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Abstract

Background: We address the task of parameter estimation in models of the dynamics of biological systems based
on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have
many parameters, the measurements are imperfect due to noise, and the studied system can often be only
partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.
e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein
concentrations, from experimental measurements of these concentrations. The general parameter estimation task
and the specific instance considered here are challenging optimization problems, calling for the use of advanced
meta-heuristic optimization methods, such as evolutionary or swarm-based methods.

Results: We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-
stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-
search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their
performance on the considered representative task along a number of metrics, including the quality of
reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-
experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four
optimization methods under a range of observation scenarios, where data of different completeness and accuracy
of interpretation are given as input.

Conclusions: Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the
local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in
terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These results hold for both
real and artificial data, for all observability scenarios considered, and for all amounts of noise added to the artificial data.
In sum, the meta-heuristic methods considered are suitable for estimating the parameters in the ODE model of the
dynamics of endocytosis under a range of conditions: With the model and conditions being representative of
parameter estimation tasks in ODE models of biochemical systems, our results clearly highlight the promise of bio-
inspired meta-heuristic methods for parameter estimation in dynamic system models within system biology.

Background
Reconstructing the structure and behavior of biological
systems is of fundamental importance to the field of sys-
tem biology. In general, biological systems exhibit com-
plex nonlinear dynamic behavior, which is often
modeled using ordinary differential equations (ODEs). A

common approach to constructing an ODE model of an
observed biological system is to decompose the model-
ing process in two tasks [1,2]. The first task, referred to
as structure identification and often solved by a model-
ing expert, is to specify the model structure, i.e., the
functional form of the model ODEs. The second task of
determining appropriate values for the model constant
parameters, based on observations and measurements, is
referred to as parameter estimation.
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Due to the highly nonlinear dynamics and the limited
measurability of biological systems, the parameter esti-
mation task is challenging and computationally expen-
sive. Most parameter estimation tasks in system biology
are multi-modal, i.e., have many local optima that prohi-
bit the use of local search methods. Furthermore, the
models are often high-dimensional, making the para-
meter estimation task computationally complex. Finally,
the measurability of systems in cell and molecular biol-
ogy is highly limited. Many system variables are not
directly observable. For the few ones that can be mea-
sured, measured data are noisy and taken at a coarse
time resolution. All these constraints, combined with
the complex dynamic of the considered models, can
lead to identifiability problems, i.e, the impossibility of
unique estimation of the unknown model parameters,
making the parameter estimation an even harder optimi-
zation task [3].
There are two broad classes of approaches to the

parameter estimation task: the frequentist (referred to as
the “classical”) approach and the Bayesian (probabilistic)
approach [4,5]. The most representative approach of the
first class is maximum-likelihood estimation (ML),
according to which the most likely parameter values are
the ones that maximize the probability (likelihood) of
observing the given data. A special case of maximum-
likelihood estimation, based on the assumption of inde-
pendent and normally distributed errors in the experi-
mental data, leads to the well-known approach of least-
squares estimation (LS). Unlike ML estimation, which
does not need any external information about the para-
meters, Bayesian estimation treats the parameters to be
estimated as random variables, with a prior distribution
representing the knowledge about the parameter values
before taking the data into account. According to the
information that the end-user has to provide, LS estima-
tion is the simplest approach, while Bayesian approaches
are the most complex ones [4,6].
Representative methods from both classes of

approaches are commonly used for parameter estima-
tion in the field of system biology [7-13]. It is difficult
to argue in favor of one class of approaches against the
other in a general manner [5], since both have shown
advantages in specific situations. On one hand, Bayesian
approaches can elegantly treat the uncertainty in para-
meter values and model structure in a uniform manner.
On the other hand, frequentist approaches (such as the
ones considered in this paper) can be effectively used
for high-dimensional models with large numbers of
parameters. We thus approach the parameter estimation
task from the frequentist point of view and use least-
squares estimation.
Related work using least-squares methods for para-

meter estimation in system biology [7-10] has shown

that a proper way to address the above mentioned chal-
lenges in parameter estimation is to employ global opti-
mization (GO) methods, especially stochastic GO
methods and hybrid methods (that combine GO and
local search methods). The advantage of stochastic
methods is in their ability to handle black-box optimiza-
tion problems and to converge relatively quickly to the
vicinity of global optima. In this context, we employ
three bio-inspired meta-heuristic global optimization
methods.
We address the task of estimating the parameters of a

nonlinear ODE model of endocytosis, more specifically
of the maturation of endosomes, which are membrane-
bound intracellular compartments used to transport and
disintegrate external cargo. The model focuses on a key
endocytotic regulatory system that switches from cargo
transport in early endosomes to cargo disintegration in
mature endosomes [14,15]. The regulatory system is
based on the process of conversion of Rab5 domain pro-
teins to Rab7 domain proteins. Using both a theoretical
and an experimental approach to model this process,
Del Conte-Zerial et al. [16] show that a cut-out switch
ODE model provides the best fit to the biological obser-
vations, which show a rapid transition from the state
with high Rab5 and low Rab7 concentrations in early
endosomes to the inverse state of low Rab5 and high
Rab7 concentrations in mature endosomes. The task of
modeling the Rab5-to-Rab7 conversion has all the chal-
lenging properties mentioned above. Most notably, we
have to cope with the limited measurability of the con-
centrations of Rab5 and Rab7 domain proteins in the
endosome, since the different (i.e., active and passive)
states of these proteins can not be distinguished in the
measurement process.
In this paper, we study the effect of this kind of lim-

ited observability of the system dynamics on the com-
plexity of the parameter estimation task, as well as the
applicability and performance of four different optimiza-
tion methods in this context. In order to do so, we
define four different observation scenarios and generate
artificial (pseudo-experimental) data for each of them.
The scenarios cover a wide range of situations, from the
simplest one of complete observability, where the con-
centrations of all protein states are assumed to be
directly measurable, to the most complex (and realistic)
scenario, where the observations are limited to the total
concentrations of proteins in all their different states.
We test the performance of the selected optimization
methods in the different observation scenarios and com-
pare the ability of different methods to cope with them.
A final set of experiments, based on real-experimental
data, are performed in order to check the validity of the
results obtained on artificial data. More specifically, we
test the methods’ performance on measured data
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obtained through real-world biological experiments that
corresponds to the most complex observation scenario
described above.
Our study includes four optimization methods: the

differential ant-stigmergy algorithm (DASA), our own,
recently developed meta-heuristic method for global
optimization [17,18]; particle swarm optimization (PSO),
another bio-inspired meta-heuristic based on the idea of
swarm intelligence [19]; differential evolution (DE), a
well-known meta-heuristic method for global optimiza-
tion based on the natural evolution concept [20,21]; and
the local-search derivative-based algorithm 717 (A717)
[22] updated with random restarts to cope with the
multiple local optima problem. While PSO, DE, and
A717 have already been applied to the task of parameter
estimation in ODE models, DASA is tested in this con-
text for the first time. Our initial study [23] has shown
that DASA performs competitively to DE, and signifi-
cantly better than A717 with random restarts. In this
paper, we extend the preliminary tests with experiments
in different, more realistic, observation scenarios, using
both artificial data and laboratory measurements. We
also investigate the practical identifiability of the model
parameters under the different observation scenarios.

Parameter estimation in ODE models
The task of parameter estimation in ODE models can be
formalized as follows. Given a model structure m(c),
which includes a set of adjustable parameters c = {c1, ...,
cD}, and a set of observed data d, the task is to find the
optimal values copt of c that lead to a model that repro-
duces the observed data d in the best possible way.
Parameter estimation is usually approached as an opti-
mization task of minimizing an objective function that
measures the goodness of fit of the model simulation to
the observed data.
Nonlinear least-squares estimation
Among different suggested objective functions measuring
the goodness of fit, the maximum-likelihood estimator
[4,24] introduced by R. A. Fisher in 1912, maximizes the
probability of observing the given data d if the model m
(copt) is chosen. The likelihood function depends on the
probability of the measurements in d. Assuming that the
measurements follow independent normal distributions
with a constant (unknown) variance, the maximum-likeli-
hood parameter estimation maps into a nonlinear least-
squares estimation of the parameters, which minimizes
the sum of squared errors (SSE). For the observed data d
= {Yi [j],1 ≤ i ≤ M, 1 ≤ j ≤ N}, SSE is defined as

SSE (m(c)) =
M∑
i=1

N∑
j=1

(
Yi[j] − Ŷi[j]

)2
, (1)

where Yi[j] is the value of the ith measured output at
the jth time point, M is the number of measured out-
puts, N is the number of samples per observed output,
and Ŷi[j] is the value of the ith output at the jth time
point, predicted by the model m(c).
ODE models and observability
A model based on ODEs defines the temporal changes
of a set of system (also referred as to endogenous) vari-
ables S as a function of the variables S and a set of exo-
genous variables E. The exogenous variables E are
observed variables on which the model depends and
appear on the right-hand side of the ODEs only, while
the system variables S are dependent variables, the beha-
vior of which is being modeled, and appear both on the
left-hand side and the right-hand side of the ODEs. The
ODE model of the observed system takes the form

d
dt

S = F(S, E, c), (2)

where t represents time, d
dt S represents the time deri-

vatives of the system variables S, F asserts the structure
of the ODEs, and c is the set of model parameters. Such
an ODE model, given the values of S at the initial time
point t0, S(t0) and the values of the exogenous variables
E(t) on the observed time interval [t0, tN-1], can be simu-
lated to obtain the values of the system variables S in
the time interval (t0, tN-1].
An analytical solution for complex nonlinear ODE

integration problems does not exist in general: One has
to apply numerical approximation methods for ODE
integration. To this end, we use the CVODE package, a
general-purpose ODE solver that uses the adaptive-step
Adams-Moulton and backward differentiation method
for integration [25].
Note that the ODE model captures the behavior of the

system variables S, which do not directly correspond to
the output (observed) variables Y. In general, the output
Y of the ODE model at a time point t is modeled as

Ŷ(t) = G(S(t), E(t)). (3)

In the simplest observation scenario, the values of all
the system variables are directly observed (measured), i.
e., Ŷ = S. However, in most real-world cases, especially
in biology, we can not observe the values of all the sys-
tem variables directly. This is mostly due to the physical
limitations of the measurement methodology. Thus,
when modeling biological systems, we deal with a vari-
ety of observation scenarios with different complexities.
One possible scenario corresponds to situations where
only some of the system variables are directly observed,
i.e., Ŷ ⊆ S. In an alternative, more complex observation
scenario, G is a linear function, denoting, for example,
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that only the sum of the system variables can be directly
observed, i.e., Ŷ =

∑
s∈S s. Finally, the most complex

observation scenarios involve arbitrary non-linear func-
tions G. The complexity of the observation scenario can
enormously influence the performance of parameter
estimation methods, as we have to reconstruct the com-
plete model based on incomplete observations. In this
paper, we examine the influence of the observation sce-
nario on the performance of parameter estimation
methods in the context of modeling endocytosis.

Methods
Optimization methods
This section describes the optimization approaches used
to solve the nonlinear parameter estimation task for the
Rab5-to-Rab7 conversion model. We address the task
using a recently-developed swarm-based meta-heuristic
differential ant-stigmergy algorithm (DASA), motivated
by the fact that DASA has shown promising results in
solving large scale continuous global optimization pro-
blems, but has not been applied to the challenging task
of parameter estimation in nonlinear ODE models. In
addition, we use two well established meta-heuristics for
global optimization, i.e., particle swarm optimization
(PSO) and differential evolution (DE), as well as the
derivative-based algorithm 717 (A717), essentially
designed for nonlinear least-squares estimation. Below
we provide a description of each of the four methods.
We also specify the specific parameter settings in all
methods as used in our experimental evaluation. The
used parameter settings were selected by Sobol’-sam-
pling-based parameter tuning [26].
The differential ant-stigmergy algorithm
The differential ant-stigmergy algorithm (DASA) was
initially proposed in 2006 by Korošec [17]. It is a version
of an ant colony optimization (ACO) meta-heuristic
[27], designed to successfully cope with high-dimen-
sional numerical optimization problems. The rationale
behind the algorithm is in memorizing the “move” in
the search space that improves the current best solution
and using it in further search. The algorithm uses pher-
omones as a means of communication between ants (a
case of stigmergy), combined with a graph representa-
tion of the search space. The DASA approach that we
present here is slightly different from the initial DASA
version [17]: It is described in detail by Korošec et al.
[18], where a reference to the available source code [28]
is given. The later was used in our experimental
evaluation.
First, the DASA approach transforms the D-dimen-

sional optimization problem into a graph-search pro-
blem. The differential graph used in DASA is a directed
acyclic graph obtained by fine-grained discretization of

the continuous parameters’ differences (offsets). The
graph has D layers with vertices, where each layer corre-
sponds to a single parameter. Each vertex of the graph
corresponds to a parameter offset value that defines a
change from the current parameter value to the para-
meter value in the next search iteration. Furthermore,
each vertex in a given layer is connected with all vertices
in the next layer. The set of possible vertices (discretized
offset values) for each parameter depends on the para-
meter’s range, the discretization base b, and the maximal
precision of the parameters �, which defines the minimal
possible offset value. Ants use these parameters’ offsets
to navigate trough the search space. At each search
iteration, a single ant positioned at layer ℓ moves to a
specific vertex in the next layer ℓ + 1, according to the
amount of pheromone deposited in the graph vertices
belonging to the (ℓ + 1)-th layer: the probability of a
specific vertex to be chosen is proportional to the
amount of pheromone deposited in the vertex.

Second, DASA performs pheromone-based search
that involves best-solution-dependent pheromone distri-
bution. The amount of pheromone is distributed over
the graph vertices according to the Cauchy probability
density function (PDF) [26]. DASA maintains a separate
Cauchy PDF for each parameter. Initially, all Cauchy
PDFs are identically defined by a location offset l = 0
and a scaling factor s = 1. As the search process pro-
gresses, the shape of the Cauchy PDFs changes: PDFs
shrink as s decreases and stretch as s increases, while
the location offsets l move towards the offsets associated
with the better solutions. The search strategy is guided
by three user-defined real positive factors: the global
scale increase factor s+, the global scale decrease factor
s-, and the pheromone evaporation factor r. In general,
these three factors define the balance between explora-
tion and exploitation in the search space. They are used
to calculate the values of the scaling factor, s = f(s+, s-,
r), and consequently influence the dispersion of the
pheromone and the moves of the ants.
The main loop of the DASA method, visualized in

Figure 1, consists of an iterative improvement of a tem-
porary-best solution, performed by searching (construct-
ing) appropriate offset paths in the differential graph.
The search is carried out by m ants, all of which move
simultaneously from a starting vertex to the ending ver-
tex at the last level, resulting in m constructed paths.
Based on the found paths, DASA generates and evalu-
ates m new candidate solutions. The best among the m
evaluated solutions is preserved as a current-best solu-
tion. If the current-best solution is better than the tem-
porary-best solution, the later is replaced, while the
pheromone amount is redistributed along the path cor-
responding to the temporary-best solution and the scale
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factor is accordingly modified to improve the conver-
gence. If there is no improvement over the temporary-
best solution, then the pheromone distributions stay
centered along the path corresponding to the tempor-
ary-best solution, while their shape shrinks in order to
enhance the exploitation of the search space. If for some
predetermined number of tries (in this case D2 for all
ants) all the ants only find paths composed of zero-
valued offsets, the search process is restarted by ran-
domly selecting a new temporary-best solution and rein-
itializing the pheromone distributions. Related to this,
DASA keeps information about a globally best solution,
called global-best solution. This solution is the best over
all restarted searches, while the temporary-best solution
is the best solution found within one search (restart).
Particle swarm optimization
Particle swarm optimization (PSO) is a stochastic popu-
lation-based optimization technique developed by Eber-
hart and Kennedy in 1995 [19,29], inspired by the

concept of social behavior of biological organisms, e.g.,
bird flocking or fish schooling [30]. A PSO algorithm
maintains a swarm of particles, corresponding to a
population of candidate solutions. Every particle moves
("flies”) in the search space, adjusting its position and
velocity according to its own experience and the social
experience obtained by social interaction with the neigh-
boring particles. PSO evidently shares similarities with
evolutionary algorithms, developed on the basis of the
Darwinian theory of evolution: both are inspired from
natural phenomena and both maintain a population of
candidate solutions and iteratively update (transform)
the population using a variety of operators in order to
find the optimal solution. However, PSO does not have
selection, crossover or mutation operators: The main
driving force of the swarm is the social interaction
implicitly encoded in the social network structure. The
social network structure is determined by the neighbor-
hood of each particle, within which the particles can
communicate by exchanging information about their
success in the search space.
The basic PSO method initializes the swarm with S

uniformly-random positioned particles in the search
space. The search for the optimal solution proceeds in
iterations. In every iteration, the current position (at
time t) of the particle x(t) is incrementally updated with
the new velocity υ(t + 1) (i.e., x(t + 1) = x(t) + υ(t + 1)),
which on the other hand is updated by using two
sources of information. The first one, called cognitive
component, reflects the experimental knowledge of the
particle, which is its best position xp(t) found so far. The
second one, called social component, reflects the local
knowledge of the search space obtained from the parti-
cle’s neighborhood with size K and is represented by xn
(t), the best position found by the neighborhood of par-
ticles. The resulting formula for updating the velocity is
then υ(t + 1) = υ(t) + c1r1(xp(t) - x(t)) + c2r2(xn(t) - x
(t))), where c1 and c2, called acceleration coefficients, are
positive real values that balance the influence of the
cognitive and the social component, while r1 and r2 are
random factors uniformly sampled from the unit inter-
val that introduce a stochastic component in the search.
The particular version of PSO used in our experi-

mental evaluation is a standard variation of the basic
PSO (the implementation is available online [31]),
which includes only one acceleration coefficient c and
an additional mechanism to control the exploration
and exploitation in the search space via the parameter
w, called inertia weight. The inertia weight basically
controls the influence of the previous search direction
on the new velocity. At each iteration, each particle
chooses a few particles to be its informants, selects the
best one from this set (neighborhood), and takes into
account the information given by the chosen particle

Figure 1 The differential ant-stigmergy algorithm (DASA). High-
level block-diagram representation of the DASA method.
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(the best informant). If there is no particle better than
itself, either the informant stays the same (default set-
ting), or the informant is chosen randomly (optional
setting). The velocity is updated according to the
expression v(t + 1) = wv(t) + g(t) -x(t) + H (g(t), ||g(t)
- x(t)||), where the function H returns a random point
inside the hypersphere with center of gravity g(t) and
radius ||g(t) - x(t)||. The center of gravity is defined as
g(t) = 1

3 x(t) + 1
3 (x(t) + c(xp(t) − x(t)) + 1

3 (x(t) + c(xn(t) − x(t)).
Differential evolution
Differential evolution (DE) is a simple and efficient
population-based heuristic for optimizing real-valued
multi-modal functions, introduced by Storn and Price in
the 1990s [21,32]. It belongs to the class of evolutionary
algorithms (EA) based on the idea of simulating the nat-
ural evolution of a population P of individuals (candi-
date solutions) via the processes of selection, mutation
and crossover.
The main difference between traditional EA and DE is

in the reproduction step, where for every candidate indi-
vidual xc an offspring u is created by using a mutated
individual υ. The latter is obtained by a simple arith-
metic (differential) mutation operation over a set of par-
ents (e.g., x1, x2, x3) selected at random or by quality,
based on one difference vector, i.e., υ = x1 + F·(x2 - x3).
The rate at which the population evolves can be con-
trolled by a scale (mutation) factor F, a user-defined
positive real number from the interval [0, 2]. To com-
plement the differential mutation strategy, DE employs
uniform crossover (also known as discrete recombina-
tion) over the candidate and mutated individual in order
to generate the offspring u. A user-specified crossover
factor CR Î [0, 1] is used to control the fraction of
parameter values copied from the mutated individual to
the offspring. Finally, the offspring is evaluated and if its
fitness (objective function) is better, it replaces the cor-
responding candidate individual in the population.
Depending on the specific mutation and crossover pro-
cedure, one can chose among several DE strategies iden-
tified using the name format “DE/x/y/z“. In the name
format, x represents a string denoting the solution to be
perturbed: i) a solution randomly chosen from the
population (x ="rand”); ii) the current best solution (x =
“best”); or iii) a solution based on the candidate solution
combined with a difference vector towards the current
best individual (x = “rand-to-best”), i.e., xc + F·(xbest -
xc). Further, y represents the number of difference vec-
tors considered for perturbation, while z stands for the
type of crossover being used that can be exponential (z
= “exp”) or binomial (z = “bin”).
The implementation used in our experimental evalua-

tion is based on the implementation of the DE algo-
rithm described in the technical report by Storn and

Price [32], available online [33]. It includes 10 search
strategies, STR, enumerated from one to 10 in the fol-
lowing order: 1 - “DE/best/1/exp”, 2 - “DE/rand/1/exp”,
3 - “DE/rand-to-best/1/exp”, 4 - “DE/best/2/exp”, 5 -
“DE/rand/2/exp”, 6 - “DE/best/1/bin”, 7 - “DE/rand/1/
bin”, 8 - “DE/rand-to-best/1/bin”, 9 - “DE/best/2/bin”,
and 10 - “DE/rand/2/bin”. As the original code does not
check whether the newly generated solutions are
allowed, i.e., lie within the prescribed parameter ranges,
we slightly modified the code: if the new solution is out-
side the specified bounds, it is set to the closest range
limit.
Algorithm 717
Algorithm 717 (A717) is a set of modules for solving the
parameter estimation problem in nonlinear regression
models like nonlinear least-squares, maximum-likeli-
hood and some robust fitting problems [22]. The basic
method is a generalization of NL2SOL - an adaptive
nonlinear least-squares algorithm [34], which uses a
model/trust-region technique for computing trial steps
along with an adaptive choice for the Hessian model. In
fact, NL2SOL is a variation of the Newton’s method
(augmented Gauss-Newton method), in which a part of
the Hessian is computed exactly and a part is approxi-
mated by a secant (quasi-Newton) updating method.
Thus, the algorithm sometimes reduces to the Gauss-
Newton or the Levenberg-Marquardt method.
In order to promote convergence from poor starting

guesses, the algorithm implements the idea of having a
local quadratic model qi of the objective function f at
the current best solution ci and an estimate of an ellip-
soidal region centered at ci in which qi is trusted to
represent f. So the next point, ci+1, or the next trial step,
is chosen to approximately minimize qi on the ellipsoi-
dal trust-region. The information obtained for f at ci+1 is
used for model updating and also to resize and reshape
the trust-region.
Among the modules, we can chose the ones for

unconstrained optimization, or the ones that use simple
bound constraints on the parameters. Furthermore, we
can choose between modules that involve approximate
computation of the needed derivatives by finite differ-
ences, and modules that expect the derivatives of the
objective function to be provided by the routine that
calls them.
In this work, we used the original implementation of

A717 as available online [35]. Since A717 is not a global
search algorithm, we wrapped the original procedure in
a loop of restarts with randomly chosen initial points,
providing in a way a simple global search. The number
of restarts was set to 20000 (25 evaluations per restart)
to result in a number of function evaluations compar-
able to the number used for the other three methods.
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Parameter settings
In the text above, we described the optimization meth-
ods that will be used for parameter estimation in the
endocytosis model. Among these, the meta-heuristic
approaches have many parameters that guide the search
and consequently influence the methods’ performance.
To obtain the best possible performance on a given pro-
blem, one should consider a task specific tuning of the
parameter setting for the optimization method used
(see, e.g., the study by Daeger et al. [10] in the domain
of system biology). Determining the optimal parameter
setting is an optimization task in itself, which is extre-
mely computationally expensive.
There are two common approaches for choosing para-

meters values [36]: parameter tuning and parameter
control. The first approach selects the parameter settings
before running the optimization method (and they
remain fixed while performing the optimization). The
second approach optimizes the method’s parameters
along with the problem’s parameters.
A detailed discussion and survey of parameter tuning

methods is given by Eiben and Smit [36], who identify
sampling methods as one type of parameter tuning
methods. Sampling methods reduce the search effort by
decreasing the number of investigated parameter set-
tings as compared to the full factorial design. Two
widely used sampling methods are Latin-squares and
Taguchi orthogonal arrays (appropriate references are
given by Eiben and Smit [36]).
In this paper, parameter tuning for the meta-heuristic

optimization methods was performed with a sampling
method based on Sobol’ sequences, introduced by Sobol’
in 1967 [26]. Sobol’ sequences, sampled from the d-
dimensional unit search space, are quasi-random
sequences of d-tuples that are more uniformly distribu-
ted than uncorrelated random sequences of d-tuples.
These sequences are neither random nor pseudo-ran-
dom, as they are cleverly generated not to be serially
uncorrelated, but instead to take into account which
tuples in the search space have already been sampled.
For a detailed explanation and overview of the schemas
for generating Sobol’ sequences, we refer to Press et al.

[26]. The particular implementation of Sobol’ sampling
used in this paper is based on the Gray code order and
is available online [37].
The DE method has only four parameters, while

DASA and PSO have more: Consequently we chose
only four parameters per single method to be tuned. For
DASA, we chose the three real-valued parameters that
directly influence the search heuristic (s+, s-, and r) and
the number of ants (m), while for PSO, we chose the
size of the swarm (S), the size of the neighborhood (K),
the inertia weight (w), and the acceleration coefficient
(c). The number of sampled parameter settings (4-
tuples) per method was 2000. Due to the stochastic nat-
ure of the methods, every parameter setting was used
for optimization of the endocytosis model in a multiple-
run experimental evaluation that included half a million
objective function evaluations. The number of runs was
set to eight. The optimal performing parameter setting
was chosen based on the median best performance over
all runs. A common approach is to use the mean best
performance, but we took the median in order to avoid
the problems that the mean has when observing large
variance in the objective function values across the runs.
The parameters of the three meta-heuristics methods

chosen for Sobol’-sampling-based parameter tuning and
their ranges are summarized in Table 1. In the same
table, we report the resulting (tuned) parameter settings
for the three optimization methods. Note that the Sobol’
sampling approach generates number on the unit inter-
val: In order to obtain the parameter settings, we had to
map that value on the predefined range of parameter
values. For the integer-valued parameters, the mapped
value was rounded to the closest integer value. An addi-
tional note concerns the upper bound of the parameter
K, denoting the size of the neighborhood in the PSO
method, which can not be larger than the value S - 1.
Its value was mapped according to the chosen value of
the size of the swarm S. In a similar way, the upper
bound of the global scale decrease factor s_ is limited by
the value of the evaporation factor r in the DASA
method. Finally, note that the parameter tuning was per-
formed on the complete observation scenario using

Table 1 Setup and results of Sobol’-sampling-based parameter tuning of optimization methods.

DASA PSO DE

Parameter m Ρ s+ s- S K w c P ST R F CR

Lower 4 0 0 0 4 1 0 1 6 1 0 0

Upper 200 1 1 r 200 S-1 1 4 200 10 2 1

Tuned 144 0.036 0.573 0.01 155 89 0.762 1.037 81 8 0.942 0.915

The table includes the search ranges (their lower and upper bound) for each of the four parameters of each of the three different meta-heuristic optimization
methods that were tuned. We used the Sobol’ sampling procedure with the number of sampling points set to 2000. The resulting vector of method’s parameters
was chosen as the one that showed best median performances (according to the SSE metric) in the multiple-run experiments among the 2000 sampled
parameter settings. A single experiment included eight runs, each performed with half a million of objective function evaluations. The parameter tuning was
performed on the complete observation scenario using noise-free artificial data.
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noise-free artificial data. The same parameter settings
were then used across all scenarios and all datasets. The
parameter settings used in our experimental evaluation
are given as follows.
DASA setup The discretization base is set to 10, the
maximum parameter precision is set to 10-15, the num-
ber of ants is set to 144, the global scale increase factor
to 0.575, the global scale decrease factor to 0.01, and
the pheromone evaporation factor to 0.036.
PSO setup A variable random topology was chosen, the
particle swarm size was set to 155, the neighborhood
size to 89, the inertia weight to 0.762, and the accelera-
tion coefficient to 1.037. In addition, default settings
were used for the remaining parameters related to
advanced options not included in the standard PSO
method.
DE setup The chosen strategy was “DE/rand-to-best/1/
bin”, the population size was set to 81, the weight factor
to 0.915, and the crossover factor to 0.942.

Comparison methodology
To guarantee a fair comparison of the three optimiza-
tion methods, we ran each method 25 times allowing
half a million of evaluations of the objective function
per single run. We used a number of performance eva-
luation metrics to compare the utility of the three opti-
mization methods for parameter estimation; the
reported method performance is the average/median
performance over all 25 runs. While the first quality
measure is about the convergence rate of the optimiza-
tion methods, the others focus on the quality of the
obtained models.
Convergence curves are commonly used for visualizing

the convergence rates of optimization methods. They
show the change of the value of the objective function
with the increasing number of objective function evalua-
tions. Each curve in our paper depicts the change of the
objective function value averaged over 25 runs: The
convergence curves are plotted on log-log plots, with a
logarithmic scale for both axes in order to be able to
capture the convergence trend over a wide range of
values.
Root mean squared error (RMSE) measures the differ-

ence between output values predicted by the model Ŷ
and the observed values of the output variables Y.

RMSE =

√√√√ 1
N

M∑
i=1

N∑
j=1

(
Yi[j] − Ŷi[j]

)2

=

√
1
N

SSE(m(c))

(4)

The division by the number of data points and square
root in RMSE make its measurement units and scale

comparable to the ones of the observed output variables.
This is in contrast with the SSE measure defined with
Eq. (1). Finally, note that better models have smaller
values of RMSE.
As defined above, the RMSE quality metric measures

the degree-of-fit between simulated model output and
observed system output. However, reconstruction of sys-
tem dynamics goes beyond reconstructing output; ulti-
mately, modeling is about capturing the complete (also
unobserved) system dynamics. To measure this aspect
of reconstruction quality, we have to measure the
degree-of-fit between simulated and observed values of
the system variables. Although this is impossible in real
cases where system variables can not be directly
observed, experiments with artificial data allow us to
measure this aspect of model quality. In this context, we
use an additional model quality metric when comparing
the methods in the case of artificial data.
The root mean squared error of the completely simu-

lated model (RMSEm) is defined as

RMSEm =

√√√√ 1
N

4∑
i=1

N∑
j=1

(
Si[j] − Ŝi[j]

)2
, (5)

where Si[j] and Ŝi[j] are the values of the system vari-
ables from the reference model and the estimated (pre-
dicted) model, respectively. This metric will allow us to
test whether the good quality of the model in terms of
outputs is related to the ability of the model to capture
the unobserved system dynamics. To represent the dis-
tributions of the quality measure values over the 25
runs of a specific optimization method on a specific
observation scenario and data set, we used box-and-
whisker diagrams (boxplots). They provide a convenient
graphical representation of the dispersion, skewness, and
outliers in a single given data sample, but also enable a
visual comparison of different data samples. The top
and bottom edge of the box in a boxplot represent the
25th and 75th percentiles of the sample, respectively; in
consequence, the box height corresponds to the inter-
quartile range (IQR). The line in the middle of the box
corresponds to the sample median. The sample mean is
represented with a diamond. The “whiskers”, i.e., the
two lines extending above and below the box, represent
the sample range. The maximal length of the whiskers is
set to 1.5·IQR. Data points above and below the whis-
kers’ end points correspond to the sample outliers and
are represented with “+” markers. Finally, the notches of
the boxes represent the variability of the median in the
sample. The width of a notch is computed so that box-
plots whose notches do not overlap have medians that
are significantly different at the 0.05 significance level,
assuming a normal data distribution. The boxplots
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presented in this paper were generated using the
MATLAB statistical toolbox [38].
Statistical significance testing was performed in order

to assess the obtained differences in performance
between the four optimization methods. We used the
post-hoc multiple comparison Holm test [39], according
to which we first rank the compared methods based on
their performances averaged over all test problems and
assign a score ri for i = 0, ..., Nm - 1, where Nm is the
number of methods being compared and i is the appro-
priate rank (i = 0 corresponds to the best ranked
method, while i = Nm - 1 to the worst ranked method).
Second, we select the method with the best score (low-
est rank), r0 and calculate the values

zi =
r0 − ri√

Nm(Nm + 1)
(6Ntp)

,
(6)

where Ntp is the number of considered test problems
for each method. Finally, we calculate the cumulative
normal distribution values pi corresponding to zi and
compare them with the corresponding a/i values where
a is the significance level, set to 0.05 in our case. We
report the zi, pi, and a/i values in a table, where each
row corresponds to one of the methods. The best rank-
ing method, used as reference method, is excluded from
the table. Based on these values, we can make a decision
about the null-hypothesis that “there is no difference in
performance between this and the best ranking method”.

Practical parameter identifiability
The problem of uniqueness of the estimated parameters
in a given model is related to the issue of parameter
identifiability. We can distinguish between structural
and practical identifiability. Structural identifiability is a
theoretical property of the model structure, depending
only on the model input (stimulation function) and out-
put (observation function): It is not related to the speci-
fic values of the model parameters. The parameters of a
given model are structurally globally identifiable, if they
can be uniquely estimated from the designed experiment
under the ideal conditions of noise-free observations
and error-free model structure [40]. If the model is not
structurally identifiable, one should consider reformulat-
ing the model.
Even when we deal with a structurally identifiable

model, it can still happen that the parameters can not
be uniquely identified from the available experimental
data. In this case, we experience a practical identifiability
problem, related to the amount and quality of available
experimental data. Practical identifiability analysis can
also help us to assess the uncertainty of the parameter
estimates and to compare possible experimental designs

without performing experiments. Parameter uncertain-
ties (confidence intervals) may be computed by using
the Fisher information matrix (FIM) or a Monte Carlo-
based approach. Details and further references on this
topic are given by Balsa-Canto and Banga [3].
We are going to assess the practical identifiability of

the parameters in the endocytosis model using the
Monte Carlo-based sampling approach [3,41]. The
approach estimates the expected uncertainties of the
parameters by re-applying the parameter estimation
method to a large number of replicate datasets gener-
ated by using different realizations of the chosen experi-
mental noise. In this way, we generate a cloud of
parameter estimates that represents the confidence
region. Based on this cloud of solutions, we can obtain
the distribution (represented by histograms) of values
for each uncertain parameter (as well as its mean value
and standard deviation) and make correlation analysis to
determine the most correlated parameters. In contrast
to the FIM-based approach, that assumes a linearization
of the model, the Monte Carlo approach estimates are
reliable also for highly non-linear models or very large
parameter uncertainties. The generality of the Monte
Carlo approach, however, comes at a high computa-
tional cost. For the specific task of modeling endocyto-
sis, we generated one thousand datasets by simulating
the model with the reference parameter values and add-
ing Gaussian noise. Given a percentage of a relative
noise level s, we calculated the noisy value as Ynoisy = Y
(1 + s·N (0, 1)), considering a noise level of 20%. We
estimated the parameters of the model using these data-
sets, and collected the estimates for outlier examination
and further statistical analysis. We followed the same
procedure as described by Joshi et al. [41], according to
which outliers are data points that do not belong to the
interval [Q1 - 1.5(Q3 - Q1), Q3 + 1.5(Q3 - Q1)], where
Q1 and Q3 represent the 25th and 75th percentiles of
the sample, respectively. The detected outliers are
removed: More precisely, the new (reduced) sample
includes only the estimates obtained from those datasets
that did not produce any outlier over all parameters.
The distributions of the parameters are presented with
histograms, including the corresponding 95% confidence
intervals CI: These are calculated as the length of the
interval between the 2.5th and 97.5th percentile of the
sample. The width of the bins h for a single histogram
is calculated according to the Freedman-Diaconis rule
[42],

h =
2 · IQR

3
√

Ns
, (7)

where IQR is the interquartile range of the sample and
Ns is the sample size.
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Based on the outlier-free samples of parameter estimates,
the correlation of two model parameters ci and cj in terms
of a linear dependence is calculated based on the Pearson
correlation coefficient [4] according to the formula

R(c̃i, c̃j) =

∑Ns
k=1 c̃ikc̃jk − Nsμc̃iμc̃j

Nsσc̃iσc̃j

, (8)

where μc̃i and σc̃i are the mean and the standard devia-
tion of the vector c̃i with estimates of the ci parameter,
while μc̃i and σc̃i are the mean and the standard deviation
of the vector c̃j with estimates of the cj parameter. A cor-
relation of 1 (or - 1) means perfect positive (or negative)
linear relationship between the two parameters.

Results and Discussion
Endocytosis model
This work addresses the task of parameter estimation in
a practically relevant model of endocytosis, i.e., the life-
cycle of endosomes. Endosomes are membrane-bound
intracellular components that typically encapsulate,
transport, and disintegrate external cargo within cells.
The model at hand focuses on the process of endosome
maturation, representing it by a cut-out switch between
the concentrations of Rab5 and Rab7 domain proteins
[14,15]. The theoretical and experimental approach [16]
undertaken to model the endocytosis rely on the mutual
exclusiveness of the Rab5 and Rab7 domains. Early
endosomes have with high Rab5 and low Rab7 concen-
trations, while late or mature endosomes have low Rab5
and high Rab7 concentrations. The transition from the
early to the mature state is rapid.
To model the Rab5-to-Rab7 conversion, we distin-

guish between active and inactive (passive) states of the
Rab5 and Rab7 domain proteins. Thus, the ODE model
involves four system (endogenous) variables correspond-
ing to the concentrations of Rab5 domain proteins in
inactive (r5) and active state (R5) and Rab7 domain pro-
teins in inactive (r7) and active state (R7), measured in
mol/l. These four species (chemical compounds) are
involved in ten different biochemical reactions υ1, ..., υ10
parameterized with eighteen constant parameters c1, ...,
c18 corresponding to the kinetic rates of the reactions,
leading to the following structure of the model ODEs:

d
dt

r5 = v1 + v7 + v9 − v2 − v3

d
dt

R5 = v2 − v7 − v9

d
dt

r7 = v4 + v10 − v5 − v6 − v8

d
dt

R7 = v5 + v6 − v10.

(9)

Here, υ1, ..., υ10 denote the kinetic models of the cor-
responding biochemical reactions, given below:

v1 = c1

v2 =
c2r5(t)

1 + e(c3−R5(t))c4

t

100 + t
v3 = c5r5(t)

v4 = c6

v5 =
c7r7(t)R7(t)c8

c9 + R7(t)c8

v6 =
c10r7(t)

1 + e(c11−R5(t))c12

v7 =
c13R5(t)

1 + e(c14−R7(t))c15

v8 = c16r7(t)

v9 = c17R5(t)

v10 = c18R7(t).

(10)

Note that all variables in the model are system vari-
ables, i.e., S = {r5, R5, r7, R7} and there are no exogenous
variables, i.e., E = ∅.
Figure 2 depicts the simulated behavior of the four

system variables of the model in the time interval [0,
1551] seconds, with the parameters values set to

c1 = 1, c2 = 0.3 c3 = 0.1,

c4 = 2.5, c5 = 1, c6 = 0.483,

c7 = 0.21, c8 = 3, c9 = 0.1,

c10 = 0.021, c11 = 1, c12 = 3,

c13 = 0.31, c14 = 0.3, c15 = 3,

c16 = 0.483, c17 = 0.06, c18 = 0.15,

(11)
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Figure 2 Simulated behavior of the Rab5-to-Rab7 conversion
model. Simulation of the cut-out switch model of the conversion
of Rab5 domain proteins to the Rab7 domain proteins in the
regulatory system of endocytosis as proposed by Del Conte-Zerial et
al. [16].
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and initial values of the state variables set to

r5(t0) = r7(t0) = 1 mo1/1,

R5(t0) = R7(t0) = 0.001 mo1/1,
(12)

as proposed by Del Conte-Zerial et al. [16]. Note that
the behavior of the concentrations of the active-state
proteins R5 and R7 follow the expected (rapid) cut-out
switch from high Rab5 and low Rab7 to low Rab5 and
high Rab7 concentrations, while the concentrations of
the passive-state proteins r5 and r7 remain almost con-
stant throughout the whole process, with a small but
notable change at the transition point.
In sum, the task of parameter estimation in the Rab5-

to-Rab7 cut-out switch model leads to a 22-dimensional
continuous minimization problem with 18 dimensions
corresponding to model parameters and four dimen-
sions corresponding to the initial values of the four sys-
tem variables. The objective function, sum of squared
errors (SSE, as defined in Eq. (1)) between the observed
and predicted values of the system output, is minimized
with respect to the given data, subject to the structure
of the ODEs of the Rab5-to-Rab7 conversion model
(described by Eqs. (9) and (10)) and the following bound
constraints on the values of the constant parameters and
protein concentrations: ci Î (0, 4] for 1 ≤ i ≤ 18, ci Î (0,
2] for 19 ≤ i ≤ 22, r5(t) ≥ 0, R5 (t) ≥ 0, r7 (t) ≥ 0, and R7

(t) ≥ 0. To calculate the objective function, we perform
ODE integration. Despite the fact that we use advanced
adaptive-step integrators, for some parameter sets the
ODE integration can fail, due to the discontinuities in
the model dynamics: in that case or in the case of viola-
tion of the basic constraint about non-negative values
for the simulated protein concentration, we simply dis-
card the respective solution (by giving the objective
function a very high real value).
In order to evaluate the performance of different para-

meter optimization methods on this task, we conducted
experiments with artificial data, obtained by simulating
the Rab5-to-Rab7 conversion model, and with real data
from experimental measurements.

Data
Artificial (pseudo-experimental) data
We generated the artificial data by simulating the ODE
model from Eqs. (9)-(12) at 2781 equally spaced time
points inside the interval [0, 1551] seconds. To obtain
more realistic artificial data, we added a normal Gaus-
sian noise N(0, 1) to the noise-free simulated data.
Given the percentage of a relative noise level s, we cal-
culate the noisy data as Ynoisy = Y (1 + s·N (0, 1)). In
our experiments, we use two noise levels of 5% and
20%. Note that the noise-free data correspond to the
noise level of 0%.

Measured (real-experimental) data
In the second set of experiments, we used the real time-
course measurements from Del Conte-Zerial et al. [16].
The measurements are taken following a complex pro-
cedure, where a number of endosomes were followed in
three independent experiments for Rab5 (23 endosomes)
and one for Rab7 (15 endosomes). Experimental data for
different endosomes were manually aligned around the
conversion point, scaled, and averaged at 10571 time
points in the interval of [-5, 330] seconds, where time
point 0 corresponds to the conversion point. Note how-
ever, that due to physical limitation of the measurement
experiments, only the total concentrations of the active
and inactive Rab5 and Rab7 domain proteins could be
measured, leading to a complex observation scenario
with the following two output variables Y1(t) = r5(t) +
R5(t) and Y2(t) = r7(t) + R7(t).

Observation scenarios
The limited measurability of the system variables in the
real-world measurement scenario, described above,
represents one of the most challenging properties of the
parameter estimation task addressed in this paper. To
evaluate the impact that the limited observability has on
the difficulty of the optimization task (and consequently
on the performance of different optimization methods),
we define here four observation scenarios, ranging from
the simplest one that assumes that all the system vari-
ables can be directly measured to the most complex one
that corresponds to the limitations of the real measure-
ment process described in the previous paragraph.
Complete observation (CO)
In this scenario, we assume that all the system variables
are directly observed, meaning that the measurement
process can identify the four concentrations of active
and inactive states of the Rab5 and Rab7 proteins at
each time point, i.e., Y1(t) = r5(t), Y2(t) = R5(t), Y3(t) = r7
(t), and Y4(t) = R7(t).
Active-state protein concentration observation (AO)
Here, we assume that only concentrations of the active-
state proteins can be observed, i.e., Y1(t) = R5(t) and Y2

(t) = R7(t). This scenario is simpler than the real one.
Since we can measure total (active-state and passive-
state) protein concentration and the passive-state pro-
tein concentrations are expected to be constant most of
the time (see Figure 2), this scenario is based on a rea-
sonable assumption.
Total protein concentration observation (TO)
This scenario represents the real measurement process
outlined above, where Y1(t) = r5(t) + R5(t) and Y2(t) = r7
(t) + R7(t).
Neglecting passive-state protein concentration (NPO)
This is the scenario based on how the measurements are
(visually) matched against model simulations by Del
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Conte-Zerial et al. [16]. In this case, we observe the
total protein concentrations, i.e., Y1(t) = r5(t) + R5(t) and
Y2(t) = r7(t) + R7(t), but we match them against concen-
trations of the active-state proteins predicted by the
model, i.e., Ŷ1(t) = R5(t) and Ŷ2(t) = R7(t). The rationale
for this scenario is the same as for the second one (AO)
and it is included here to match the procedure used by
Del Conte-Zerial et al. [16].

Parameter estimation with artificial data
Given the artificial data described above (obtained using
the reference values of the constant parameters from
Eq. (11), we can calculate the value of the objective
function at the reference point for each noise level and
observation scenario: These are reported in Table 2.
Note that the value of the objective function at the
reference point, when considering noise-free data, is
zero, while in the case of noisy data it increases and
becomes greater than zero. The exception to this rule is
the NPO observation scenario used in Del Conte-Zerial
et al. [16], where the authors assume that the concen-
trations of passive-state proteins can be neglected when
fitting the data. This assumption is obviously implausi-
ble, since it leads to large values of the objective func-
tion, even in the case of noise-free data.
Let us now consider the RMSE performance of the

four parameter estimation methods (DASA, PSO, DE,
and A717) on the artificial datasets with three levels of
noise (0%, 5%, and 20%) under the four observation sce-
narios (CO, AO, TO, and NPO). Figure 3 summarizes
the RMSE performance with boxplots over the 25 runs
of each methods. The 12 graphs on the figure corre-
spond to the four observation scenarios (in columns)
and three artificial datasets (in rows), where each graph
depicts the performance comparison of the four para-
meter estimation methods. The graphs show that the

median performance of A717 is significantly worse than
the performance of the three meta-heuristic methods.
The comparison among the latter indicate that the med-
ian RMSE performance of DE is significantly better than
the performance of DASA and PSO. These findings
hold in all observation scenarios and at all noise levels.
The performance comparison among different levels of
noise shows a systematic decrease of the RMSE perfor-
mance with the increasing noise level. The noise in the
data affects the performance of all methods in all obser-
vation scenarios, but the magnitude of the effect differs.
While we observe very large and remarkable differences
in performance of the meta-heuristics methods in the
noise-free case, there is much less difference in perfor-
mance on the noisy datasets.
The comparison among observation scenarios shows

that the CO and AO scenarios are very similar: they
induce an identical ranking of the optimization methods
in terms of performance at all noise levels. The rankings
are slightly different (but still very similar) in the case of
TO, and quite different in the implausible scenario (see
the discussion above) of NPO. As the noise level
increases, the AO scenario seems to become an easier
task than the CO scenario leading to much better opti-
mum values of RMSE, while the CO scenario becomes
very similar to the TO scenario. In the NPO case, all
four optimization methods overfit the observed output,
leading to values of the objective function that are smal-
ler than the value at the reference point from Table 2.
Note also that the PSO and DE methods lead to a
higher variance of RMSE across the different runs in the
TO and NPO scenarios. Overall, the RMSE performance
metric does not provide a clear and unified conclusion
about the relative difficulty of the parameter estimation
task under different observation scenarios.
However, comparing the RMSEm performance, i.e.,

the quality of the complete model reconstruction, leads
to much clearer conclusions about the relative difficulty
of the four observation scenarios. Figure 4 summarizes
the RMSEm performance. As one would expect, the
easiest optimization tasks stem from the CO scenario,
since in this scenario all the system variables are directly
observed. However, note that the TO scenario, corre-
sponding to the real biochemical measurement process,
although complex (the observed outputs are linear com-
binations of the system variables) compares favorably to
the other two scenarios in terms of complete system
dynamics reconstruction. This can be explained by the
fact that the observed outputs in the TO scenario carry
more information about the system (they include both
active and passive states of proteins) than the observed
outputs (active-state proteins only) in the AO or NPO
scenarios. The higher variance and evident outliers in
the RMSEm values associated with the AO and NPO

Table 2 Values of the quality metrics for the reference
model.

Noise Scenario SSE RMSE

CO 0 0

0% AO 0 0

TO 0 0

NPO 5549.839 1.413

CO 2.653 0.031

5% AO 1.289 0.022

TO 2.591 0.031

NPO 5556.486 1.414

CO 42.447 0.124

20% AO 20.627 0.086

TO 41.452 0.122

NPO 5607.516 1.420

The reference model was used for generation of the artificial data.
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Figure 3 RMSE performance of the models obtained by parameter estimation from artificial data. Boxplots of the performance
distributions of the four optimization methods (DASA, PSO, DE, and A717) in terms of the quality of the reconstructed output (RMSE), when
considering four different observation scenarios (columns CO, AO, TO, and NPO) and three artificial datasets (rows): a) noise-free, s = 0%; b) noisy
data, s = 5%; and c) noisy data, s = 20%. Due to the large differences in the order of magnitude, the RMSE values are plotted on a logarithmic
scale.
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Figure 4 RMSEm performance of the models obtained by parameter estimation from artificial data. Boxplots of the performance
distributions of the four optimization methods (DASA, PSO, DE, and A717) in terms of the quality of the complete model reconstruction
(RMSEm), when considering four different observation scenarios (columns CO, AO, TO, and NPO) and three artificial datasets (rows): a) noise-free,
s = 0%; b) noisy data, s = 5%; and c) noisy data, s = 20%. Due to the large differences in the order of magnitude, the RMSEm values are plotted
on a logarithmic scale.
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scenarios confirm that incomplete and/or misinterpreted
measurements lead to more difficult optimization tasks.
In the CO and TO scenarios, the performance in terms
of RMSEm of the four optimization methods follows a
similar pattern as the one for the output reconstruction
(RMSE) reported above: A717 is clearly and significantly
inferior to the other methods, while DE is better than
DASA and slightly better than PSO. In the other two
scenarios (AO and NPO), there is no significant differ-
ence in performance between all four methods: PSO is
handling the AO scenario slightly better than the other
methods, while A717 performs better compared to the
other methods (significantly better than DE) in the case
of the NPO scenario when considering data with 5%
noise.
The convergence curves in Figure 5 further confirm

that DE is the most suitable method for parameter esti-
mation in the endocytosis model for the given amount
(half a million) of function evaluations. DE has faster
convergence than DASA and PSO over all scenarios
when considering noise-free data: in the CO and the
TO case this is clear after 10 thousand evaluations,
while in the AO and NPO case DE outperforms the
others after one hundred thousand evaluations. The
convergence rate of DE and the other methods is nota-
bly influenced by the noise level: regardless of the obser-
vation scenario, at 20% noise level there is no difference
in the convergence rates of DASA, PSO, and DE, and it
is clear that all methods (not only A717) have extremely
slow convergence and seem to be trapped in local
optima. Moreover, when comparing DASA and PSO,
the convergence plots show that DASA is better in the
TO and NPO scenario, while PSO has better conver-
gence in the CO and AO scenario. A717 is clearly show-
ing the poorest convergence, which is very little affected
by the different observation and noise scenarios.
In order to assess the statistical significance of the dif-

ferences in performance across all scenarios, two Holm
tests were conducted using first the median values of
RMSE and then the median values of RMSEm. The cor-
responding median values are given in Table 3, while
the results of the Holm tests regarding both metrics are
reported in Table 4. In terms of output reconstruction
(RMSE), DE is the best ranked method that significantly
outperforms the other three methods at the 0.05 signifi-
cance level. In terms of complete system dynamics
reconstruction (RMSEm), PSO is the best ranked
method that significantly outperforms A717 at the same
significance level, while the advantage over DASA and
DE is not statistically significant. Finally, we check
whether good output reconstruction is related to good
overall system dynamics reconstruction, which is of cen-
tral interest to the modeler. In Table 5, we check the
validity of the conjecture that “best according to the

output reconstruction is best according to the complete
model reconstruction”. For each model, simulated with
the best parameter estimates obtained by a single
method in a single case (a single observation scenario
with a single data set), we report the corresponding
RMSE and RMSEm values and expect that the optimiza-
tion method that led to the best RMSE (the figure
printed in bold in each row) would also lead to the best
RMSEm (the figure printed in italic). This is trivially
true in the CO scenario, where RMSE equals RMSEm,
hence at all three noise levels DE leads to best RMSE
and RMSEm. In the NPO scenario, this never happens,
since DASA and PSO estimates lead to best RMSEm at
different noise levels. In the other two scenarios, AO
and TO, only at one out of three noise levels, DE leads
to best RMSE and RMSEm; at the other two noise
levels, the other meta-heuristic methods lead to best
RMSEm. In sum, only in two out of nine non-trivial
cases, models that perform best with respect to RMSE
lead also to the best RMSEm performance.

Parameter estimation with measured data
Table 6 summarizes the results of parameter estimation
in the Rab5-to-Rab7 conversion model using measure-
ments obtained through real-world experiments. The
rows Best, Median, and Worst give the RMSE value cor-
responding to the best, median and worst solution
found by different optimization methods. The remaining
two rows report the average RMSE performance (Aver-
age) and its standard deviation (Std). We consider only
the observation scenarios TO and NPO, which are
applicable given that the total protein concentrations are
measured: the other two scenarios (CO and AO) are not
applicable in this case. The first two graphs in Figure 6.
a visually summarize these results. The remaining four
graphs, corresponding to the artificial noisy data (omit-
ting the noise-free data as less likely in practice), are
given as a reference for comparison.
The results on measured data confirm the findings of

the experiments performed on artificial data. DE consis-
tently leads to models with smallest RMSE (best perfor-
mance), regardless of whether we consider the best,
median, worst, or average RMSE (over the 25 runs). The
boxplots clearly show the statistical significance of the
performance differences between the four methods.
DASA is the second best method, PSO is ranked third
and A717 is ranked as the worst performing method.
The observation about the higher variance of the RMSE
values obtained by the PSO method in the TO and
NPO scenarios with artificial data is confirmed in the
experiments with measurement data. In the case of mea-
sured data, there is a very similar error distribution
(range of values) in both scenarios (which is less
expected given the definition of the scenarios), while in
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Figure 5 Convergence performance of the optimization methods on the task of parameter estimation from artificial data. Convergence curves of the four parameter estimation
methods (DASA, PSO, DE, and A717) applied to three artificial datasets (columns) and four observation scenarios (rows): a) CO; b) AO; c) TO; and d) NPO. Graphs in the left column correspond to
the noise-free data set, while the graphs in the middle and right column correspond to the noisy datasets with 5% and 20% relative noise, respectively. In order to capture the convergence
trend over a wide range of values, the convergence curves are plotted using logarithmic scales for both axes.
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case the of artificial data, the NPO scenario is character-
ized with higher RMSE errors than the TO scenario.
The error distribution in the measured data case is clo-
ser to the error distributions generated when consider-
ing artificial data with a noise level of 5%. Similarly, the
convergence curves in Figure 7 resemble the ones for
artificial data, i.e, the DE method converges faster to
better solutions than the other three methods.
As a final test of the quality of the obtained models,

we can visually compare the observed outputs with the
outputs predicted by the models. In this context, Figure
8 visualizes the simulated output vs. the measured out-
put (graphs on the left-hand side) and the complete
dynamic behavior of all the system variables (graphs on
the right-hand side) for the two models corresponding
to the best parameters estimated by DASA and DE for
the TO scenario. Additional file 1, Figures S1-S4 depict
the predicted dynamics of the best model vs. the real-
experimental behavior of the Rab5-to-Rab7 conversion
for the TO and NPO scenarios found by DASA, PSO,
DE, and A717, respectively. Since the time scale in the
measured data was shifted for the sake of synchroniza-
tion of the conversion events of Rab5 and Rab7 domain
proteins, we rescaled it in order to conduct a direct

comparison of the numeric simulation (reference model)
with the measured data: We used the transformation t
¬ 4t + 850.
The left-hand side graphs in additional file 1, Figure

S4 show that A717 fails to reconstruct the Rab5-to-Rab7
dynamics. In both observation scenarios, A717 fails to
find a model with the cut-out switch behavior observed
in Figure 2. On the other hand, DASA, PSO, and DE,
when following the TO scenario, are able to almost per-
fectly reconstruct the real-experimental data (see left-
hand side graph in: Figure 8.a, and additional file 1, Fig-
ures S2.a and S3.b), complete with the time point when
the switch in the total (active- and passive-state) protein
concentrations occurs. In the NPO scenario, DASA,
PSO, and DE are also able to almost perfectly match the
‘assumed’ model output (active-state protein concentra-
tions) against the measured system output (total protein
concentration), but if we compare the model outputs,
we can see that only DE is able to reconstruct the cut-
out switch (even though slightly shifted on both scales,
see graph on the left-hand side of additional file 1, Fig-
ure S3.b), while DASA and PSO are only able to fit one
protein domain, due to the completely different
dynamics of the simulated passive-state protein concen-

Table 3 Results on RMSE and RMSEm of the models estimated from artificial data.

Noise Scenario RMSE RMSEm

DASA PSO DE A717 DASA PSO DE A717

CO 0.0651 0.0527 0.0189 0.7005 0.0651 0.0527 0.0189 0.7005

0% AO 0.0625 0.0539 0.0250 0.6099 1.6272 0.7866 1.7876 1.0684

TO 0.0951 0.1507 0.0197 0.6612 0.5857 0.4606 0.2511 0.7960

NPO 0.2993 0.5040 0.2282 0.6881 2.6840 2.0717 3.9246 3.0273

CO 0.1164 0.1121 0.0999 0.7287 0.1164 0.1121 0.0999 0.7287

5% AO 0.0902 0.0861 0.0690 0.6232 1.0437 0.9043 1.4639 1.3442

TO 0.1363 0.1341 0.1006 0.6546 0.6162 0.2750 0.2831 0.9265

NPO 0.3162 0.5166 0.2463 0.6897 2.8668 3.8831 6.6315 2.1172

CO 0.3958 0.3941 0.3907 0.8113 0.3958 0.3941 0.3907 0.8113

20% AO 0.2770 0.2760 0.2707 0.6782 1.7547 1.0050 2.8513 1.3052

TO 0.4023 0.3983 0.3917 0.7810 0.6967 0.4606 0.4289 0.9952

NPO 0.4929 0.6407 0.4585 0.8023 2.1250 2.5423 2.8333 2.1999

The table presents the median values of RMSE and RMSEm (over the 25 runs) of the models reconstructed with the parameters’ estimates obtained by the three
optimization methods from artificial data. The best values for both metrics are given in bold.

Table 4 Results of the Holm test for significance level a = 0.05.

i a/i Method RMSE Method RMSEm

zi pi Hypothesis zi pi Hypothesis

3 0.017 A717 5.69 1.25·10-8 Rejected A717 2.53 1.14·10-2 Rejected

2 0.025 DASA 3.16 1.57·10-3 Rejected DASA 1.58 1.14·10-1 Accepted

1 0.050 PSO 2.53 1.14·10-2 Rejected DE 1.58 1.14·10-1 Accepted

The table summarizes the outcome of the Holm test performed on the median values of the RMSE and RMSEm results obtained by parameter estimation with
the four optimization methods from artificial data. In the first test based on median values of the RMSE measure, DE is the reference method with rank i = 0. In
the second test based on median values of the RMSEm measure, PSO is the reference method with rank i = 0. The hypothesis “there is no difference in
performance between DE (PSO) and the i-th ranked method” is rejected if the statement pi <a/i holds.
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tration (see graphs on the left-hand side of additional
file 1, Figures S1.b and S2.b).
Finally, the analysis of reconstructed model dynamics

(complete simulation of all the system variables) of the
obtained models reveals further details about their qual-
ity. Note first that the simulated behavior in Figure 2
shows that the passive-state protein concentrations are
almost constant all the time, leading to the conclusion
that the cut-out switch appears at the very same time
point for both total and active-state protein concentra-
tions. For the TO scenario, only the model obtained
with DASA has these two properties of the original
model behavior (see its complete simulation on the
right-hand side of Figure S3.a), while in the NPO sce-
nario this holds for the model obtained by DE (see its
complete simulation on the right-hand side of additional
file 1, Figure S3.b). All the other models do not match
one or both properties: the complete simulation graphs
show that the concentrations of passive-state proteins

vary and/or the switch of the active-state concentrations
takes place at a different time point (or at all). Further
comparison of the simulated behaviors with the original
cut-out switch model behavior from Figure 2 also shows
that the ratio between the active- and passive-state pro-
tein concentrations in the simulation of the model
obtained with DASA in the TO case is closer to the
same ratio in the original model.
Overall, the results on measured data show that all

three meta-heuristic methods are far better than A717.
Among the meta-heuristic methods, DE has a clear
advantage over the other two methods, both in terms of
the convergence rate and in terms of the reconstruction
of model output. In terms of other relevant qualitative
aspects of the behavior of the obtained models, i.e., the
time point of the switch and the ratio between active-
and passive-state protein concentrations, one of the
other two methods (DASA) performs better then DE.
However, note that these qualitative aspects have not

Table 5 The RMSE and RMSEm values for the best model estimated from artificial data.

Noise Scenario DASA PSO DE A717

RMSE RMSEm RMSE RMSEm RMSE RMSEm RMSE RMSEm

CO 0.0345 0.0345 0.0430 0.0430 0.0064 0.0064 0.6080 0.6080

0% AO 0.0446 6.0913 0.0406 0.7693 0.0043 1.1807 0.4644 21.3690

TO 0.0468 1.0964 0.0447 0.0877 0.0110 0.1074 0.4542 0.6150

NPO 0.2382 2.5430 0.3198 1.9977 0.1774 12.2287 0.6220 3.0273

CO 0.1064 0.1064 0.1072 0.1072 0.0977 0.0977 0.5363 0.5362

5% AO 0.0739 0.3343 0.0803 1.8387 0.0678 0.2424 0.3570 0.3723

TO 0.1139 0.1246 0.1096 0.1639 0.0985 0.5058 0.4007 0.9028

NPO 0.2562 3.0161 0.3349 1.4970 0.2163 318.415 0.5189 1.9670

CO 0.3926 0.3926 0.3925 0.3925 0.3904 0.3904 0.6490 0.6490

20% AO 0.2742 1.3904 0.2735 0.4750 0.2704 1.6916 0.4680 0.6220

TO 0.3948 0.4568 0.3955 0.4368 0.3913 0.3954 0.5698 1.2933

NPO 0.4616 1.8011 0.5055 2.6218 0.4448 5.4207 0.7556 7.2268

The table presents the RMSE and corresponding RMSEm values for the model simulated with the best parameters obtained by parameter estimation with the
four optimization methods from artificial data. The best values for RMSE are marked in bold, while the best values for RMSEm are marked in italic.

Table 6 Results on RMSE of the models estimated from measured data.

Scenario DASA PSO DE A717

Best 0.0661 0.0752 0.0599 0.2482

Median 0.0744 0.2032 0.0643 0.2782

TO Worst 0.1530 0.2045 0.0682 0.2898

Average 0.0782 0.1494 0.0647 0.2749

Std 0.0163 0.0627 0.0029 0.0124

Best 0.0665 0.0825 0.0623 0.2453

Median 0.0799 0.1942 0.0649 0.3964

NPO Worst 0.1788 0.2338 0.0698 0.4920

Average 0.0924 0.1680 0.0654 0.3857

Std 0.0305 0.0471 0.0019 0.0724

The table presents the RMSE values associated with the predicted models (over 25 runs) obtained by parameter estimation with the four optimization methods
from measured data. The best values regrading all statistics are given in bold.
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been included in the objective function (SSE) used by
the optimization methods: thus, we cannot objectively
and fairly compare the methods along this dimension.

Parameter values and practical parameter identifiability
Table 7 compares the reference parameter values from
Eq. (11) with the best parameter values obtained using
each of the four parameter estimation methods for the
CO and TO scenarios on artificial data with 20% relative
noise. Additional file 1, Tables S1-S4, present the same
comparison in terms of relative error of the estimated
parameters with respect to all four observation scenarios
on artificial data with 0%, 5%, and 20% noise for DASA,

PSO, DE, and A717, respectively, while additional file 1,
Table S5 presents the best parameter values obtained by
the four parameter estimation methods on measured
data, for the TO and NPO observation scenarios.
Despite the fact that DE finds parameter values that
lead to low values of the objective function, the obtained
parameter values differ quite substantially from the
reference parameter values. Results on artificial data
show this same pattern of large differences between the
estimated and reference parameter values for all four
parameter estimation methods in all scenarios; except
for the parameters c4, c8, c12, c15, r5(0), and r7(0), the
relative error of the other estimated parameters is over

a) b) c)

Figure 6 RMSE performance of the models obtained by parameter estimation from measured data. Boxplots of the performance
distributions of the four optimization methods (DASA, PSO, DE, and A717) in terms of the reconstructed output (RMSE), when considering two
different observability scenarios (columns TO and NPO) and three datasets: a) measured data, b) artificial data with s = 5% relative noise; and c)
artificial data with s = 20% relative noise. Graphs b) and c) are the same as the corresponding graphs from Figure 3. Due to the large differences
in the order of magnitude, the RMSEm values are plotted on a logarithmic scale.
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Figure 7 Convergence performance of the optimization methods on the task of parameter estimation from measured data.
Convergence curves of the four parameter estimation methods (DASA, PSO, DE, and A717) when considering two observation scenarios: a) TO
and b) NPO. In order to capture the convergence trend over a wide range of values the convergence curves are plotted using logarithmic scales
for both axes.

Tashkova et al. BMC Systems Biology 2011, 5:159
http://www.biomedcentral.com/1752-0509/5/159

Page 19 of 26



100%. On measured data, we do not have reference
values, but the comparison (additional file 1, Table S5)
with the parameter values proposed by Del Conte-Zerial
et al. [16] reveals the same pattern of large differences.
Evidently, many quite different sets of parameter

values produce behaviors that resemble the reference
model behavior, suggesting that the endocytosis model-
ing task, as many others in system biology, has para-
meter identifiability problems. Indeed, a systematic
study of seventeen system biology models [43] has
found parameter identifiability issues in each of them.
To empirically confirm this conjecture about our model,
we performed a practical parameter identifiability test
using the Monte Carlo-based approach and DE as a
parameter estimation method. We considered this test
in three observations scenarios, CO, AO, and TO, using
data with 20% noise. The results of the test in the differ-
ent observation scenarios confirm that the considered
parameter estimation task has identifiability issues. The
results reveal high relative errors; the mean value of the
estimated parameters are overall far from the reference
ones. Except for the parameters c4, c8, c12, c14, c15, r5(0),

and r7(0), the relative error of the other estimated para-
meters is over 100%. This observation additionally re-
confirms the statements in the previous paragraph
obtained form the results regarding all optimization
methods. In extreme cases, the relative errors are over
1000%, as it is the case with the parameters: c10 (in all
scenarios), c17 (in CO and TO scenarios), R5(0) (in CO
and TO scenarios), and R7(0) (in TO scenario). Further-
more, the calculated uncertainties (95% confidence
interval) of the parameters are large, especially for c7, R5

(0), and R7(0) over all scenarios; see additional file 1,
Tables S6-S8 that summarize the results of the Monte
Carlo-based approach for the CO, AO, and TO scenario,
respectively.
Furthermore, the estimated values for many model

parameters are evenly distributed across the parameter
ranges; see the histograms of the distributions of the
estimated parameter values in additional file 1, Figures
S5-S7. If we take a look at the histograms for the CO
scenario, we can see that parameters like c1, c2, c5, c8,
c11, and c13 have very similar (almost) uniform distribu-
tions with higher concentration of the estimates on the

Figure 8 Simulated behavior of the best models obtained by parameter estimation from measured data in the TO observation
scenario. Experimental (observed) vs. reconstructed output (left-hand side) and simulated behavior (right-hand side) of the model
corresponding to the best parameters’ values estimated from measured data in the TO observation scenario using: a) DASA and b) DE.
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bounds of the allowed range. We observe similar distri-
butions for most of these parameters in the AO scenario
(including r5(0), r7(0), c6, and c16) and in the TO sce-
nario (including c6, c15, and c16) as well. For some para-
meters (like c3, c12, and c13 in the CO and AO scenario)
the confidence interval does not include the reference
value of the parameter, emphasizing the complexity of
the optimization problem and the objective function. A
closer look at the histograms reveals that some pairs of
parameters have very similar (or almost identical) distri-
butions of the estimates: This is in general the case with
the (c1, c5) and (c6, c16) pairs of parameters. Note also
how the distributions of the initial values of the system
variables r5(0) and r7(0) differ among scenarios. In the
case of complete observability, their values follow
(almost) a Gaussian distribution around the reference
value. In the TO scenario, most of the estimated initial
values are in the neighborhood of the reference values
even though the relative errors are higher than in the
CO scenario. However, in the AO scenario, the distribu-
tion does not resemble a Gaussian; the values are spread
all over the corresponding ranges, with higher concen-
trations at the ranges’ limits and far from the reference
values. Evidently, the lack of information on the concen-
tration of passive-state proteins (r5 and r7) in the data
worsens the problems related to parameter

identifiability. The correlation matrices for the estimated
parameter values, presented in Figure 9, re-confirm the
practical identifiability problems, by emphasizing several
pairs of correlated parameters. In the CO scenario, there
are seven pairs of highly correlated parameters: A corre-
lation R > 0.9 is evident for the (c6, c16), (c1, c5), (c7, c18),
and (c8, c9) pairs of parameters, while the pairs (c8, c9),
(c8, c18), and (c2, c13) have correlations in the range 0.84
< |R| < 0.9. In the AO scenario, the most correlated are
c8 and c9, while in the TO scenario there are six such
pairs: the pairs (c6, c16), (c1, c5), and (c7, c18) have almost
prefect linear correlation R > 0.99, while the (r5(0), R5

(0)), (c2, c13), and (c8, c9) pairs have a correlation in the
range 0.81 < |R| < 0.85. In the last case, the correlation
between the initial values of passive-state and active-
state protein concentrations is expected, since we only
observe their sum in the TO scenario. The high pairwise
correlations can be observed visually in Figure 10, where
the scatter plots of the obtained solutions are combined
with the contour plots of the objective function land-
scape for selected pairs of parameters. For example,
observe the long diagonal valley with many (almost)
equally good solutions for the (c1, c5) and (c6, c16) pairs
of parameters in Figure 10.a (left-hand side) and Figure
10.c (left-hand side). We observe a similar pattern of
behavior for these pairs of parameters in both the CO

Table 7 Best estimated values of the model parameters obtained from artificial data with 20% noise.

CO TO

c c* DASA PSO DE A717 DASA PSO DE A717

c1 1 4.0000 1.4644 0.2226 1.6393 3.1593 1.5627 1.8293 0.2974

c2 0.3 3.7099 2.0786 1.1132 2.5748 3.7499 2.7324 4 2.5086

c3 0.1 0.1977 1.2612 0.1974 0.0229 3.3526 0.2064 0.2682 0.5823

c4 2.5 3.5412 0.4192 3.1208 3.3226 0.2007 1.5837 3.7871 0.1709

c5 1 3.9940 1.4613 0.2217 1.5411 3.1287 1.4623 1.7688 0.5845

c6 0.483 0.5165 3.0640 3.6860 1.3897 0.4074 1.8952 0.4713 1.9140

c7 0.21 3.9471 2.6526 0.1503 1.5383 1.7030 2.9345 3.4951 2.0874

c8 3 3.1843 1.5314 3.4591 1.6254 1.5254 1.6742 3.1784 3.5895

c9 0.1 0.1563 1.5057 0.0524 3.1257 1.6444 1.5321 0.9762 1.9652

c10 0.021 2.0757 1.8316 0.0645 2.4551 0.2091 2.1490 1.4581 1.1780

c11 1 1.8340 2.9039 2.2013 2.3769 2.5222 3.2725 1.9195 2.6830

c12 3 3.1572 2.2358 1.7009 2.8349 1.2553 1.5096 0.1557 1.2227

c13 0.31 4.0000 1.7187 0.9381 0.6126 4.0000 2.9568 3.4364 3.2812

c14 0.3 1.0661 1.3179 0.3833 2.2955 1.7539 1.1975 0.8110 2.4085

c15 3 2.3525 1.7764 3.9800 3.6281 2.1599 2.1684 3.5535 3.3994

c16 0.483 0.5178 3.0728 3.6981 1.2091 0.4224 2.0041 0.7261 2.7693

c17 0.06 1.8635 0.4696 0.4159 2.0548 0.8316 1.3081 1.7687 0.2836

c18 0.15 2.7213 1.0043 0.1087 0.4984 0.5992 1.0744 1.3643 0.6677

r5(0) 1.0 0.8750 0.9116 0.9122 0.9535 0.9957 0.4830 0.9239 1.4011

R5(0) 0.001 4.0E-07 0.0358 0.1194 1.0854 3.3E-07 0.2313 0 1.3742

r7(0) 1.0 0.8096 1.3352 0.7978 0.1557 1.0153 0.4473 0.7310 1.0320

R7(0) 0.001 1.2E-10 0.2444 3.4E-04 0.8451 0.0139 0.1696 0.2515 0.9143

Best parameters’ values as estimated by the four optimization methods from artificial data with 20% relative noise in the CO and TO observation scenarios.
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Figure 9 Correlation matrices for the parameters’ estimates obtained by DE from noisy data (s = 20%) in a Monte Carlo-based approach. Colored matrix cells visualize the correlation
R for parameter pairs based on a scale-to-color mapping. The cells on the main diagonal represent the self-correlations of the parameters (they are equal to 1). The most correlated pairs of
parameters per observations scenarios are: a) R(c6, c16) = 0.99997, R(c1, c5) = 0.99997, R(c7, c18) = 0.9862, R(c7, c9) = 0.9093, R(c8, c9) = -0.8749, R(c9, c18) = 0.8568, R(c2, c13) = 0.8413 in the case of
CO; b) R(c8, c9) = -0.9097 and R(c9, c18) = -0.7789 in the case of AO; and c) R(c6, c16) = 0.9980, R(c1, c5) = 0.9934, R(c7, c18) = 0.9901, R(r5(0), R5(0) = -0.8509, R(c2, c13) = 0.8343, and R(c8, c9) =
-0.8105 in the case of TO. Smallest values for R are obtained for the following pairs of parameters: a) R(c1, c18) = -0.00196 in the case of CO; b) R(c3, c5) = 0.000032 in the case of AO; and c) R(c4,
c6) = -0.0011 in the case of TO.
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and TO scenarios; see additional file 1, Figures S8 and
S10. Figure 10.b, corresponding to the AO scenario,
confirms that the objective function is characterized
with elongated elliptical contours for the parameter
pairs (c8, c9) as well. While the above-mentioned
examples of correlated parameters are related to the
lack of practical identifiability, the plot for the c7 and
c18 parameters on the right-hand side in Figure 10.a
(see additional file 1, Figure S10 for the TO case as
well) indicates structural non-identifiability of c7 in
the considered search interval; we observe a very large
flat region in the part of the space 0.5 <c18 < 4, where

c7 can take any value and does not influence the
objective function. A similar observation holds for the
c9 and c18 parameters in Figure 10.b (see additional
file 1, Figure S8 for the CO case as well), in which
case the c9 parameter seems to be structurally non-
identifiable. Finally, the right-hand side plot in Figure
10.c re-confirms the correlation of the initial condi-
tions: (r5(0) and R5(0)).

Conclusions
In this paper, we address the task of parameter estima-
tion in models of the dynamics of biological systems as
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Figure 10 Contour plots of the objective function with scatter plots of the parameters’ estimates obtained by DE from noisy data (s =
20%) in a Monte Carlo-based approach. The plots correspond to two representative pairs of correlated parameters in the observation
scenarios: a) CO; b) AO; and c) TO. Note that one pair of correlated parameters in the TO observation scenario corresponds to the initial values
of the Rab5 protein. The green dot represents the reference parameter value from Eqs. (11) and (12). The red dots are the parameters’ estimates
obtained by the DE method with the Monte Carlo-based approach.
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considered in the field of system biology. In this context,
it is typical that the considered models are nonlinear
(due to the nonlinearity of the behavior of the modeled
systems), have many parameters (are of high dimension-
ality), the measurements are imperfect (due to measure-
ment noise), the system can be only partially observed
(leading to incomplete or misinterpreted measurements).
These properties make parameter estimation a challen-
ging optimization problem, calling for the use of
advanced optimization methods.
The focus of this paper is the use of meta-heuristic

optimization methods for parameter estimation in
dynamic system models typical of systems biology. We
conduct an extensive experimental comparison of four
optimization methods: the differential ant-stigmergy
algorithm (DASA), particle-swarm optimization (PSO),
and differential evolution (DE), all from the same class
of meta-heuristic methods, as well as a local-search deri-
vative-based method (A717). We compare these four
methods as applied to a parameter estimation problem
representative of the target class of problems described
above. We use a a practically relevant model of endocy-
tosis that captures the nonlinear dynamics of endosome
maturation reflected in a cut-out switch transition
between the Rab5 and Rab7 domain protein concentra-
tions. The model is nonlinear and has many parameters.
We compare the performance of the four optimization
methods on this task along a number of dimensions,
including the quality of reconstructing the observed sys-
tem output (the measured quantities) and the complete
model dynamics (all system variables, including unob-
served ones), as well as the speed of convergence. Com-
parisons are made under different observation scenarios
(full observability and different types of partial observa-
bility). We use both real (measured) data, containing
partial observations of the system, and pseudo-experi-
mental (artificial) data obtained by simulating the model
and adding different amounts of artificial noise: The use
of pseudo-experimental data allows us a more controlled
study of the influence of noise and observability on the
performance of the parameter estimation (optimization
methods).
Noise in the measurements does influence the perfor-

mance of the optimization methods, with higher
amounts of noise making the task more difficult. The
observability of the system (as varied through the obser-
vation scenarios), has a much stronger influence, where
less complete observations make the optimization task
much more difficult. Worst results are obtained when
the observations are misinterpreted, i.e., when the actual
total concentrations of Rab5 and Rab7 are taken to
represent the concentrations of these proteins in their
active states.

We also investigate the practical identifiability of the
model parameters: Like many similar tasks in systems
biology, the task considered has parameter identifiability
problems. These are manifested by high relative errors
of the reconstructed parameter values, spread uniform-
like distributions of some parameter estimates, and
strong correlations between some pairs of estimated
parameters. The problems are present in all observation
scenarios and are most severe in the case of incomplete
observations. The performance of all three meta-heuris-
tic methods is affected by these problems. On the other
hand, this explains the severe difficulties that the local
search method (A717) experienced on the given para-
meter estimation task. Overall, the global meta-heuristic
methods (DASA, PSO, and DE) clearly and significantly
outperform the local derivative-based method (A717).
Among the three meta-heuristics, differential evolution
(DE) performs best in terms of the objective function, i.
e., the quality of reconstructing the expected output,
and in terms of the speed of convergence. These results
hold for both real and artificial data, for all observability
scenarios considered, and for all amounts of noise
added to the artificial data. In terms of the quality of
reconstructing the complete model dynamics and other
qualitative aspects of the behavior of the obtained mod-
els, the different meta-heuristic methods exhibit differ-
ent behavior and relative performance under different
conditions: More work needs to be done to better
understand and objectively evaluate these differences in
performance.
Further work is needed to confirm and strengthen the

conclusions drawn from the experimental evaluation
presented in this paper, primarily in the direction of
conducting additional experiments. On one hand, we
need to test the optimization methods on other tasks of
parameter estimation in nonlinear models of biochem-
ical kinetics. On the other hand, we can extend the set
of optimization methods applied to the parameter esti-
mation tasks, considering other state-of-the-art algo-
rithms used for parameter estimation in the domain of
computational systems biology [7-9].
Last, but not least, we need to formalize relevant qua-

litative aspects of model quality (such as the time point
of switch between the observed Rab5 and Rab7 concen-
trations in the endocytosis model) and include these in
the formulation of the optimization problem of para-
meter estimation. These aspects will typically depend on
domain knowledge about the particular problem at hand
and can be made a part of the overall objective function
or formulated as a separate objective function in a
multi-objective optimization setting. This will allow us
to objectively and fairly evaluate and compare the differ-
ent optimization approaches from these aspects.
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In sum, the bio-inspired meta-heuristic optimization
methods considered are suitable for estimating the para-
meters in the ODE model of the dynamics of endocyto-
sis under a range of conditions. The model considered,
as well as the observational conditions (such as partial
observability and noise) are representative of parameter
estimation tasks in ODE models of biochemical network
dynamics. Thus, our results point out and clearly high-
light the promise of bio-inspired meta-heuristic methods
for solving problems of parameter estimation in models
of dynamic systems from the area of system biology.

Additional material

Additional file 1: Supplemental information. This file contains Figures
S1-S10 and Tables S1-S8 with results obtained from parameter estimation
in the Rab-to-Rab7 conversion model. Experimental behavior vs.
simulated behavior of the reconstructed output and reconstructed
model dynamics with the best parameters estimated by DASA (Figure
S1), PSO (Figure S2), DE (Figure S3), and A717 (Figure S4) using measured
data. Relative errors of the best estimated parameters by DASA (Table
S1), PSO (Table S2), DE (Table S3), and A717 (Table S4) using artificial
data. Parameter values associated with the best solutions estimated
using measured data (Table S5). Summary of results on the DE estimated
parameters with the Monte Carlo-based approach using data with 20%
noise in three observation scenarios: CO (Table S6), AO (Table S7), and
TO (Table S8). Corresponding histograms of the DE estimated parameters
with the Monte Carlo-based approach using data with 20% noise: CO
(Figure S5), AO (Figure S6), and TO (Figure S7). Scatter plots of the Monte
Carlo-based DE parameter estimates combined with contour plots of the
objective function when considering data with 20% noise for the most
correlated pairs of parameters in the CO (Figure S8), AO (Figure S9), and
TO (Figure S10) observation scenarios.
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