are close to nutrients. The sampled
genotypes with Venv = 89 typically have additional FCSs compared
to sampled genotypes with Venv = 1. The reactions in these
additional FCSs are not typical of the whole reaction network, and
instead cluster at small distances from the nutrients. (See Methods
for the determination of these distances using the Scope algorithm.)
The distribution of distances for these reactions in additional FCSs is
clearly concentrated at much smaller values than the distribution for
all possible reactions; a Kolmogorov-Smirnov (K-S) test yields a p-
value of 10-5, allowing us to reject the hypothesis that the two
distributions are the same. Furthermore, a two sample Welch t-test
gives a p-value of 8 × 10-8, allowing us to also reject the hypothesis
that the mean of the two distributions are the same. a) Distribution
of scope distances from the nutrients for all possible reactions. b)
Distribution of scope distances from the nutrients for those
reactions belonging to additional FCSs that differentiate the
sampled genotypes at Venv = 89 from those at Venv = 1.
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Discussion and conclusions
Our work took advantage of a new computational
method [30,40] that uses a combination of flux balance
analysis and Markov Chain Monte Carlo sampling to
create large and random samples of metabolic networks
with desired properties from the space of all possible
metabolic networks. The property we focused on was
environmental versatility, the number of chemical envir-
onments a metabolic network can sustain life in. We
studied how versatility relates to a network’s modularity.
For our purpose, we defined modularity as the total
number of reactions contained in fully coupled sets. We
found that more versatile networks are more modular
(they have more modules and more reactions contained
in modules) than less versatile networks. We emphasize
that this does not result from the fact that networks
with more reactions are more versatile, because our ana-
lysis uses networks with fixed number of reactions. The
reactions that form part of newly arising modules in
highly versatile networks tend to be close to reactions
that process nutrients. The advantage of using random
samples of metabolic networks with a specific property
for our analysis is that such samples have not been sub-
ject to any of the (usually unknown) selection pressures
that an organism’s metabolism is subject to, and that
they can form a useful reference point to ask whether
any one organism’s metabolic network has typical or
atypical properties. In such a comparison, we learned
that E. coli’s network is significantly more modular than
random networks of the same versatility, a feature aris-
ing mainly from the fact that it contains larger modules.
Modularity in metabolic networks has been studied by

several other authors [6-10]. Metabolic networks can be
represented as graphs, allowing one to study topological
(graph-based) measures of modularity; this approach has
been taken for metabolic and other systems, such as
protein interaction networks. Unfortunately, for any sen-
sible definition of modularity, graph-based module iden-
tification is typically computationally very expensive, so
in practice one resorts to heuristic algorithms to extract
modules [49,51,52]. Additionally, in graph-based repre-
sentations of metabolism, many metabolites have very
high degree (number of reactions they participate in).
This feature may prevent any clear modules from aris-
ing, although various heuristic tricks, such as removing
high degree metabolites [6-10] can be used to skirt this
problem. Problems like these can be avoided by using
functional measures of modularity. Commonly used
measures involve elementary flux mode or extreme
pathways [25-27], but they are ill-suited for genome-
scale modeling because of the complexity in computing
them. The measure of modularity we used here was
based on the reactions contained in fully coupled sets

(FCSs) [28]. We showed that most or all reactions in a
fully coupled set fall within a single metabolic pathway,
which underlines the biochemical relevance of our defi-
nition of modularity. Two further technical advantages
come with our definition of modularity based on FCSs:
(1) the approach involves no adjustable parameters; (2)
identification of FCSs is computationally efficient even
for genome-scale networks.
Intriguingly, the extent of modularity found in E. coli

is higher than in our in silico genomes. E. coli both has
more fully coupled sets and larger fully coupled sets
than expected for networks with the highest versatility
we consider. This high modularity may reflect the fact
that E. coli is even more versatile than the most versatile
networks in our samples, networks that are viable on 89
carbon sources. For example, it can also grow on
sources of sulfur or nitrogen that we did not consider.
The high computational cost of our analysis in multiple
environments currently prohibits us from extending our
study to a larger spectrum of environments. Conversely,
the high modularity of E. coli might also be caused by
other factors, for example, a long record of past evolu-
tionary adaptations that may favor modularity through
the high rates of adaptation it may allow and/or its high
heritability, e.g. through horizontal gene transfer [62,63].
Indeed it has been shown that FCSs and operons in E.
coli are positively associated [29,57,58]. Only future
work will be able to validate which of these causes is
more important in E.coli. Our network sampling
approach has the advantage that it provides a rational
expectation for how modular a network can be expected
to be based solely on phenotypic constraints. It thus
puts answering this question within reach.
Given the ubiquity of modularity in biological systems,

it is tempting to propose general principles that might
explain its appearance. By comparing natural with man-
made systems and following the original insights of
Jacob [12] and others [1-6,8-11], it seems very plausible
that modularity should emerge during adaptive evolu-
tionary trajectories because it can increase the rate of
adaptive change. This holds true in particular in artifi-
cial systems such as factories, companies and even
industries, where modularity allows for lower costs and
enhanced possibilities for innovation [64-66]. As long as
a lineage of organisms is experiencing adaptive evolu-
tionary change, modularity should remain ubiquitous,
whereas in long periods of stasis modularity may
become reduced. This perspective is appealing but other
factors may also influence modularity, which can be
seen by considering the modularity of eukaryotic cells.
The organization of cells into parts with specialized
tasks (organelles, ribosomes, etc.) suggests that cellular
tasks are best performed in specialized modules. One
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may thus conjecture that modularity has not only the
indirect benefit of accelerating the rate of evolutionary
change, but also direct benefits such as the possibility to
perform certain tasks better, and thereby allow organ-
isms to be better adapted to the complex world around
them.
The question whether biological modularity may have

a direct benefit can be addressed in systems where a
realistically complex yet computationally tractable geno-
type to phenotype relationship exists. Genome-scale
metabolic network models are such systems [32].
Answering the question amounts to finding out whether
the best performing genotypes (according to some cri-
terion) have a modular architecture. The criterion we
used is based on the complex trait we called environ-
mental versatility, the number of environments a meta-
bolic network can sustain life in. The answer we found
is clear: Requiring viability in additional environments
requires additional pathways or modules to metabolize
more nutrients and thus versatility enhances modularity.
Our analysis shows that modularity can be a by-pro-

duct of versatility, at least in the framework of our
metabolic modeling, because our system has no selective
pressure on modularity per-se; highly versatile networks
that are also highly modular are simply more numerous
than the less modular ones. In the language of con-
straint satisfaction problems [67], constraints are easier
to satisfy using modular architectures, so highly modular
solutions will be more numerous than the less modular
ones. An analogy with the engineering of network archi-
tectures may be appropriate here. Consider the circuit
layout problem where a circuit’s electronic components
and wires must be placed on a chip. If no constraints
are imposed on the circuit’s speed, many different lay-
outs are possible. But, if one focuses on the fastest cir-
cuits, one will find that they have shorter wires and are
more modular, so modularity is a by-product of circuit
speed. In this example, functional constraints change
the architectural characteristics in the space of possible
solutions. Such a property may be expected to arise in
both artificial and natural systems.
Since versatility corresponds to viability in increasing

numbers of environments, it can be considered as a
trait associated with fitness itself. Our work suggests
that modularity can emerge as a consequence of
increasing functional constraints. Because our work is
not just based on one or few metabolic networks from
well-studied organism, but on large samples of random
viable networks, we also suggest that this scenario may
be generally important. Recent observations by Parter
et al. [9] and Kreimer et al. [10] where generalists pro-
karyotes living in many different environments are
more modular than specialists are fully consistent with
this conclusion.

Methods
Flux Balance Analysis (FBA)
Flux balance analysis (FBA) [32,35] is a computational
modeling approach widely used to analyze genome-scale
metabolic networks. FBA uses structural information
contained in the stoichiometric coefficients of each reac-
tion in a metabolic network to predict the possible
steady state fluxes of all reactions and the maximum
biomass yield of an organism. FBA does not require
knowledge of metabolite concentrations or detailed
information of enzyme kinetics. The stoichiometric coef-
ficients of all reactions in a network are encapsulated in
a matrix S of dimensions m x n, where m is the number
of metabolites and n is the number of reactions. Note
that some of these reactions correspond to transport
processes, i.e., they import or export metabolites. In a
metabolic steady state, such as might be attained in a
growing cell population with adequate nutrient supply,
the metabolites achieve a dynamic mass balance wherein
the vector v of metabolic fluxes through the reactions
satisfies the equation

Sv = 0 (1)

so as to satisfy mass conservation. Eq. 1 represents
stoichiometric and mass balance constraints on the
metabolic network. For genome-scale metabolic net-
works, Eq. 1 leads to an under-determined system of
linear equations in the metabolic fluxes, leading to a
large solution space of allowable fluxes. The space of
allowable solutions can be reduced by incorporating
thermodynamic constraints associated with irreversible
reactions, as well as flux capacity constraints which limit
the maximum flux through certain reactions. To obtain
a particular solution, linear programming (LP) is used to
find a set of flux values - a point in the solution space -
that maximizes a biologically relevant linear objective
function Z. The LP formulation of the FBA problem can
be written as:

max Z = max{cTv|Sv = 0, a ≤ v ≤ b} (2)

where the vector c corresponds to the coefficients of
the objective function Z, and vectors a and b contain
the lower and upper limits of different metabolic fluxes
in v. The objective function Z is often chosen to be the
so-called growth flux. This is the flux through an arti-
factual reaction that reflects the synthesis of biomass,
which requires biosynthesis of biomass precursor mole-
cules, such as amino acids and nucleotides, in specific
proportions. The stoichiometry of this reaction is based
on the experimentally measured biomass composition of
an organism. The predictions from the FBA framework
and related approaches are often in good agreement
with experimental results [36-38,68].
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Reaction database
In this work, we have used a hybrid database compiled
by Rodrigues and Wagner [40] containing 4816 metabo-
lites and 5870 reactions. This hybrid database was
obtained by merging the reactions in the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) LIGAND [41]
with those in the E. coli metabolic model iJR904 [42],
followed by appropriate pruning to exclude generalized
polymerization reactions. Of the 5870 reactions, 2501
are reversible and 3369 are irreversible. Note that more
than 5500 reactions in the hybrid database are contained
in KEGG database and less than 300 reactions are speci-
fic to the E. coli metabolic model iJR904.
In addition to the 5870 metabolic reactions, the hybrid

database has transport reactions for 143 external meta-
bolites contained in the E. coli iJR904 model. These 143
external metabolites were assumed to be the set of pos-
sible imported and secreted metabolites. Further, the
hybrid database includes an objective function Z in the
form of a biomass reaction that reflects synthesis of the
E. coli biomass components, as defined in the iJR904
model.
Genome-scale metabolic networks typically contain

blocked reactions [28,69] which are dead-ends and
necessarily have zero flux for every examined chemical
environment under any steady-state condition. Such
blocked reactions cannot contribute to any steady-state
flux distribution and can be excluded from the hybrid
database. For the set of 143 external metabolites, we
found 2968 of the 5870 reactions in the hybrid database
to be blocked under all environmental conditions we
examined. We have excluded this set of 2968 blocked
reactions from the hybrid database of 5870 reactions to
arrive at a reduced reaction set of 1597 metabolites and
2902 reactions. We thus take this reduced set of N =
2902 reactions as the global reaction set.
The E. coli metabolic model iJR904 has 931 reactions

(which of course are contained in the hybrid database of
5870 reactions). Our global reaction set (having 2902
reactions) was derived from the hybrid database by
excluding blocked reactions; after this exclusion, the E.
coli metabolic model iJR904 is left with 831 reactions.
Here, we consider this set of 831 reactions to be the E.
coli metabolic genotype.

Viable genotypes
Any subset of n reactions taken from the global reaction
set is considered to specify a discretized binary meta-
bolic genotype. For simplicity, we shall refer to this as a
metabolic genotype or as a genotype. Specifically, a
metabolic genotype G can be represented by a bit string
of length N, i.e., G = (b1, b2, ..., bN), where N is the
number of reactions in the global reaction set (see Addi-
tional File 1 Figure S1a). Each position in the bit string

G corresponds to one reaction in the global reaction set,
with the reaction being either present (bi = 1) or absent
(bi = 0) in the genotype. We denote the set or space of
metabolic genotypes with a given number n of reactions
as Ω(n).
For any genotype, we can use FBA to determine

whether the corresponding metabolic network has the
ability to synthesize all biomass components in a given
chemical environment (medium). We consider a geno-
type to be viable in a given environment if and only if
the maximum biomass flux predicted by FBA for the
genotype is nonzero; otherwise we consider the geno-
type to be non-viable (see Additional File 1 Figure S1b).
In general, in silico metabolic studies take a metabolic
network’s fitness to be proportional to the maximum
biomass growth flux the network can attain in a given
environment. The metabolic property considered here is
simpler: we ask only whether a network can synthesize
all biomass components in a given environment, regard-
less of the synthesis rate. For all the work we report, we
use the E. coli biomass composition to determine the
viability of a genotype in a given chemical environment.

Chemical environments and phenotypes
For our purpose, the metabolic phenotype of a meta-
bolic network (genotype) is determined by the network’s
viability in a list of well-defined chemical environments
(media). We shall denote the subset of genotypes within
Ω(n) that have a specific phenotype - growth on a speci-
fic list of environments - as V(n). In this work, we use
only aerobic minimal environments containing one car-
bon source. Each environment also contains unlimited
amounts of the following inorganic metabolites: ammo-
nia, iron, potassium, protons, pyrophosphate, sodium,
sulfate, water and oxygen. Based on FBA applied to the
metabolic model iJR904, it was found earlier that E. coli
can support nonzero biomass growth on 89 different
aerobic minimal environments [29,57]. The environ-
ments we focus on here differ in these 89 carbon
sources, which are listed in Additional File 2 Table S1.

Environmental versatility index (Venv) and nested choices
of chemical environments
The Markov Chain Monte Carlo (MCMC) sampling
algorithm (see also below) can be used to explore the
set of genotypes having a given phenotype. In our case,
this phenotype is viability on a given set of minimal
environments; if this set consists of Venv environments,
we say that the genotype’s environmental versatility
index is Venv. Thus, the phenotype Venv = 1 refers to
genotypes viable in one specific environment, the phe-
notype Venv = 2 refers to genotypes viable in two given
environments, and so on. We have considered 89 mini-
mal environments whose sole carbon sources, their only
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distinguishing feature, are listed in Additional File 2
Table S1.
We have used MCMC to sample ensembles of

increasingly versatile metabolic networks, i.e., ensembles
whose networks have Venv = 1, 2, 5, 10, 20, 30, 40, 50,
70 and 89. The genotypes with Venv = 89 are the most
versatile among them as they are viable in all 89 mini-
mal environments. There are many ways of choosing 1,
2, or more specific environments out of 89 environ-
ments to sample genotypes having a phenotype with
Venv = 1, 2, through 89. The properties of sampled gen-
otypes in an ensemble with a given Venv will depend on
the choice of those Venv environments. The computa-
tions we carry out are computationally very expensive,
and they become more expensive with every additional
environment in which viability is determined. To limit
this expense, we pursued two strategies. First, we used
nested sets of environments to sample genotypes in
ensembles with different Venv, e.g., the set of 70 environ-
ments chosen for Venv = 70 is a subset of that for Venv =
89, and the set of 50 environments chosen for Venv = 50
is a subset of that used for Venv = 70, and so forth. Sec-
ond, we used only one subset of 70 environments within
Venv = 89 to sample an ensemble with Venv = 70, and
only one subset of 50 environments within the choice
for Venv = 70 for sampling an ensemble with Venv = 50.
For Venv below that, we did tackle the variability coming
from different environmental choices; specifically, for
Venv = 40, we used 10 different subsets of 40 environ-
ments within the choice for Venv = 50; thus we gener-
ated 10 different genotype ensembles, where each
genotype in each ensemble had Venv = 40. Each of these
10 different choices of 40 environments was then used
to create a single nested sequence for Venv = 30, 20, 10,
5, 2, and 1. This allowed us to have 10 different ensem-
bles to sample at each of these Venv and to follow for
each sequence of nested sets the consequences of modi-
fying Venv. (See Additional File 1 Figure S7 for a dia-
gram representing two such nested sets.) We computed
the average properties of the sampled genotypes as well
as their dispersion based on the 10 different samples for
each value of Venv.

MCMC sampling of viable genotypes
It was shown in previous work [30] for a single environ-
ment, corresponding to Venv = 1, that the size of the
subspace V(n) relative to Ω(n) is of the order of 10-22

for genotypes with n = 2000 reactions. This size
decreases even further if one requires viability in multi-
ple environments. Such tiny probabilities of finding a
desired phenotype in Ω(n) make it infeasible to sample
genotypes in V(n) by simply drawing random genotypes
in Ω(n) with the correct number n of reactions, followed
by determining the phenotype of each genotype. Thus,

we relied on the Markov Chain Monte Carlo (MCMC)
method described in Ref. [30] to uniformly sample gen-
otypes in V(n).
This MCMC method starts with a genotype in V(n)

and produces a sequence of genotypes, wherein the (k
+1)th genotype in the sequence is generated from the kth

genotype using a probabilistic transition rule. At each
transition step, one proposes a small modification to the
current genotype in the sequence; if the modified geno-
type has the correct phenotype, one accepts the modi-
fied genotype as the next genotype of the sequence;
otherwise the next genotype becomes identical to the
current genotype. The modification introduced at each
transition step is a reaction swap. It consists of removal
of one reaction from the current genotype, followed by
addition of new reaction from the global reaction set to
generate a modified genotype. Note that the reaction
swap preserves the number n of reactions in the geno-
type (see Additional File 1 Figure S1a). Thus, the
MCMC approach produces a walk in the subspace V(n),
as illustrated in Additional File 1 Figure S1c. Note that
in the limit of long walks, this approach samples uni-
formly the space of genotypes that are accessible from
the first genotype of the MCMC procedure and that
have a given phenotype.
In our simulations, starting from an initial genotype in

V(n), we have first carried out 105 attempted swaps to
erase the memory of the starting genotype. After this
initial phase, we continued the MCMC procedure to
sample genotypes in V(n). During this later phase, it is
not useful to keep all of the genotypes produced, as
many of them may be highly similar to one another. We
thus saved only every 1000th genotype generated in a
sequence of 106 steps. This procedure produces a ran-
dom ensemble of 1000 genotypes in V(n) [30]. We
sampled genotypes in V(n) for three different values of
the number of reactions n = 500, 700 and 831.
To start the MCMC sampling, a first genotype having

the correct phenotype is required. To this end, we first
determined those reactions in the E. coli metabolic net-
work that have nonzero flux in an optimal flux distribu-
tion with maximum biomass flux for each of the 89
minimal environments considered here. (Recall that E.
coli is viable on all of our 89 environments). The num-
ber of nonzero fluxes is ~300 in a typical optimal flux
distribution for each of the 89 environments. We gener-
ated a genotype with n reactions and phenotype Venv =
1 (i.e., growth on one specified environment) by starting
with the set of nonzero flux reactions for E. coli in that
environment, and then adding randomly other reactions
until we reached a metabolic genotype with exactly n
reactions. We generated a genotype with n reactions
and Venv = 2 (i.e., growth in two specific environments)
by starting with the union of the two sets of reactions
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that had nonzero flux when the E. coli metabolic net-
work synthesized biomass in the two different environ-
ments; then we added randomly other reactions until we
reached a metabolic genotype with exactly n reactions.
We generated starting genotypes with Venv = 5, 10, 20,
30, 40, 50, 70 and 89 analogously.

Fully coupled sets (FCSs) and measures of modularity
A reaction pair v1 and v2 are said to be fully coupled to
each other if a nonzero flux for v1 implies a proportion-
ate (nonzero) flux for v2 in any steady state and vice
versa [28]. A fully coupled set (FCS) in a metabolic net-
work is a maximal set of reactions that are mutually
fully coupled to each other (thus, there are no FCSs of
size 1). A simple argument shows that FCSs of a net-
work are non-overlapping entities. Indeed, if a reaction
were to belong to two FCSs, then all reactions in those
two sets would be fully coupled pairwise, resulting in
one larger FCS.
We denote the number of FCSs in a metabolic net-

work genotype by s. This is one index of modularity.
We also define the modularity index M for a genotype
as the number of reactions contained in the FCSs of
that genotype (M can vary from zero to the total num-
ber of reactions in the network). Burgard et al [28] have
proposed a linear programming (LP) based method to
determine whether two fluxes in a metabolic network
are fully coupled. The LP formulation of the coupling
problem can be written as:

Solve Rmax = max {v1|v2 = 1,S.v = 0, a≤ v ≤ b} (3)

Solve Rmin = min {v1|v2 = 1, S.v = 0, a≤ v ≤ b} (4)

If Rmax = Rmin then v1 and v2 are fully coupled. In the
above equations, S is the stoichiometric matrix, and vec-
tors a and b contain the lower and upper limits of dif-
ferent metabolic fluxes in v.
We have used the algorithm of Burgard et al. to deter-

mine all FCSs in our metabolic network genotypes. We
have computed the coupled reaction pairs under condi-
tions where all external metabolites were allowed to be
imported or secreted. Further, coupled reaction pairs
were computed without assuming a constant biomass
composition to avoid coupling a large set of fluxes to
the biomass reaction. Hence, all biomass components
were allowed to be synthesized independently of one
another, without constraining their stoichiometry in the
biomass.

Scope algorithm and distance of reactions from nutrient
metabolites
Ebenhöh and colleagues [60,61] have introduced the
concept of scope based on a network expansion

algorithm for the structural analysis of genome-scale
metabolic networks. Their approach calculates for a
given metabolic network/reaction database and prede-
fined external metabolites (referred to as seed metabo-
lites) the set of metabolites - the scope - which the
reaction network is in principle able to produce. In
other words, the scope describes the synthesizing capa-
city of a given set of seed metabolites given a list of
metabolic reactions.
The Scope algorithm iteratively updates a set A of

metabolites that a reaction system can synthesize. In the
algorithm this set A is initialized to the set of nutrient
metabolites. At each iteration i of the algorithm, one
takes the current set A(i) of producible metabolites and
expands it to set A(i+1) as follows. First one initializes,
A(i+1) to contain all metabolites in A(i). Then one con-
siders successively each reaction in the database and
adds that reaction’s products to A(i+1) if and only if all
of its substrates are in A(i). This procedure ends when
A(i) = A(i+1), that is when in a given iteration no new
molecules can be synthesized. We have used the Scope
algorithm to define a distance of a reaction in the global
reaction set from nutrient metabolites. Specifically, the
distance of a reaction from the nutrient metabolites in
the seed set is defined as the iteration number i of the
Scope algorithm when that particular reaction contri-
butes its products to A(i+1).
A limitation of the Scope algorithm in comparison to

constraint-based frameworks like FBA is its inability to
deal properly with the self-generating (autocatalytic) nat-
ure of certain cofactor metabolites (e.g., ATP, NADH) in
the network [70,71]. The scope of the nutrient metabo-
lites in the seed set is sensitive to the presence or
absence of such co-factors in the seed set. Following
Kun et al [71], we included in the seed set the autocata-
lytic metabolites listed in Additional File 2 Table S2 (in
addition to the nutrient metabolites in our minimal
environment) when computing the distance of reactions
with the Scope algorithm.
We have determined the distance from nutrient meta-

bolites for each reaction in the global reaction set for 89
different seed sets corresponding to the 89 aerobic mini-
mal environments. For each reaction, we have desig-
nated the minimum of the 89 distances obtained for the
89 different environments as the scope distance of that
reaction from the nutrient metabolites.

Statistical tests for the increase in modularity M with Venv
Since the modularity index M and the number s of FCSs
is larger for sampled genotypes with Venv = 89 than with
Venv = 1 (cf. Figure 2a), it is appropriate to identify reac-
tions contributing to additional FCSs in genotypes hav-
ing Venv = 89. To this end, we combined the lists of
FCSs for each of the 1000 sampled genotypes at Venv =
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89 (and n = 831 reactions) to create a merged list of
FCSs that occur in at least one such sampled genotype.
Since the FCSs are non-overlapping entities, multiple
copies of a FCS in the merged list signify the FCS’s pre-
sence in multiple sampled genotypes. We then deter-
mined the set of reactions that occurred in at least 500
FCSs in the merged list of FCSs for Venv = 89. We refer
to it as the consensus set R89 of FCS reactions for Venv =
89 and n = 831. In a similar way, we obtained the con-
sensus set R1 of FCS reactions for our sampled geno-
types with Venv = 1.
The consensus set R89 for Venv = 89 is larger than the

set R1 for Venv = 1, and the complement set R89\R1 con-
sisting of the reactions belonging to R89 but not R1 gives
the set of reactions that mostly account for the addi-
tional FCSs in Venv = 89. We then considered the scope
distances of reactions from nutrient metabolites for two
choices of reaction sets. The first set is this complement
set R89\R1, the second is the set of all reactions in the
global reaction set. (In Figure 4 we show the corre-
sponding distributions.) The scope distances for the
reactions in R89\R1 are clearly concentrated at much
smaller values than when considering all possible reac-
tions. A Kolmogorov-Smirnov (K-S) test allowed us to
reject the null hypothesis that the two distributions are
the same (P < 10-5). Further, a two sample Welch t-test
allowed us to reject the hypothesis that the means of
the two distributions are the same (P < 8.10-8).

Use of pathway classification of reactions to characterize
biochemical relevance of FCSs
We have classified reactions in our global reaction set
into different biochemical pathways using the pathway
information [72] for reactions in the KEGG database
[41], along with subsystem information [73] for the
remaining reactions in the E. coli metabolic model
iJR904 [42]. We have used this pathway classification as
follows to test whether the majority of reactions in a
given FCS belong to a common biochemical pathway.
For a given FCS, we define the quantity Q which is

the fraction of reactions sharing the dominant annota-
tion for that FCS. We computed Q for each FCS in the
merged list of FCSs from our 1000 sampled genotypes
with phenotype Venv = 89 and n = 831 (see the previous
section for merged lists of FCSs). We then considered
the cumulative distribution of Q for FCSs in the merged
list, namely, the probability that Q is at least as large as
a given value X. The cumulative distribution of Q for
FCSs in the merged list with Venv = 89 and n = 831 is
shown in Additional File 1 Figure S2. We also computed
the fraction h of FCSs in the merged list with Q ≥ h, a
quantity that is analogous to the h-index commonly
used to measure scientific productivity [74]. This h-
index has a value of h = 0.79, as can be seen from the

point of intersection of the cumulative distribution of Q
with the bisecting line in Additional File 1 Figure S2.
To test the significance of the h-index obtained from

the merged list of FCSs for sampled genotypes with Venv

= 89 and n = 831, we performed the following randomi-
zation test. Starting from the merged list of FCSs and
the pathway annotations of their reactions, we generated
1000 equivalent random lists by swapping the annota-
tions among reactions in different FCSs, while preser-
ving the frequency of each annotation in the merged
list. We swapped annotations as follows. We first
recorded the multiplicity of each distinct FCS within the
merged list. We then randomly picked two FCSs in the
merged list with the same multiplicity, and one random
reaction in each of the two FCSs, and then swapped the
annotations of these two reactions in the FCSs. We per-
formed at least 107 swaps starting from the merged list
before saving a random list, that is, a list of FCSs whose
reaction annotations had been randomized in this way.
None of the 1000 random lists we generated had an h-
index greater than 0.79 obtained for the merged list
with Venv = 89. On this basis, we can reject the hypoth-
esis that reaction annotations are not similar within
FCSs at a p-value of less than 0.001.

Additional material

Additional file 1: Figures S1 to S7. This file contains the following
additional figures: Figure S1 - MCMC sampling of genotypes with a given
phenotype; Figure S2 - a FCS predominantly consists of a reactions
belonging to one biochemical pathway; Figure S3 -Example of a
frequently arising FCS in sampled genotypes; Figure S4 - Environmental
versatility enhances the modularity index M regardless of the value of n;
Figure S5 -Environmental versatility enhances the number of modules s
regardless of the value of n; Figure S6 - Example of FCSs that account for
the increase in modularity with versatility; Figure S7 - Schematic diagram
describing nested sets of environments used to sample genotypes with
decreasing Venv.

Additional file 2: Tables S1 and S2. This file contains the following
additional tables: Table S1 - The list of 89 minimal environments; Table
S2 - The list of autocatalytic metabolites.
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