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Abstract

Background: Hemostasis is a critical and active function of the blood mediated by platelets. Therefore, the
prevention of pathological platelet aggregation is of great importance as well as of pharmaceutical and medical
interest. Endogenous platelet inhibition is predominantly based on cyclic nucleotides (CAMP, cGMP) elevation and
subsequent cyclic nucleotide-dependent protein kinase (PKA, PKG) activation. In turn, platelet phosphodiesterases
(PDEs) and protein phosphatases counterbalance their activity. This main inhibitory pathway in human platelets is
crucial for countervailing unwanted platelet activation. Consequently, the regulators of cyclic nucleotide signaling
are of particular interest to pharmacology and therapeutics of atherothrombosis. Modeling of pharmacodynamics
allows understanding this intricate signaling and supports the precise description of these pivotal targets for
pharmacological modulation.

Results: We modeled dynamically concentration-dependent responses of pathway effectors (inhibitors, activators,
drug combinations) to cyclic nucleotide signaling as well as to downstream signaling events and verified resulting
model predictions by experimental data. Experiments with various cAMP affecting compounds including anti-
platelet drugs and their combinations revealed a high fidelity, fine-tuned cAMP signaling in platelets without cross-
talk to the cGMP pathway. The model and the data provide evidence for two independent feedback loops: PKA,
which is activated by elevated cAMP levels in the platelet, subsequently inhibits adenylyl cyclase (AC) but as well
activates PDE3. By multi-experiment fitting, we established a comprehensive dynamic model with one predictive,
optimized and validated set of parameters. Different pharmacological conditions (inhibition, activation, drug
combinations, permanent and transient perturbations) are successfully tested and simulated, including statistical
validation and sensitivity analysis. Downstream cyclic nucleotide signaling events target different phosphorylation
sites for CAMP- and cGMP-dependent protein kinases (PKA, PKG) in the vasodilator-stimulated phosphoprotein
(VASP). VASP phosphorylation as well as cAMP levels resulting from different drug strengths and combined
stimulants were quantitatively modeled. These predictions were again experimentally validated. High sensitivity of
the signaling pathway at low concentrations is involved in a fine-tuned balance as well as stable activation of this
inhibitory cyclic nucleotide pathway.

Conclusions: On the basis of experimental data, literature mining and database screening we established a
dynamic in silico model of cyclic nucleotide signaling and probed its signaling sensitivity. Thoroughly validated, it
successfully predicts drug combination effects on platelet function, including synergism, antagonism and regulatory
loops.
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Background

Cyclic nucleotide signaling is the main inhibitory path-
way in platelets in vivo that balances platelet activation.
The complex regulation of this pathway includes
endothelium released factors activating platelet nucleo-
tide cyclases and in consequence cyclic nucleotide-
dependent protein kinases that in turn phosphorylate
major components of the platelet activation pathways
thus preventing platelet aggregation [1]. Platelet phos-
phodiesterases (PDEs) counterbalance the action of
nucleotide cyclases [2-5]. Regulators of cAMP levels are
of strong pharmacological interest and have clinical and
therapeutic implications [4].

Computational modeling can advance understanding
of cellular signaling in thrombosis and hemostasis and
elucidates furthermore the fine-tuned cAMP signaling in
platelets. Great effort has been devoted to model
endothelial layer maintenance and senescence [6] as
well as thrombus development [7]. Here we model time-
resolved cyclic nucleotide pathway signaling in human
platelets involving specific parameters for metabolism,
regulation and different effector strengths by means of a
data-based in silico modeling approach.

Investigation of signaling pathways by kinetic model-
ing is commonly applied [8-11] and stimulates new bio-
logical insights into the modeled system. Combined with
statistical validation based on experimental data,
dynamic models can serve as a platform for testing
hypotheses e.g. on pharmacological interventions on the
system. Furthermore, the predictive features of kinetic
models allow leading and directing biochemical experi-
ments and elicit novel and unexpected biological
findings.

Here we present a first kinetic model on platelet sig-
naling including time-resolved interplay and down-
stream effects of cyclic nucleotide signaling pathways
(Figure 1).

In the following, our quantitative dynamic model,
based on a system of ordinary differential equations
(ODEs) is set up according to our philosophy (see
below): Using a data-driven modeling approach, it
enables us to correctly model the behavior of measured
pathway components over time as well as to test the
effects of drug combinations. It estimates individual
effects of PDE-specific inhibitors and activators of ade-
nylyl cyclase (AC) at different strengths and combina-
tions and allows the prediction of feedback loops. We
investigate cCAMP accumulation after stimulation of ade-
nylyl cyclase by Iloprost and Forskolin as well as the
effects of inhibition of cAMP degrading PDEs by Cilos-
tamide or Milrinone using individual concentration
parameters for each platelet PDE isoform (PDE2, PDE3
and PDES5). The reliability of the model is tested and
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validated with experimental data of human platelets. It
allows the prediction of effects of platelet inhibiting
drugs and drug combinations on platelet cCAMP pathway
taking drug interactions, time-scales and regulatory
loops into account.

Results

Modeling approach

Although the main players of inhibitory signal transduc-
tion in human platelets are well investigated, their inter-
play is still not fully understood. Since platelet inhibition
and its up- and downstream signaling events influence
this fine-tuned balance around platelet activation and
quiescence, we here focus on a pharmacological moti-
vated modeling approach, driven by data-based model
validation.

Our modeling approach is as follows: To model the
basal levels of platelet cAMP and cGMP we first estab-
lished a dynamic in silico model based on a set of ordin-
ary differential equations, comprising prior knowledge of
specific kinetic constants and concentrations of the sig-
naling components (see Appendix). We then performed
experimental measurements of human platelets stimulat-
ing the system with various doses of PDE inhibitors and
AC activators. All collected data were used to fit the
model parameters (multi-experiment fitting), iteratively
expanding and improving the ab initio model and its
predictions by means of experimental data and statistical
model testing (Figure 2A). This allowed us to differenti-
ate between competing models (implementing different
biological hypotheses, e.g. presence or absence of feed-
back regulation). Hypothesis testing and data-based
model selection lead to the most parsimonious but rea-
sonable model which was finally used to predict the
effects for novel drug combinations as well as down-
stream-signaling events (VASP phosphorylation). These
predictions again lead to the design of new experiments
to validate the predictive model. The modeling and
model validation itself was conducted within several
modeling phases (Figure 2B), focusing on the goodness
of fit regarding the model refinement processes.

Set-up of a basal model of unstimulated platelets

We developed a dynamic model reflecting the major
cyclic nucleotide pathway topology as illustrated in Fig-
ure 1 and specified in the Appendix. It integrates infor-
mation about enzyme isoforms in platelets, gathered
from a previously established proteome and transcrip-
tome database of the human platelet [12,13] and litera-
ture mining: In the resting (non-stimulated) platelet,
adenylyl and guanylyl cyclase (GC) and the three major
phosphodiesterases PDE2, PDE3 and PDE5 together
maintain basal cAMP and cGMP levels of 4 uM and 0.4
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Figure 1 Topological scheme of modeled cyclic nucleotide signaling pathways. Main components of cyclic nucleotide signaling pathways
and their cross-talk and downstream effects are depicted: Major signaling components of the simplified cCAMP signaling pathway are shown in
yellow, pivotal components of cGMP signaling in green and the three central cyclic nucleotide degrading phosphodiesterases (PDEs) are
depicted in blue. Both, cCAMP and cGMP signaling share in downstream effects on VASP (brown), which is phosphorylated at both, Ser157 and
Ser239 differentially upon cyclic nucleotide dependent activation of their corresponding protein kinases (PKA, PKG). Levels of cAMP and cGMP
react sensitively to pathway modulating compounds such as inhibitors of PDEs (Cilostamide, Milrinone) as well as adenylyl cyclase (AC)
stimulating drugs (lloprost, Forskolin) shown in red rectangles. This direct activation (green dashed arrow) and/or inhibition (red arrow) leads to
an elevated cAMP level which subsequently feeds back on PDE3 (positive feedback) as well as on AC (negative feedback), as indicated by bold

uM, respectively [14]. All known pivotal PDEs expressed
in platelets were included: PDE2A (cGMP-stimulated),
PDE3A (cGMP-inhibited) and PDE5A (cGMP-specific)
and their respective enzymatic activity was modeled by
Michaelis Menten kinetics as detailed in [2]. In particu-
lar, cAMP shows positively cooperative kinetic effects,
resulting in a Hill coefficient of 2 with respect to PDE2
catalysis [15]. Moreover, PDE2 is modeled as a cGMP
stimulated homodimer resulting in increased activity at
physiological concentrations (1-10 uM), while V.«
remains unchanged [16]. Primarily, cAMP degradation
is provided by PDE3 (80%), regulating basal cAMP levels
[16]. Because of its cGMP specificity, PDE5 is included
in the basal model but plays only a minor role under
basal conditions and is insignificant for cAMP regula-
tion. Under basal conditions (unstimulated platelet), we
assumed an overall AC activity in platelets to 7 + 2 uM/
min according to data reported in literature [17-19].
This leads to the parsimonious but reasonable network
structure of the resting state (Figure 3A).

Model and experimental data indicate low effective PDE
concentrations in resting human platelets

The central components of the platelet cyclic nucleotide
pathways are the PDEs. Although, data on enzyme
kinetics for many isoforms (including those expressed in
the platelet) are available, no data on enzyme concentra-
tion in human platelets for any isoform are currently
accessible. Therefore, we measured intracellular concen-
trations of the major phosphodiesterases in human pla-
telets. After calibration with recombinant expressed
PDEs by Western blot this yields concentrations of
63.46 mg/l (3.3 ng/10” platelets) for PDE2, 225 mg/l
(11.7 ng/lO7 platelets) for PDE3 and 1359 mg/l (70.7
ng/10” platelets) for PDE5. Total molar concentrations
are calculated based on a platelet volume of 5.2 fl as
reported in [14].

Using the experimentally determined PDE concentra-
tions and assuming that 80% of total cCAMP turnover is
provided by PDE3 activity [16] simulations from the
basic model of the unstimulated platelet indicate that
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Subsequent model predictions again serve for data-based model validation and statistical model selection. (B) Seven main modeling phases
guided the way from the platelet signaling network creation and to the model-based design and prediction of new experiments within this
study. These single modeling steps (white boxes) are further explained (gray boxes) referring to our study on platelet signaling.

basal cyclic nucleotide levels cannot be maintained with
these levels of active PDEs but are rapidly diminished
(Additional file 1, Figure S2.1). In fact, mathematical cal-
culations yielded a cAMP hydrolysis activity of 1846.1
puM/min for the PDE3 isoform (75% of total activity) as
well as 642.9 uM/min for PDE2 (~ 25% of total activity).
This would give total cAMP hydrolysis rate of 2.5 mM/
min corresponding to a turnover rate of the entire plate-
let cAMP pool of 625 times per minute. These results
suggest that not the entire amount of PDE is enzymati-
cally active but rather the majority of the enzyme
remains inactive in resting platelets. Parameter optimi-
zation constraining on a constant basal cAMP level of 4
UM vyielded an enzymatically active PDE concentration
of 0.05 mg/1 for PDE2 (only 0.1% of total PDE2 concen-
tration) and 2.3 mg/l for PDE3 (just 1% of total PDE2
concentration), respectively. This precisely reproduced
cyclic nucleotide levels under resting conditions (Addi-
tional file 1, Figure S2.1). Consequently, this predicts an
in vivo activity of 1.5 uM/min for PDE2 and of 6.5 uM/
min for PDE3, yielding a total cAMP hydrolysis activity
of 8 uM/min. This agrees with apparently low available
concentrations suggested by electron microscopy (Addi-
tional file 1, Part III), though high total PDE concentra-
tions were measured in vitro. The low active
concentration for the antibody stain may be due to e.g.
enzyme sequestration or inactivation in a complex (epi-
tope masking) [20]. Thus, either substantial amounts of

cAMP degrading PDEs are not catalytically active and/
or the in vivo enzyme activity is significantly lower than
under in vitro conditions. Furthermore, there is experi-
mental evidence indicating the compartmentalization of
PDE3 and PDES5 [20-22]. To incorporate all experimen-
tal findings, we thus extended the model to include
equilibrium between an active or inactive PDE form
(Figure 1, Figure 3).

Model validation using experimental time series data
from cAMP elevating compounds

After the development of the basal model of cyclic
nucleotide signaling under resting conditions, we experi-
mentally analyzed and modeled pathway effects of drugs
causing elevated cyclic nucleotide levels in platelets thus
inhibiting platelet aggregation (anti-platelet effect).

We here focus on the cAMP pathway, probing varying
drug doses of PDE inhibitors and stimulators of AC:
The inhibition of PDE3 by Milrinone (1, 5, 10, 50, 100
uM) or Cilostamide (0.5, 1, 5, 10, 50 pM) resulted in a
delayed increase in cAMP concentration (Figure 4A, B,
respectively), whereas Milrinone exerted a larger effect
resulting in higher cAMP levels compared to those
induced by treatment with comparable doses of Cilosta-
mide. Stimulation of the prostacyclin receptor by Ilo-
prost (1, 5, 10, 50, 100 nM, Figure 4C) or allosteric
activation of ACs by Forskolin (1, 3, 10, 30, 100, 200,
500 uM) evoked an immediate and pronounced cAMP
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inhibition (anti-platelet effect): (B) Platelet PDE3 inhibition (competitive inhibition via Milrinone, Cilostamide). The cAMP influx (reaction r1) and
cAMP degradation (reaction r2,r7) via active phosphodiesterases PDE2, PDE3 (reactions r3-r6) act as a counterbalance. (C) Activation of AC via
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We therefore modified the enzymatic catalysis (PDE3)
by incorporating the kinetics for competitive inhibition
(Figure 3B) as reported in [23] resulting in the observed
Michaelis-Menten-like reaction rate

increase (Figure 4D). Dosage-dependent stimulation by
the stable prostacyclin analog Iloprost led to elevated
cAMP plateaus with saturation beyond the administra-
tion of 50 nM Iloprost (Figure 4C). Similarly, stimula-
tion by diterpene Forskolin (500 uM) achieved high
cAMP concentrations and a plateau (700 uM cAMP)
after five minutes (Figure 4D). For each time point and
drug dosage, three independent cAMP measurements
were quantified.

Vinax(PDE3) - ¢(PDE3) - ¢(cAMP)

(1.0 + Z') - K(PDE3) + c(cAMP) . )

i

Here, u; represents the concentration of the inhibitor

Model selection: Multi-experiment fitting and testing
hypotheses on cAMP feedback loops

To incorporate all experimental findings, we iteratively
expanded and refined the established basal model by
fitting the resulting models reflecting PDE inhibition
and AC stimulation simultaneously to all collected
data sets:

(Milrinone, Cilostamide), whereas k; denotes the respec-
tive inhibition constant. These drug-specific constants
adjust the apparent K,-value of the competitively inhib-
ited enzyme.

To model AC activation, we introduce additional rates

2)

U = XForskolins U = Xlloprost
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Figure 4 Multi-experimental data fit. Means of three independent cAMP measurements (circles) and estimated standard error of the mean,
resulting of CAMP elevating platelet treatments as PDE3 inhibition (A, B) and activation of adenylyl cyclase (C, D) through administration of
varying drug doses. Displayed curves reflect predicted model trajectories of the optimized pathway models: Models for PDE inhibition and AC
activation were fit simultaneously to all displayed data (of number data points N =155; * = 129.08), by precisely estimating a set of only 23
parameters in total. Top: Inhibition of PDE3 with different concentrations of Cilostamide (A) and Milrinone (B) Bottom: Model trajectories and
measurements after adenylyl cyclase stimulation with different concentrations of lloprost (C) and Forskolin (D). Colors: Varying concentrations of
given drug stimuli (hardly any cAMP elevating effect of Cilostamide at low administered doses).
A

respectively, mimicking the increased cAMP formation
by AC (Figure 3C). This rate has been estimated locally
for each concentration of the AC activators Forskolin
and Iloprost.

We conducted and evaluated fit sequences by slightly
disturbing all model parameters before again adapting
the model to time series data. We chose fitting ranges
of unknown parameters (Additional File 1, Part II)
according to mean values derived from literature if
available (e.g. basal cAMP influx, inhibition constants)
or selected a broad range in effect not limiting the
parameter space during fitting (influx rates). Multi-
experiment fitting sequences provided us with x>
values, indicating the quality of model fits (Table 1).
This reveals that the adapted model, according to
equations (1) and (2), could not explain all

experimental data. Addressing this discrepancy, we
considered two possibilities to further expand and
refine the model: Feedback regulation of the cAMP
level is known to be mediated through activation of
PDE3 and inhibition of AC, which both have been
experimentally observed [24-28]. The mechanism of
PDE3 activation is also indicated by possible PDE3
phosphorylation at Ser312, a PKA phosphorylation site,
as reported in PlateletWeb [12].

Therefore, we modified the underlying model equa-
tions (1) and (2) by introducing a cAMP-dependent
increase of V,..(PDE3)

Vimaxew = Vimax(PDE3) + kf1 - ¢(cAMP). (3)

Factor kf; thereby weights the cAMP feedback result-
ing in an activation of PDE3.
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Table 1 Evaluation of integrated feedback loops within
the dynamic model.

Hypotheses X N p X2IN AIC

HO 530.19 155 21 342 857.04
H1 185.52 155 22 12 514.395
H2 133.00 155 22 09 461.825
H3 129.08 155 23 0.8328 459952

Competing hypotheses: HO - no integrated assumption of feedback loops; H1
- positive feedback of cAMP-dependent PKA to PDE3 (one additional
parameter); H2 - negative feedback of elevated cAMP levels to AC (one
additional parameter); H3 - both assumptions (H1, H2) are integrated within
the mathematical model (two additional parameters). For each evaluated
hypotheses the resulting x> -value, number of data points (N), number of
estimated model parameters (p) and the Akaike information criterion (AIC) are
listed.

Analogous, we added a cAMP-dependent term
mimicking AC inhibition in rate equations (2) for i =
Forskolin and Iloprost, respectively:

Unew = Xi — kfz - c(cAMP). (4)

Feedback constant kf, adjusts the strength of this
negative feedback loop.

We investigated by likelihood ratio tests for competing
nested pairs of models [29] whether both model refine-
ments are statistically necessary to expand the model
structure. Table 2 shows the resulting p-values for test-
ing hypotheses on both feedback loops. We tested either
positive feedback of cAMP-dependent PKA on PDE3
activity (H1), negative feedback of PKA inhibiting AC
activity (H2) or both feedback loops simultaneously
(H3) against the null hypothesis that the parameter (kf},
kf>) with regard to each feedback loop equals zero (HO).
Albeit, assuming one feedback solely (H1 or H2)
enhanced the overall model fit (p < 0.05), it failed in
explaining all time series simultaneously. For a given
level of significance of 0.05, likelihood ratio tests of
nested models evidenced a significantly better fit to the
data by including both (i) the inhibition of AC, as well
as (ii) the cAMP-dependent activation of PDE3 by PKA
(H3 vs H2, p = 0.0477; H3 vs H1, p = 5.80-10"%).
Hence, the inclusion of both feedback constants statisti-
cally led to the most reasonable model structure.

Table 2 Hypothesis testing and model selection.

Test scenario p-value
H1 versus HO <10
H2 versus HO <10
H3 versus H1 580-10™
H3 versus H2 0.0477

Four competing hypotheses on feedback loop integration (see Table 2) are
tested with regard to the given level of significance (0.05). For each scenario,
the appropriate likelihood ratio test for nested model pairs was conducted
(based on x? -values of resulting model fit sequences). This reveals that the
integration of both additional feedback constants is statistically relevant to
explain all time series data on cAMP elevating drugs.
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Modeled accordingly, this resulted in model trajectories
explaining all data simultaneously (Figure 4A-D). The
trajectories do not differ significantly from the experi-
mental data (y*/N = 0.8328<1; N = 155 number of data
points) by estimating a small set of 23 specific para-
meters (Additional file 1, Section 7). This modeling
approach considers the full set of time series data result-
ing from PDE inhibition and AC stimulation experi-
ments at varying drug dose ranges, allowing for
hypotheses testing of inherent feedback loops.

The validated in silico model reflects processes of pla-
telet activation and models correctly the experimental
measurements by considering low effective PDE concen-
trations, activation of PDE3 by PKA at increased cAMP
levels as well as the negative feedback loop of cAMP-
dependent PKA inhibiting AC activity.

Parameter sensitivity

We analyzed several characteristics of the platelet
cAMP signal, indicating the state of inhibition, to
investigate the influence of model parameters on this
inhibitory signal. Results exemplified for one PDE3
inhibitor (Cilostamide) and one AC stimulator (Ilo-
prost) indicate that in case of PDE3 inhibition (low
and high dose; Additional file 2, Figure S1.1A, B), the
cAMP signal is mainly controlled by the basal forma-
tion of cAMP. The impact of drug-specific and PDE-
specific constants augments with the increase of the
inhibitory drug dose. A similar sensitivity profile for
parameters can be observed for low-dose AC stimula-
tion (Additional file 2, Figure S1.1C) whereas at high
doses, particularly the feedback constant kf, (AC inhi-
bition) gains importance and outweighs the influence
of basal cAMP formation (Additional file 2, Figure
S$1.1D). This corroborates the pivotal role of feedback
regulation of the cyclic nucleotide level in platelets.

To highlight the effect of the feedback constants kf;
(equation (3)) and kf; (equation (4)) on the model pre-
dictions for cAMP signal, constants were perturbed
(multiplication with factors ranging from 0.1 to 10).
Constant kf; (feedback activation of PDE3) resulted in
cAMP signal spans ranging from 3 to 5 pM (Additional
file 2, Figure S1.2A, B), however, this range expanded
up to 300 uM (500 uM Forskolin). The cAMP signal is
highly sensitive to AC feedback inhibition (constant kf5)
even at low concentration (1 nM) of Iloprost (Additional
file 2, Figure S1.2C). This is also reflected in the model
selection procedure (Table 2) again indicating a subtle
feedback regulation of cAMP levels.

Combination effects of different drugs

Having established a validated dynamic model on the
basis of time series data of four different anti-platelet
drugs at varying concentrations, we can use this model
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to predict and to study drug combination effects in
detail. Here we investigate the effects of simultaneous
applications of PDE3 inhibitors (Milrinone and Cilosta-
mide) and AC activators (Iloprost and Forskolin). In
particular, we analyze the combined effect of Iloprost
and Cilostamide by measuring experimentally the
response to each drug individually (Cilostamide: 10,
50, 100 uM; Iloprost: 2, 5, 20 nM) as well as the effect
of combinations of all drug doses on the cAMP level
(Figure 5A). The experimentally measured cAMP pla-
teaus for each drug combination are depicted in Figure
5C (black dots). This clearly reveals an over-additive
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effect of the two drugs when applied in combinations.
Based on this, we predict cAMP levels of other drug
combinations (Figure 5B-E), illustrating the capabilities
of the full model: Simultaneous stimulation of AC and
inhibition of PDE3 is modeled by combining Iloprost
(2, 5 and 20 nM) and Milrinone (10, 50 and 200 pM;
Figure 5B) or Cilostamide, respectively (Figure 5C).
The surface of cAMP level results from interpolating
the reached cAMP plateaus (black dots) at the respec-
tive drug combination; the origin marks the basal
cAMP level, each axis indicates the effect of the single
drugs.
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Figure 5 Predicted time course and experimentally measured cAMP levels under varying drug combination conditions. Besides
modeling results (B, D, E), panel A and C show experimentally measured cAMP levels (marked with black dots). Single and combinatory effect
of Cilostamide (drug doses range: 10, 50, 200 uM) and lloprost (drug doses range: 2, 5, 20 nM) on the cAMP level (A): The resulting cAMP
concentrations, depicted as the mean of triplicate measurements (+ SEM), successively rise according to the corresponding elevated drug doses
and show a clear synergistic effect. 3D-plots show interpolated cAMP levels (z-axis; cCAMP surface) of estimated or experimentally measured
plateaus of CAMP reached at various synergistically activating or inhibitory drug combinations (x- and y-axes): Combination (B) of lloprost and
Milrinone (AC activation, PDE inhibition); (C) of lloprost and Cilostamide (AC activation, PDE inhibition); (D) of Forskolin and Milrinone (AC
activation, PDE inhibition); (E) of Milrinone together with an unspecified inhibitor of adenylyl cyclase (simultaneous PDE and AC inhibition). Dots
mark means of experimentally measured cAMP level plateaus (C) and accordingly predicted cAMP values (B, D, E) reached after the respective
chosen concentration and combination of drugs was administered. For further details on drug combination interactions see Additional file 1,
Table S8.1.
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As synergistic effects of PDE inhibitors in combination
with Iloprost have been described in human platelets
[30-32] we embedded an additional cAMP-dependent
constant k to capture this over-additive effect (Addi-
tional file 1, Section 8). In adaptation to quantitative
data of experiments combining Cilostamide and Ilo-
prost, we find the calculated cCAMP level surface in close
accordance to measured cAMP concentrations (Figure
5C), resulting in k = 1.443 + 0.004. This way, the pre-
dicted cAMP levels describe perfectly the subsequent
experimental measurements in contrast to assuming an
additive effect of drug combinations (p < 0.05). This
indicates a continuous synergistic effect of Cilostamide
and Iloprost interaction potentiating the respective sin-
gle drug stimulation (Figure 5A).

Furthermore we analyzed the combined effects of For-
skolin and Milrinone (Figure 5D) by predicting cAMP
levels of combining Forskolin drug doses (10, 30, 100,
200, 500 uM) with Milrinone doses of 10, 50 and 200
pM. The surface of cAMP level interpolates calculated
cAMP level plateaus reached at the distinct combina-
tions of drug. Similarly, we predict cAMP levels for the
simultaneous inhibition of AC and PDES3, respectively.
Figure 5E shows the successive decrease of elevated
cAMP level due to Milrinone (1-100 uM) by combining
this PDE3 inhibition with several doses of an AC inhibi-
tor (e.g. 2’5'Dideoxyadenosine; non-synergistic, k = 1).
In addition, we give a summary and classification of
typical platelet drugs (Additional file 1, Table S8.1)
allowing computer based modeling of drug (combina-
tion) effects.

Pathway integration: Phosphorylation of individual VASP
phosphorylation sites

An important downstream effector of cyclic nucleotide
signaling is VASP. This phosphoprotein has two major
phosphorylation sites (Ser157 and Ser239) [33] which
both negatively regulate platelet aggregation. Since this
protein is a major target for both, PKA (cAMP pathway)
and PKG (cGMP pathway), it can integrate the input
from these two pathways. Thus, it is a paradigm for com-
plex combination effects regarding phosphorylation
events. Here we consider and model the differential effect
of PKA on both of these sides. Site Ser157 is a 15-fold
better substrate for phosphorylation by PKA than the
phosphosite Ser239 being also a substrate for the cGMP-
dependent protein kinase PKG [33,34]. Furthermore, this
differential phosphorylation of PKA has to be considered
for the read-out of diagnostic VASP assays [35]. The
phosphosite-specific modeling results in a good fit to
experimental measurements (Figure 6) and allows again
predictions for different drug strengths and combinations
(Additional file 1, Section 5, 6).
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Cross-talk between cyclic nucleotide signaling pathways
Interestingly, experimental data and model predictions
evidence that the cAMP response in platelets is highly
specific: No cross-talk to the cGMP pathway for cAMP
stimulating compounds can be observed regarding
change in cGMP levels (Figure 7). Even at cCAMP con-
centrations up to the millimolar range e.g. due to
exceeding AC stimulation by Forskolin (500 pM) the
cGMP levels remain unaffected (Figure 7A, C-D).
Furthermore, PDE3 inhibition by Cilostamide (50 puM)
and Milrinone (100 pM) as well as AC stimulation (Ilo-
prost, 100 nM) solely elevate the cAMP level (Figure
7B). Regarding a cAMP-focused pathway model based
on stimulation of AC (e.g. by Forskolin, Iloprost) or
inhibition of cAMP-degrading PDEs (e.g. by Milrinone,
Cilostamide), the cGMP-specific components of the
model (PDE5, GC and their related parameters) can
thus be neglected.

Probing the signaling network sensitivity
To investigate the network sensitivity, we considered
different perturbations and network cross-linking: We
analyzed the model performance by probing drug sti-
muli (inhibition of PDE2 and PDE3) of different time-
scales (transient vs. long-tem; concurrent vs. successive).
The network sensitively responds to transient stimuli
even at low stimuli doses (Additional file 2, Figure S2.1).
The same holds for transient prostaglandin receptor
activation [35]. Physiologically, this receptor is transi-
ently activated by prostacyclin (half-life of less than 5
minutes [36]), produced by the endothelium. Thus, in
case of an injury of the vessel wall parts of the endothe-
lium remain without the production of prostacyclin so
that only an insufficient signal is invoked and the plate-
let lacks inhibition. Similarly, patho-physiological condi-
tions like prostacyclin receptor mutations [37,38]
contribute to a differential platelet inhibition decreasing
the protection against unwanted platelet activation and
aggregation. Modified platelet activation is crucial for
thrombus self-organization and the formation of
thrombi. We showed this gradual transient platelet inhi-
bition via different prostacyclin doses as model response
(cAMP) as well as experimentally, by considering
cAMP-dependent, time-resolved phosphorylation events
on VASP (Serl57) (Additional file 2, Figure S2.2).
Furthermore, we showed that an elevation of platelet
cAMP level has no effect on the cGMP pathway, how-
ever the converse cross-talk has been described [1,39,40]
and mainly mediated though cross-linking of the platelet
phosphodiesterases. We therefore speculated on the
effect of cGMP stimuli by incorporating identified PDE
interconnections into the model structure (Additional
file 2, Figure S2.3).
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Figure 6 Time-resolved VASP phosphorylation upon administration of CAMP elevating drug doses. Ratios of phosphorylated VASP sites
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black stars serves as model input. Phosphosite Ser157 is phosphorylated prior to Ser239 by PKA as indicated by data and model (red trajectories).

Discussion

Mathematical modeling of platelet signaling

ODE-based dynamic models have emerged as fruitful
tool for the modeling of biological systems and signaling
pathways [8,11,41,42]. In particular, they allow data-
based kinetic modeling and the detailed investigation of
pharmacological effects on cellular signaling cascades. In
general, this works best for moderate-sized networks
where sufficient detailed data are available to estimate
model parameters. In this sense, the cyclic nucleotide
signaling pathway in human platelets is especially well-
suited for such an approach as there is enough informa-
tion on the kinetics available and the number of key
components is rather moderate.

Here, we present a mathematical model, based on
existing biological knowledge and an extensive set of
experimental measurements. Using the powerful
approach of multi-experiment fitting, we optimized the
model parameters in the context of several in vitro data

sets. Since this provides a higher number of data points
for the estimation of parameters, it permits not only the
estimation of predictive model parameters but also sta-
tistically verifies the validity of a given model. Moreover,
this allows for discrimination between competing model
hypotheses [43,44]. With this approach we could use the
entire set of N = 155 experimental data points (tripli-
cates) to obtain reliable estimates of the basic model
parameters by globally fitting them to the dataset.

Pathway simulations and integration

Models on thrombosis or endothelial function have been
published before [6,7], but so far none investigated the
cAMP mediated signaling in the platelet in detail. In
this study, we established a time-resolved in silico model
of fine-tuned cAMP signaling in platelets. The data and
model can serve as a basis to gain a deeper insight into
the basic effects of platelet cyclic nucleotide signaling.
Predictions based on simulations of the basal in silico
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model indicate that only a very small fraction of the
PDEs is enzymatically active under basal conditions
which might be a result of PDE compartmentalization
as has been reported for adipocytes (PDE3), HEK293
cells and cardiac myocytes (PDE4) and platelets (PDE5)
[20-22,45].

Elevated levels of cyclic nucleotides potently contri-
bute to platelet inhibition targeting cyclic nucleotide-
dependent protein kinases that in turn phosphorylate
specific substrates. Via cAMP degrading phosphodies-
terases, cGMP can regulate the level of cCAMP in cardiac
cells including platelets [1,46]. Within this context, we
show system state transitions from the non-activated
cAMP pathway in platelets to an activated state as well
as activatory and inhibitory cross-linking directed from
the cGMP and the cAMP pathway (Additional file 1,
Figure S1.2). Key feedback regulations involve the rest-
ing state of the platelet and the activation of both the
cAMP pathway and cGMP pathway. Interestingly, the
cAMP pathway is highly specific: Even at considerably
high cAMP levels no cross-talk to the cGMP pathway
could be observed. This is validated here including
experimental measurements.

Furthermore, we investigated how the two branches of
cyclic nucleotide signaling in human platelets might be
integrated. Therefore, we focused on VASP, a prominent
PKA and PKG substrate and highly connected hub

protein. Signal integration by VASP protein relies on
the activation of the downstream cytoskeletal regulating
signaling cascade [35,47]. Taking into account the two
major known PKA/PKG phosphorylation sites, Ser157
and Ser239, we accurately predict and experimentally
validate resulting differential activation in quantitative
terms of specific PKA mediated phosphorylations on
VASP.

Effects of drug combinations

Platelets play a critical role in thrombosis and hemosta-
sis. Therefore, it is important that no accidental activa-
tion of platelets occurs and the intricate balance
between activation and inhibition is maintained. This
has implications for pharmacological fine-tuning of the
system. Various pharmacological substances affecting
cAMP signaling in platelets are in clinical use. The most
prominent mechanisms of anti-platelet drugs are the
inhibition of P2Y12 receptors (Clopridogrel, Prasugrel,
Ticlopidine), of COX1 and thromboxane (Acetylsalicyc-
lic acid) and of phosphodiesterases (Dipyridamole, Cilos-
tazol, Milrinone) as well as antagonistic effects on
integrin aIIbB3 (Tirofiban, Eptifibatide, Abciximab)
[48,49]. Other drugs such as antagonists of platelet pros-
taglandin receptor EP3 for prostaglandin E2 targeting
platelet G-protein-coupled receptors (GPCRs) or adeny-
lyl cyclases as potential drug targets are under



Wangorsch et al. BMC Systems Biology 2011, 5:178
http://www.biomedcentral.com/1752-0509/5/178

development [4,50]. Furthermore, anti-platelet therapy
benefits of the potential over-additive effect of platelet
drugs applied in combination [48,51] and of the investi-
gation of drug interactions [52] potentially leading to a
decrease in drug dosage and undesirable side effects like
bleeding. Hence, a more detailed understanding of the
interactions and effects of these substances on platelet
activation and inhibition is not only of scientific interest
but also of clinical importance. Having calibrated the
model with experimental data of different drugs, the
final model allows predictions not only about the effect
of single drugs but also about combinations thereof. A
major challenge of drug interaction modeling is to
account for synergistic, additive or antagonistic drug
interactions [53,54]. This can be achieved by individual
parameters for each specific combination of drug doses
resulting in different types of interactions becoming
apparent on the cAMP level. Concerning the modeled
drug interactions, we succeeded in modeling these dif-
ferent modes of drug interaction with just one unique
cAMP dependent parameter. The assumed simplification
led to reliable and robust predictions compatible with
the observed experimental data. However, we are aware
that more complex effects and different modes of action
have to be introduced if a broader range of drugs is
considered and larger data sets are available.

Feedback regulation of cAMP level

Moreover, the system analysis based on experiments of
platelet stimulation with anti-platelet drugs points to an
important role of AC and PDE feedback primarily from
PDE3. Focusing on major pathway components it
becomes clear that these two feedback loops are to be
involved to achieve optimal signal strengths. Induced by
elevated cAMP concentration, activated PKA inhibits
AC but as well activates PDE3 [25-27]. Short-term feed-
back regulation of cyclic nucleotide concentrations
resulting from activation of cAMP-dependent PKA have
been indicated in various cell types (rat hepatocytes, adi-
pocytes, myoblasts, smooth muscle cells, osteoclasts,
U937 cells) including platelets [24,26,55-59] showing the
ubiquitous nature of this mechanism. Here, we focused
on the activation of PDE3 as well as the inhibition of
AC activity, both in PKA-dependent manner.

The activation of PDE3A and PDE4A by PKA has been
observed in smooth muscle cells [26]. Moreover, PDE3A
is phosphorylated by PKA at Ser312 in a response to For-
skolin [60] resulting in PDE3A activation in human plate-
lets [24]. Our model results suggest a more prominent
role for AC inhibition by PKA phosphorylation. This
PKA-dependent inhibitory effect has been described for
adenylyl cyclase subtypes 5 (AC5) and 6 (AC6) in smooth
muscle cells [26]. As platelet proteomics data indicate the
expression AC5 and AC6 besides AC subtype 3 and 7 in
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human platelets, direct phosphorylation of AC5 or AC6
by PKA might contribute to the feedback inhibition of
cAMP synthesis [25,28].

Our data suggest that both feedback effects are crucial
for regulating cAMP levels in human platelets where the
inhibitory effect on AC outweighs the positive feedback
effect on PDE3 (Table 2).

Conclusions

We established a comprehensive dynamic model using
multi-experiment fitting procedures, which enables us to
evaluate and test questions of pharmacological interest.
Our in silico model integrates central cAMP regulating
mechanisms for a comprehensive description of cAMP
signaling in human platelets. It has been tested and suc-
cessfully applied to compare synergistic and non-syner-
gistic as well as activatory and inhibitory drug
combination effects on this fine-tuned platelet signaling
pathway through which signals are sensitively propa-
gated. The inhibitory cAMP pathway is well balanced:
Our modeling approach reveals low active PDE concen-
trations compared to those experimentally measured in
the platelet as well as two feedback loops allowing
highly reliable signal transmission.

High sensitivity for low effector concentrations,
threshold behavior and stable platelet inhibition are
resulting. Perturbations such as prostacyclin receptor
mutations and varying time scales of drug stimulation
(transient vs. constant, successive vs. concordant) are
modeled as well to probe the network sensitivity. In
contrast to cGMP, which is known to interact with the
cAMP pathway [40], converse cross-talk of cCAMP to the
cGMP pathway was neither predicted nor observed.
However, direct integration over signals from cAMP
and cGMP pathways is achieved via the integrator pro-
tein VASP and its phosphorylation sites, thereby also
monitoring the effects of anti-platelet drugs.

Future work will extend the model to cover more
complex scenarios such as stimulation of Gi-coupled
receptors (e.g. P2Y12) which are known to decrease
cAMP levels in human platelets thereby leading to plate-
let activation. Further model development will concern
the integration of cGMP pathway effects on platelet
cAMP levels upon stimulation of GCs.

In perspective, the in silico modeling approach of plate-
let cCAMP as well as cGMP regulation will support future
drug development as well as strategies for anti-aggrega-
tory treatment and provides a unique tool for experimen-
tal design of pharmacological studies of platelets.

Methods

Platelet preparation

Washed human platelets [61] were prepared as
described [62]. Briefly, whole human blood was drawn
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after informed consent by venipuncture from volunteers
who had not received any platelet or cyclic nucleotide
affecting drugs in the past two weeks. Blood was col-
lected in weakly acidic citrate/dextrose buffer (4:1 v/v).
Whole blood was centrifuged at 300 xg for 10 min at
20°C. The platelet rich plasma obtained was centrifuged
(380 xg, 20 min at 20°C). The resulting platelet pellet
was resuspended in HEPES buffer (145 mM NaCl, 5
mM KCI, 1 mM MgCl,, 10 mM HEPES, 10 mM glu-
cose, pH7.4) to a final cell density of 10%/ml. Experi-
ments were carried out by incubation of the platelet
suspension at 37°C with the respective compounds and
for the time. All experiments were reproduced with at
least three different preparations.

Chemicals

Forskolin (Sigma, Munich, Germany), Iloprost (Schering,
Berlin, Germany), Milrinone (Sigma, Munich, Germany)
and Cilostamide (Tocris Cookson, Avonmouth, UK)
were used as indicated in the results. PDE2A (C-term-
inal fragment aal-207 deletion, C-terminal His6-tag),
PDE3A (aa675-1164 fragment, N-terminal GST-tag) and
PDESA (full length, C-terminal His6) were a kind gift by
J. A. Beavo, University of Seattle, Washington, USA.

Measurements of cAMP/cGMP levels

The stimulation was stopped by addition of twice the
sample volume of ice cold ethanol (100%). The precipi-
tate was removed by centrifugation, washed again with
100 pl ethanol; the supernatants were combined and
dried in the vacuum. Dried platelet samples were dis-
solved, acetylated and analyzed with commercial cAMP
or cGMP enzyme-immuno assays (ENZO Life Sciences,
Loerrach, Germany) according to manufacturer’s
instructions.

Measurements of PDE concentrations

PDE2 and PDE5 were determined from calibration
curves with lysates from recombinant expression sys-
tems [34]. In brief, E. coli BL21-T1 strain was trans-
formed with plasmids containing inserts coding for
PDE2A, PDE3A or PDE5A and lysed after IPTG induc-
tion. The lysates were then purified by affinity chroma-
tography. The GST tagged PDE3A fragment was bound
to a GST-Sepharose column (Glutathione Sepharose 4B,
Amersham Biosciences) and eluted according to the
manufacturers’ protocol. The His6-tagged PDE2A and
PDES5SA were purified on a Ni-NTA column (Ni-NTA
Superflow Kit, Quiagen) and eluted according to the
manufacturers’ protocol. The protein content of the elu-
ents was determined by the BCA assay (bicinchoninic
acid, BCA protein assay, Thermo Scientific) and dilution
series prepared. Platelet lysates and the dilution series of
recombinant protein were then submitted to acrylamide
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gel-electrophoresis, transferred on a nitrocellulose mem-
brane and detected with an appropriate antibody and
chemoluminescence reaction (ECL plus, Amersham).
The intensity of the protein bands was quantified after
scanning with Image]J software (v1.43, NIH) and the pla-
telet expression determined from the calibration curves
obtained from the dilution series. PDE2 and PDE5 were
determined from calibration curves with lysates in over-
expression systems [34]. PDE3 amount was taken from
[14], kinetic and binding data from [34,63].

VASP phosphorylation/immunofluorescence

VASP phosphorylation was determined for both phos-
phorylation sites according to [35] with the phosphosite
specific antibodies 16C2 (pS239) or 5C6 (pS157) and
the total VASP antibody IE273. Stimulated washed pla-
telet suspensions were stopped by addition of lysis buf-
fer (20 mM Tris-HCI (pH 7.4), 150 mM NaCl, 1 mM
EDTA, 1 mM EGTA, 1% Triton X-100, 0.5% NP-40, 10
mM f3-glycerolphosphate, 10 mM NaF) and frozen. The
frozen samples were thawed and diluted with PBS buffer
(137 mM NacCl, 2.7 mM KCl, 10 mM Na,HPO,, 2 mM
KH,POy, pH = 7.4) by 1:10. As control for background
and non-specific binding 5% bovine serum albumin
(BSA) solved in lysis buffer was used. Each sample was
measured in triplicate for each antibody. VASP was
immobilized from the sample by binding on a zyxin
coated microtiter plate and incubation for 1 h at room
temperature under shaking. The microtiter plates were
washed three times with 300 ul/well PBS-T (1% Triton
X-100 supplemented PBS) and the primary antibodies
were added (5 pg/ml for the phosphospecific antibodies
and 1 pg/ml for IE273) in 100 pl portions and again
incubated for 1 h and washed 3 times with PBS-T.
Detection of antibody binding was achieved with horse
radish peroxidase (HRP) coupled goat anti-mouse IgG
as secondary antibody and 100 pl of the HRP substrate
ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid) diammonium salt) dissolved in 4 ml ABTS buffer
(Roche) and diluted 1:10 with aqua dest. The absor-
bance of the samples was measured in the microtiter
plates with a Wallac Victor 1420TM (Perkin-Elmer)
plate reader at 405 nm each for 1 second. From the
absorbance of each sample, the absorbance of the back-
ground control sample for the respective antibody was
subtracted and the data expressed as relative phosphory-
lation calculated by dividing the absorbance signal
obtained with the respective phosphospecific antibody
by the signal obtained with the IE273 antibody.

In silico modeling

A set of ordinary differential equations (ODEs) represent
platelet cAMP and cGMP signaling pathways (Addi-
tional file 1, Part II). Rate constants taken from
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literature all arise from studies on human platelets
[12-20,24,27], inhibition constants are from different
systems to delimit their fitting ranges. The basal model
incorporated Mass Action and Michaelis Menten
kinetics (Additional file 1, Part II, Section 2, Appendix).
It was next optimized by fitting it simultaneously and
experiment-specific to data of PDE inhibition experi-
ments (Additional file 1, Part II, Section 3), AC stimula-
tion experiments (Additional file 1, Part II, Section 4) as
well as to phosphorylation data of VASP phosphosites
(Additional file 1, Part II, Section 5, 6). Corresponding
differential equations were implemented and further
analyzed using the MATLAB software (The Mathworks,
Inc. Natick, MA).
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Parameter optimization

Estimating model parameters which optimize the y?
-merit function and set the model statistically compliant
with the data is a crucial problem [43]. For integrating the
dynamic model and optimal parameter estimation we
used the MATLAB toolbox PottersWheel [43] including

multi-experiment fitting. To fit the model y = y (t, _p>> to

data, we optimize the x*> -merit function

Xz(?) = Z ((yi -y (t,', _p))>/oi)2,with y; being data
point i with standard deviation o; and y (t,-, _p>>describes

the model value at time point i for a set of parameter
values _p> In case of normally distributed measurement

Table 3 Dynamic variables and constants of basal cyclic nucleotide signaling.

Model parameter Values Foundations/assumptions Reference

Dynamic variables

X;: C(CAMP) 4 uM Basal levels 4]

X2:C(cCGMP) 04 uM Basal levels 4]

x3:C(PDE2) active 0.05 ma/I Model-based simulation This study
Experimentally: 63.46 mg/I

x4:C(PDE3) active 2.3 mg/l Model-based simulation This study
Experimentally: 225 mg/I

X5.C(PDE5) active 1 mg/I Model-based simulation This study

X6:.C(PDE2) inactive
x7.C(PDE3) inactive
xg:C(PDE5) inactive

(6346 -x3) mg/I
(225 - x4) mg/I
(1359 - xs5) mg/I

Experimentally: 1359 mg/I

Xo:C(AMP) pM; simulated

X10:C(GMP) uM; simulated

Constants

ky: Vinax PDE2 120 umol/min/mg cAMP turnover [2,16]
kK, PDE2 50 uM cAMP turnover [2,16]
K3Vimax PDE3 3 pmol/min/mg CcAMP turnover [2,16]
ksK., PDE3 0.2 uM cAMP turnover [2,16]
ksVmax PDE2 120 pmol/min/mg cGMP turnover [2,16]
keKn, PDE2 35 uM cGMP turnover [2,16]
K7V max PDE3 0.3 pmol/min/mg cGMP turnover [2,16]
kgK., PDE3 0.02 uM cGMP turnover [2,16]
koVmax PDES 5 umol/min/mg cGMP turnover [2,16]
k10K PDES 5uM cGMP turnover [2,16]
Ky kcAMP 8 pmol/min Basal influx of cAMP [17-19]
kq2:kcGMP 1 pmol/min Basal influx of cGMP [64,65]
kq3:Deactivation PDE2 This study
kq4:Activation PDE2 ki3-kig: =0 This study
kys:Deactivation PDE3 for simulation of This study
kye:Activation PDE3 basal levels This study
k,7:Deactivation PDE5 (resting conditions) This study
kig:Activation PDES This study
ki9:hPDE2 2 Hill coefficient [15,16]

Description of the model parameters and constants of the formalized the system of ODEs modeling the basal cyclic nucleotide signaling (see Appendix).
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errors, this corresponds to a maximum likelihood estima-
tion. For optimizing this function, we used the trust region
algorithm [44], a powerful deterministic least-square opti-
mizer. This did yield optimal parameters 7 for modeling
e.g. the platelet effector experiments, minimizing the dis-
tance between model trajectories and time series data.

Model selection as hypothesis testing

For selecting an adequate model structure, being the
most crucial part of the modeling process, we conduct
the following forward strategy: We start with the most
parsimonious reasonable model and refine it iteratively
and directed by biochemical knowledge until subsequent
refinement does not significantly improve the model fit-
ting process. Therefore, we conducted a commonly used
method for model comparison, the likelihood ratio test
(LRT) comparing pairs of nested models characterized
by a different number of parameters [29]. Assuming a
more complex model M¢ with pc parameters competes
with the simpler model Mg having pgs inherent para-
meters. Then, the likelihood ratio (twice the difference
of the log likelihoods L) is distributed as 2 (L(M¢)-L
(Mg))~x* with pc-ps degrees of freedom, which pena-
lizes overparameterization. Given a chosen level of sig-
nificance, this enables to determine whether the data
supports the simple model (null hypothesis) or if the
more complex model offers a sufficient improvement.

Appendix: Basic model - Mathematical
formalization

Here, we discuss the basic model and its features in
detail. This model, consisting of a system of ordinary
differential equations is constructed to simulate the
basal concentrations of cyclic nucleotides assuming rest-
ing platelet conditions.

Reaction scheme

Unstimulated platelets hold specific basal levels of the
cyclic nucleotides cAMP and ¢cGMP [14]. There is a
constant afflux of cyclic nucleotides arising from the
corresponding adenylyl and guanylyl cyclase, respectively
[17-19]. Active phosphodiesterases PDE2, PDE3 and the
cGMP-specific PDE5 counterbalance their activity by
enzymatically degrading cyclic nucleotides [2,16]. The
kinetics of these enzyme reactions is well understood as
well as the cyclase activities. Thus, this prior biochem-
ical knowledge frames the basis for setting up the basal
signaling network as well as the underlying reactions as
indicated in Figure 3A.

Dynamic variables and constants
For this, we formalize dynamic variables and constants
listed in Table 3. All values are known from the

Page 15 of 18

literature except specific concentration values of the
phosphodiesterases. However, this enables us to mathe-
matically estimate and compare these PDE concentra-
tions with those experimentally determined.

Kinetics and reaction rates

For model simulations and predicting PDE concentra-
tions, we assume Mass Action kinetics for the basal
generation of cyclic nucleotides (reaction r1,r2) and
the PDE-dependent degradation (reactions r3-r7) are
described by Michaelis Menten kinetics. In particular,
cAMP shows positively cooperative kinetic effects,
resulting in a Hill coefficient of 2 regarding PDE2 cata-
lytic activity [15,16]. By means of the error model 0.1-y
+0.05-max(y) calculating the standard deviation
depending on measurements y of the observables
cAMP and cGMP, respectively, we simulate the basal
cyclic nucleotide levels by estimating PDE concentra-
tions (PottersWheel toolbox). Model-based simulations
reveal comparatively low PDE concentrations with
respect to the experimentally determined PDE levels
that fail in maintaining a basal level but abolish them
immediately (Additional file 1, Figure S2.1). Biochemi-
cally motivated, we thus include a possible switch from
the active to an inactive PDE state (reactions r8-r13)
assuming Mass Action. This results in reaction rates
v;-v;3 for all modeled reactions r1-r13 listed in Table
4.

This leads to the final system of differential equations
of the dynamic variables x;-x19 as described in Table 3.
A Systems Biology Markup Language file of this basal
model is provided (Additional file 3) as well as its exten-
sion to the overall model (Additional file 4).

Table 4 Modeled reactions and rates of basal cyclic
nucleotide signaling.

Reaction Rate
Basal AC influx of CAMP (r1): U = ki
Basal GC influx of cGMP (r2): Y = ki
CAMP turnover via PDE2 (13): w3 = kq -xlk” -x3 [/ (ko + xlk”);
cAMP turnover via PDE3 (r4): Uy = k3xgXq/(katxy);
)

Us = ksxzXo/(Ks+x2);
cGMP turnover via PDE3 (r6): Us = k7X4Xo/ (Kg+X2);
)

(
(
cGMP turnover via PDE2 (r5):
(
cGMP turnover via PDES5 (r7):

u; = kg'Xs'Xz/(k10+X2);

(De)activation of PDE (18- r13): Ug = ki4Xe;
Ug = KizXs;
Uro = kigXz;
U = kisX;
Urp = kigXg;
Urs = kyi7Xs;

Itemized modeled reactions r and rates v describing the basal cyclic
nucleotide signaling (see Appendix).
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Differential equations
dxl/dt = 4+VU] — U3 — Uy,

dxz/dt= +U) — Us — Ug — U7,
dx3/dt = +Ug — Uo;

dxs [dt = +v10 — v1;

dxs [dt = +v12 + U135

dx6/dt = —Ug + Uy;

dx7/dt = —vUjg + U115

dxs/dt = —U12 + U13;

dxg/dt = 4+U3 + Uy;

dxlo/dt = +Us + Ug + Uy;

Additional material

Additional file 1: Supplementary Information. The supplementary
information is divided into three parts. Part | (51) deals with the model
topology, pathway cross-linking and gives information about the main
components of the modeled cAMP- and cGMP signaling pathways (Table
S1.1). The second part (S2) provides detailed information about the
mathematical modeling including variables and constants, reaction
schemes and rates as well as systems of differential equations. Sections 3-6
deal with the modeling of the following scenarios: PDE inhibition via
Cilostamide and Milrinone (Section 3), adenylyl cyclase activation via
Forskolin and lloprost (Section 4) and finally downstream phosphorylation
of VASP (Section 5, 6). The fitted parameters are listed in Section 7 (Table
S7.1), information about modeling of drug combinations and specific
parameters of drugs being crucial for the examined platelet signaling
cascades are given in Section 8 (Table S8.1). Section 9 introduces the
established SBML-models of cyclic nucleotide signaling (Additional file 3, 4).
An electron microscopy micrograph of PDE is depicted in Part Il (S3).

Additional file 2: Additional Results: Network sensitivity. Additional
results: Sensitivity analysis and probing of the network sensitivity
(permanent and transient model perturbations and pathway cross-linking).

Additional file 3: This SBML model file encodes the basal model. A
Systems Biology Markup Language file representing the basal model of
cyclic nucleotide signaling. This model is implemented with CellDesigner
(Version 4.0.1) for simulating the basal cyclic nucleotide levels under
resting conditions. All kinetic parameters and concentration values are
specified within this file.

Additional file 4: SBML model file encoding the overall model.
Comprehensive Systems Biology Markup Language file implemented with
CellDesigner (Version 4.0.1) for investigating and simulating cyclic
nucleotide levels under the designated conditions. In addition to Additional
file 3, this model file contains signaling nodes regarding the downstream
events (VASP phosphorylations) as well as anti-platelet drugs.

List of abbreviations
CcAMP: cyclic adenosine monophosphate; AMP: adenosine monophosphate;
cGMP: cyclic guanosine monophosphate; GMP: guanosine monophosphate;
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AC: adenylyl cyclase; GC: guanylyl cyclase; PDE: phosphodiesterase; PKA:
cAMP-dependent protein kinase; PKG: cGMP-dependent protein kinase;
VASP: vasodilator stimulated phosphoprotein; GPCR: G-protein-coupled
receptor; ODE: ordinary differential equation; SD: standard deviation; LRT:
likelihood ratio test; AIC: Akaike information criterion; SEM: standard error of
the mean.
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