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Abstract

Background: In aerobically grown cells, iron homeostasis and oxidative stress are tightly linked processes
implicated in a growing number of diseases. The deregulation of iron homeostasis due to gene defects or
environmental stresses leads to a wide range of diseases with consequences for cellular metabolism that remain
poorly understood. The modelling of iron homeostasis in relation to the main features of metabolism, energy
production and oxidative stress may provide new clues to the ways in which changes in biological processes in a
normal cell lead to disease.

Results: Using a methodology based on probabilistic Boolean modelling, we constructed the first model of yeast
iron homeostasis including oxygen-related reactions in the frame of central metabolism. The resulting model of
642 elements and 1007 reactions was validated by comparing simulations with a large body of experimental
results (147 phenotypes and 11 metabolic flux experiments). We removed every gene, thus generating in silico
mutants. The simulations of the different mutants gave rise to a remarkably accurate qualitative description of most
of the experimental phenotype (overall consistency > 91.5%). A second validation involved analysing the
anaerobiosis to aerobiosis transition. Therefore, we compared the simulations of our model with different levels of
oxygen to experimental metabolic flux data. The simulations reproducted accurately ten out of the eleven
metabolic fluxes. We show here that our probabilistic Boolean modelling strategy provides a useful description of
the dynamics of a complex biological system. A clustering analysis of the simulations of all in silico mutations led
to the identification of clear phenotypic profiles, thus providing new insights into some metabolic response to
stress conditions. Finally, the model was also used to explore several new hypothesis in order to better understand
some unexpected phenotypes in given mutants.

Conclusions: All these results show that this model, and the underlying modelling strategy, are powerful tools for
improving our understanding of complex biological problems.

Background
A large body of data suggests that mitochondrial
abnormalities may link gene defects and/or environmen-
tal challenges to many pathologies including several
neurodegenerative processes (for reviews, see [1-4]).
Mitochondria are essential organelles serving as the
main site of oxygen use within cells. The divalent reduc-
tion of oxygen by the respiratory chain is tightly coupled
to ATP synthesis by the oxidative phosphorylation

machinery. However, a small proportion of the electrons
passing through the electron transport chain reacts with
molecular oxygen in a monovalent reduction reaction
[5]. This process yields the superoxide anion, which can
be converted into other reactive oxygen species (ROS),
such as hydrogen peroxide and the highly reactive
hydroxyl radical, through enzymatic and non-enzymatic
reactions [6]. Cells possess an impressive arsenal of
weapons for counteracting excess ROS production,
including superoxide dismutases, catalases, peroxidases
and low molecular mass redox compounds, such as
ascorbic acid and glutathione. However, overproduction
of the superoxide anion due to the abnormal reduction
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of key components of the respiratory chain (e.g. ubiqui-
none and cytochrome bc1) or to the impairment of anti-
oxidant defences adversely affects various cellular
processes and constituents (for recent reviews see [7-9]).
Disruptions of the respiratory chain or cellular defences
are thus increasingly being implicated in acquired and
inherited diseases and appear to play a key role in the
aetiology of many neurodegenerative disorders, includ-
ing Alzheimer’s and Parkinson’s diseases [10,11].
Due to its unique redox properties and chemical reac-

tivity, iron appears to be a key player in abnormal ROS
generation, principally as a catalyst of the Fenton and
Haber-Weiss reactions [12]. This essential micronutrient
is the redox component of the haem and iron-sulphur
cluster [FeS] cofactors of many important proteins or
enzymes. Iron homeostasis is thus tightly regulated, at
all levels. The deregulation of iron homeostasis due to
gene defects or environmental stresses leads to a wide
range of diseases, from anaemia (iron deficiency) to hae-
mochromatosis (iron overload) [13-15] with conse-
quences for cellular metabolism that remain poorly
understood. The modelling of iron homeostasis in rela-
tion to the main features of metabolism, energy produc-
tion and oxidative stress may provide new clues to the
ways in which changes in biological processes in a nor-
mal cell lead to disease.
In the growing field of systems biology, several

attempts have been made to model cellular processes.
For complex systems, these models can be classified
into static [16,17] and dynamic models [18-20]. Dynamic
models are generally analyzed and/or simulated with
specific methods as a function of the availability (or
lack) of numerical data. The approaches used include
ordinary differential equations, stochastic simulation
algorithms [21-23], agent or rule-based approaches
[24,25], Boolean approaches (probabilistic or otherwise)
[26-29], or Petri nets (with hybrid extensions) [30-32].
Most of these models are based on well known path-
ways (cell cycle control, glycolysis, signal transduction,
etc.), or well studied processes relevant to cell physiol-
ogy (e.g. action potential propagation in neurons).
Our understanding of the relations between oxidative

metabolism and iron homeostasis is based on a large
body of qualitative knowledge from heterogeneous
sources, often lacking numerical data. It is therefore
not possible to derive mathematical relationships
based on biological knowledge for the entire system,
and the model has to include uncertain knowledge. As
a consequence, despite several attempts to construct
models accurately describing certain aspects of iron
homeostasis (at the level of the cell [33] or organism
[30,34,35]), no formal model linking iron homeostasis
to metabolism control and oxidative stress has yet
been developed.

We describe here an approach based on probabilistic
Boolean modelling that can deal effectively with vast
amounts of heterogeneous knowledge not always asso-
ciated with quantitative data. Using this approach, we
were able to construct a realistic model of cell fate
including oxygen, carbon, nitrogen, sulphur, phosphate
and iron homeostasis. This methodology dealt well with
the mixture of precise and uncertain knowledge. Despite
its large size (642 elements and 1007 reactions), we
were able to simulate the model and analyse its
dynamics. We focused on a simple unicellular eukaryo-
tic system, the yeast Saccharomyces cerevisiae, which has
many features (genes, proteins, pathways, cell compart-
mentalisation) similar to those of mammalian cells. We
first validated the model by simulating 198 in silico
mutations resulting from the deletion of individual
genes from the model (with a small number of elements
kept constant in the model). An independent validation
was provided by analysing the key transition from anae-
robic to aerobic metabolism, by comparing in silico
reactions frequencies with experimental fluxomic data
[36]. The results of individual deletions were compared
with experimental data for real mutants, for which
detailed phenotypic analyses were available. We were
able to classify the in silico mutants into groups of simi-
lar “phenotype” profiles, making it possible to identify
original properties of the model. The model was used to
explore several alternative hypothesis in order to better
understand some unexpected phenotypes in mutants.
In this study, we focused on iron homeostasis and oxi-

dative stress. However, we believe that the proposed
modelling strategy could be useful for other systems.
Typically, it should allow the building of large models
with a high level of biological relevance that can cope
with both a lack of numerical data and precise
knowledge.

Results and Discussion
The model
Choice of the type of model
In eukaryotic cells grown under aerobic conditions,
energy production may depend strongly on oxidative
phosphorylation. The efficiency of this process is depen-
dent on tight coupling between the production of
reduced equivalents (mainly NADH and FADH2)
through interconnected metabolic reactions and their
reoxidation by the complexes of the respiratory chain.
The reoxidation steps generate the electrochemical gra-
dient required to drive ATP synthesis. The assembly of
the respiratory complexes requires the coordinated
synthesis of the protein components and their appropri-
ate cofactors, mainly haem or iron-sulphur clusters. Any
attempt to model these processes and their relationships
must therefore include a description of the main
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metabolic pathways, ion transport and assimilation, the
expression and regulation of genes, protein complex
assembly and cofactor biosynthesis. These different
levels of description involve several cellular compart-
ments, such as the cytosol, mitochondria and nucleus.
Yeast is a particularly suitable cell model for studies of
this type, as most of its biochemical pathways have been
characterised, from enzymatic reactions to gene regula-
tion. However, some processes, such as the assembly of
iron-sulphur clusters, still contain reactions about which
we know little (for reviews, see [37,38]). Thus, any
model developed to analyse the relationship between
iron homeostasis and oxidative stress damage must be
able to deal with several different levels of knowledge
about a large number of elements (i.e. biological species:
proteins, genes, ions, metabolites...) and reactions. It
should also include different levels of regulation in dif-
ferent cellular compartments. Furthermore, we wanted
to model cellular processes as closely to the molecular
mechanisms as possible. For example, if a protein is
absent in some specific condition we could have mod-
elled this fact using a negative statement. Instead, we
would rather model the underlying molecular mechan-
ism that are easily transcribed using only positive state-
ments. In our example, it means describing why this
protein is absent: is the protein degraded in this specific
condition? Is the promoter of the corresponding gene
occupied by some transcription factor? Is the mRNA
degraded?
Our modelling approach is derived from the Biocham

language [39], a rule-based formalism. Each biological
species (elements) in the model is either “ON” (present)
or “OFF” (absent). The elements interact through biolo-
gical reactions, formalised as rules. We have extended
the Biocham approach by adding a weighting to each
reaction, making it possible to define a probability for
each reaction to simulate the large differences encoun-
tered between certain reaction rates (see Methods). This
Boolean probabilist approach is designed to mimic the
biological reality as closely as possible, given the qualita-
tive nature of the model.
The list of elements and reactions
The model was built from a core of reactions involved
in iron homeostasis. We included in the model the main
biochemical pathways, carbon, nitrogen, sulphur and
phosphate metabolism, taking into account the cellular
distribution of the components and the reactions (see
Methods and Figure 1). The connectivity between reac-
tions is depicted in Figure 2. The extracellular space
contains the nutrients imported into the cell when the
appropriate permeases or uptake systems are synthe-
sized. The nutrients include glucose as a source of car-
bon. Its uptake may be modified by assigning different
weights to the import reaction. When transcribed, the

nuclear genes produce proteins that are exported to the
cytoplasm and then targeted to their final subcellular
compartment (transcription and translation are mod-
elled as one reaction because no alteration of the
mRNAs, for example active degradations, was intro-
duced). Mitochondria perform the main energy-related
metabolic reactions. Substrates and products shuttle
between cytoplasm and mitochondria through appropri-
ate translocators. A limited number of functions were
attributed to the vacuole, mostly relating to the homeos-
tasis of metals and phosphate. Our model currently
includes 642 elements and 1007 reactions (see Table 1
and Additional file 1 for the detailed list of reactions).
The weights of the reactions were set to the default
weight of 1 unless changing the weight of a reaction
was necessary to model a phenomenon realistically (see
Methods for more details and Table 2).
Simulations
The output of one simulation is “ON” (present) or
“OFF” (absent) for each 642 element at each iteration
(simulations of 20 millions of iterations or until a steady
state was reached, See Simulations in the Methods sec-
tion for more details). In order to describe the average
evolution of each element, each model was simulated
100 times. We then defined, for each element, a para-
meter called PoP (Percentage of Presence). The PoP is
the number of iterations where the element is “ON”
during the last million of iterations, averaged over 100
simulations. For example, a PoP for the element
NADPH::cytoplasm of 24.3% means that, on average,
during the last millions of iterations, this element is
“ON” for 24.3% of the iterations. Recall that the model
is a Boolean one, and one should not try to interpret or
relate these values to quantities such as concentration
or number of molecules. However, because an element
can be involved into several reactions (and consequently
consumed when one of these reactions is triggered), this
parameter reveal the “availability” and the “usability” of

Figure 1 Overview of the content of the model. Main pathways
included in the model and their cellular localisation.
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the element during the time evolution of the system.
Hence, it is a simple parameter that convey important
biological information.
We also defined a reference model, referred to as the

wild type model (WT model) which correspond to a
model where all genes are “ON” during the simulations.
In this WT model, our list of reactions and their
weights allow the PoPs to be: 1/biologically meaningful
according the data from the literature and, 2/high

enough so that no reaction is always impossible during
WT simulations. However some elements, such as the
ROS, should remain low in the WT model (PoP less
than 1%) as observed in wild type cells. A higher PoP
for these elements would be interpreted as related to a
situation of oxidative stress. To reach this goal, in some
specific cases, the default weights should be altered. As
an example, when every weights in the WT model are
set to 1, the PoP of the hydroxyl radical (the most

Figure 2 Graph of the model elements. Each element is a node, two elements are connected if they are involved in the same reaction. Blue
nodes are constant elements, red nodes are non-constant elements. Green lines are the connections involving oxygen. The node size increases
with the number of elements connected to it.
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deleterious ROS) is higher than 70%. It means that this
element would be too often encountered in the system
which is obviously biologically irrelevant. In our WT
model, this element has a PoP lower than 1% due to
appropriate weights on the reactions involved in hand-
ling ROS (see Table 2 for a list).
In the following, we used the PoP to compare the out-

puts of one model (for example when simulating an in
silico mutation) versus the reference model (WT model).
The distribution of the PoP for the various elements

(Figure 3) indicated that the vast majority of elements
remained present at steady-state levels from a few per-
cent (e.g. toxic forms of oxygen) to 100% (e.g. all the
genes). The PoP of most proteins was relatively high
(higher than 50%), given their low probability of degra-
dation. Eighty proteins are active in a specific cellular
compartment other than the cytoplasm. Since they are
produced in the cytoplasm and then translocated to
their compartment, the overall PoP for their residence
in the cytoplasm is about 66%. This causes the peak
around 60% in Figure 3.
We performed a sensitivity analysis of the outputs of

the model (PoP at steady state) when the weights of the
reactions were modified by multiplications or divisions
up to a factor of 10 (see Methods and Additional file 2
for more details). Varying the weight of a given reaction
had no impact on the model when the variation was
small (weight +/- 10%). For some reactions, when the
variations were larger, the PoP of few elements (up to
20 out of 642) was modified. Each of these variations
has only a local impact on the graph (as defined in
Figure 2). This analysis shows that the model is robust
to modifications of the weights of the reactions within a
dynamic range of 100, that reflects most biological
situations.

Validation of the model
Our validation strategy involved evaluating the consis-
tency of simulations of the model at different levels. We
first considered the effects of removing every gene, thus
generating an in silico mutant. The simulations of the
mutants were compared to experimental phenotypes of
the corresponding biological mutants. A second valida-
tion involved analysing the anaerobiosis to aerobiosis
transition. Therefore, we compared the simulations of
our model with and without oxygen to experimental
metabolic flux data.
Evolution of representative elements in selected mutants
For validation of the model, we compared the results of
the simulations for the WT model (all elements present
at the beginning of the simulations) with those for mod-
els in which specific changes were introduced.
We analyzed the effects of removing selected genes,

thus generating in silico mutants. The resulting mutated
genes have the same designations as the corresponding
biological mutants, but with an “is-” prefix (e.g. is-
hem15 represents the model with the HEM15 gene
switched “OFF” during the simulations - see Methods
for more details).
We show the evolution of the PoP during the simula-

tions for selected elements in representative mutants in
Figure 4. Figure 4-A describes a simple situation in
which deletion of the gene encoding ferrochelatase (is-
hem15) leads to an increase in the PoP of protopor-
phyrin IX, the substrate of the enzyme, paralleling the
situation occurring in vivo in the corresponding biologi-
cal mutant [40]. Similarly, in a model in which superox-
ide dismutase was eliminated (is-sod1, Figure 4-B), the
PoP of its substrate, the superoxide anion [41] increased
strongly. As a consequence, the PoP of the hydroxyl
radical also increased, due to the Fenton and Haber-
Weiss reactions.
Figure 4-C-F illustrates two more complex biological

situations. Yeast mutants lacking the tricarboxylic acid
cycle enzyme aconitase are known to be auxotrophic for
glutamate [42], due to a lack of alpha-ketoglutarate and
impaired nitrogen assimilation. The is-aco1 mutant (Fig-
ure 4-C) displayed a decrease in the PoP of glutamate
and, as a consequence, a decrease in the PoP of glu-
tathione (GSH), the synthesis of which requires gluta-
mate (GSH is a g-glutamyl-cysteinyl-glycine tripeptide).
However, the PoP of cysteine was not affected in the is-
aco1 mutant. Indeed, it may even have increased
slightly, as cysteine was no longer used for GSH synth-
esis. If we “supplemented” our model with glutamate
(Figure 4-D), fixing this element as “always present”,
then the is-aco1 mutant no longer displayed defective
GSH synthesis. Similarly, mutants affected in the early
steps of the haem biosynthesis pathway are known to be
auxotrophic for cysteine/methionine, due to a defect in

Table 1 Number of elements and reactions of the model

642 Elements:

188 Genes

304 Proteins and protein complexes

125 Other chemical components and metabolites

25 Unlimited elements (always ON)

1007 Reactions:

233 Gene transcription/translation

87 Translocation of elements between compartments

40 Protein complex synthesis/cofactor binding

18 Sulphur metabolism/glutathione biosynthesis

13 Haem/siroheme/FeS/PLP synthesis

67 ATP/GTP synthesis

36 Oxidative stress

419 Element degradation

5 NADP/NADPH synthesis

5 Allantoin (NH3)
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the synthesis of siroheme, the cofactor of sulphite
reductase [43]. Therefore they display impaired sulphur
assimilation. An analysis of simulations for the is-hem1
mutant (Figure 4-E) showed a decrease in the PoP of
cysteine when hem1 was removed from the model.
Accordingly, the PoP of GSH also decreased if siroheme
synthesis was impaired. More surprisingly, the model
predicted a decreased in the PoP of glutamate for the is-
hem1 mutant. The provision of unlimited amounts of
glutamate did not restore cysteine and glutathione
synthesis in the is-hem1 model (Figure 4-F). Further-
more, glutamate synthesis was restored by providing
cysteine as an unlimited element in the is-hem1 model.
The decrease in the PoP of glutamate in the is-hem1
model is therefore a consequence of the decrease in the

Table 2 List of the reactions with weights other than the default value of one.

Reactions Weight Source and/or comment

Basal transcription/translation of condition or transcription factor
dependent genes

0.01 Should be significantly lower than regulated expression

Active Degradation 5 Should be significantly higher than the production

Aft1/2p::nucleus = [Glt1/Aco1p-FeS::c, Grx3p::nucleus] ⇒ Aft1/2p::c 10 [73]

Low affinity Fet4p metal transport 0.1 [74]

Glutathione/Cysteine mitochondrial import 0.1 Balance of flux between compartments in wt

Neoglucogenesis enzymatic reactions 0.001 [75]

Reaction catalysed by Zwf1p 10 Major source of NADPH. [76]

TCA cycle (reverse) 0.1 [77]

Atp production by Atp-synthase 5 [78]

O2m::c = [Sod1p-Cu-Zn::c] ⇒ H2O2::c 100 [79]

O2m::m = [Sod2p::m] ⇒ H2O2::m 100 [79]

O2m::(m or c) + H2O2::(m or c) ⇒ Ot::(m or c) 0.2 [79]

O2m::(m or c) + H::(m or c) ⇒ H2O2::(m or c) 0.1 [79]

Ot::(m or c) + Aco1p-FeS::(m or c) ⇒ Aco1p::(m or c) 0.1 Less probable than aconitase reaction but more probable than
spontaneous degradation.

O2m::(m or c) + Aco1p-FeS::(m or c ⇒ Aco1p::(m or c) 0.1 Same as “Ot::(m or c) + Aco1p-FeS::(m or c)”.

Ot::(m or c) + any iron-sulphur cluster containing protein ⇒ protein
without the iron-sulphur cluster

0.05 Less probable than the same reaction involving Aco1p-FeS

O2m::(m or c) + any iron-sulphur cluster containing protein ⇒ protein
without the iron-sulphur cluster

0.05 Less probable than the same reaction involving Aco1p-FeS

Ot::c + Met5p-siroheme-FeS::c ⇒ Met5p-siroheme::c 0.01 Less probable than other FeS proteinsdue to presence of
siroheme

O2m::c + Met5p-siroheme-FeS::c ⇒ Met5p-siroheme::c 0.01 Less probable than other FeS proteins due to presence of
siroheme

H2O2::c = [Ctt1p-Heme::c] ⇒ O2 10 Higher turnover number than most enzymes but less than
SODs [80]

H2O2::m = [Cta1p-Heme::m] ⇒ O2 10 Higher turnover number than most enzymes but less than
SODs [80]

#O2::ext ⇒ #O2::ext + O2 10 Provides saturating oxygen.

#glucose::ext ⇒ #glucose::ext + glucose::c 0.1 Limited glucose uptake as described in [36]

Degradation of protein or peptide elements 0.01 Must be significantly less than the default.

Degradation of other elements 0.001 Less than proteins degradation.

m or c = mitochondria or cytoplasm.
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amount of cysteine. Indeed, Figure 4-E shows that the
PoP of cysteine decreases before the PoP of glutamate.
(for more analysis of phenotypes, see “Systematic analy-
sis of predicted mutant phenotypes” below). The “phe-
notypes” of such mutants were found to be consistent
with published data for the phenotypes of the corre-
sponding biological mutants, providing the first demon-
stration that our model was of high quality.
Systematic analysis of predicted mutant phenotypes
We simulated the model in which each element (gene or
element supplied as unlimited) was removed individually
from the model (100 simulations for each of the 198
elements removed). Whenever possible, we compared
the is-phenotypes to the manually curated phenotypes
reported in the Saccharomyces Genome Database
(SGD). We extracted from the simulations and from
SGD, data corresponding to documented phenotypes
related to “auxotrophies”, “chemical compound accumu-
lation”, “oxidative stress resistance”, “respiratory growth”
and “nitrogen source utilization” (see Additional file 3).
The simulations of the different is-mutants gave rise to
a remarkably accurate qualitative description of most of
the experimental phenotype. There are some unavoid-
able discrepancies that may be traced back to different
problems.

The “auxotrophies” phenotypes were found consistent
in 18/21 simulated mutants. We did not evidence a
methionine auxotrophy in the is-zwf1 mutant, because
in the corresponding model, the decrease in PoP of
NADPH is not important enough (PoP of NADPH::cyto-
plasm: WT = 24.3+/-0.3%, is-zwf1 = 17.7+/-0.3%).
NADPH remains present due to the NADH kinase
activity and a constant supply in NAD in the model.
We analysed the sensitivity of the is-mutants to oxida-

tive stress (SGD “oxidative stress resistance”). Under our
simulation conditions, the mutants were not challenged
with large amounts of exogenous hydrogen peroxide,
paraquat or diamide as oxidizing agents (all these condi-
tions are usually required to evidence in vivo sensitivity
to oxidative stress). Therefore, the simulations are not
expected to show any variation in the PoP of the ROS.
Indeed, several is-mutant do not accumulate ROS, while
the corresponding biological mutants were reported as
sensitive to oxidative stress. However, under our simula-
tion conditions many mutants (13/26 in silico mutants)
showed an increase in the PoP of the ROS. This means
that our model allows to point out the mutations the
more prone to induce indogenous oxidative stress.
The “respiratory growth” phenotype reported in SGD

is most often strictly related to the capability of the cells

Figure 4 Mean PoP of a number of elements in selected mutants. The gene was turned o after the first million of steps. A: PoP of
protoporphyrin-IX when the gene HEM15 is turned o, B: superoxide anion and hydroxyl radical when the gene SOD1 is set to “OFF”, C-F: PoP of
glutamate, cysteine and glutathion C) when ACO1 is set to “OFF”. Cysteine reached zero at steady-state, D: ACO1 is set to “OFF” and a source of
glutamate is added, E: HEM1 is set to “OFF”, F: HEM1 is set to “OFF” and a source of glutamate is added.
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to grow on non-fermentative sources of carbon (gly-
cerol, ethanol or lactate). All our simulations were run
using glucose as the sole source of carbon. We should
therefore not be able to evaluate the “respiratory
growth” phenotype from our simulations. However, we
show here that using the variations of the PoP of pro-
tons in the intermembrane space of mitochondria is
indeed a very good is-marker of respiration defect. As
much as 63/92 mutants descriptions could be validated
this way, while 27/92 descriptions remained similar in
is-mutants and is-WT and only 1/92 discrepancy was
found between model and biology.
The “chemical compound accumulation” phenotype

was very discriminating, with 33/45 descriptions in full
agreement with the biology, 3/45 descriptions showing
no change between is-mutant and is-WT. Our model
did not allow to evidence accumulation of zinc in a is-
zrt1 mutant, but this phenotype reported in SGD was
conditional to the presence of aluminum ions in the
growth medium of the biological mutant [44]. Some of
the is-adk1 mutant phenotypes did not fit to the pub-
lished ones, mostly because in this is-mutant, it is diff-
cult to quantitatively describe the imbalance between
fermentation and respiration. The biological mutant
exhibits apparently contradictory phenotypes, with
increased ethanol accumulation and increased respira-
tory growth. Interestingly, our model predicts that the
is-yfh1 mutant is depleted in oxidized glutathione, while
SGD reports increased GSSG. However, recent results
show indeed that the prediction from the model is cor-
rect [45] and this impacts on NADPH content due to
higher G6PDH (Zwf1p) activity. All the mutants defec-
tive in “nitrogen sources utilization” were found in the
simulations (5/5).
On a total number of 145 situations where the is-phe-

notypes were comparable to the SGD data, 91.7% were
consistent (see Additional file 3). These results indicated
that through a large scale analysis of the phenotypes
expected from the biology, we were able to recover the
corresponding is-phenotypes.
Analysis of the anaerobiosis to aerobiosis transition, or
“how to deal with dynamic processes?”
We then analyzed the changes in several independent
elements in the simulations of physiologically relevant
transitions. One of our goals was to analyse the oxida-
tive stress response. We therefore modeled the transi-
tion from anaerobiosis to aerobiosis. We analyzed
simulations in which a key element, oxygen, was
removed from the model. Oxygen is required to re-oxi-
dise the reduced equivalents produced by cell metabo-
lism. However, S. cerevisiae can grow in the absence of
oxygen, due to its ability to shift from a respiratory to a
fermentative metabolism. NADH is then oxidised by
alcohol dehydrogenases, leading to ethanol production.

We therefore compared the simulations of our model
with different levels of oxygen to the experimental data
of Jouhten et al. [36], who measured metabolic fluxes in
yeast cells grown in a chemostat with a limited glucose
supply in the presence of 20.9% oxygen (aerobic condi-
tions) and under anaerobic conditions (0% oxygen).
These experimental conditions were taken into account
by weighting “glucose import” to a low value of 0.1. We
compared the experimental fluxes with the reaction fre-
quencies at steady state of key carbon metabolism reac-
tions, in both the presence and absence of oxygen
(Figure 5). All the in silico reactions displayed patterns
of variation highly similar to those observed in vivo,
with the exception of the reaction catalysed by Oac1p, a
mitochondrial bidirectional oxaloacetate transporter
with broad specificity for various anions. There is a sim-
ple explanation for the discrepancy observed for this
specific reaction (of 10 considered). In anaerobiosis,
cytoplasmic oxaloacetate is less produced than in aero-
biosis. However, it is also less consumed than produced.
Because the ratio of the production over the consump-
tion is higher in anaerobiosis than in aerobiosis, oxaloa-
cetate PoP is higher. Therefore, since one of the few
remaining possible reactions involving oxaloacetate is
transports by OAC1, the model predicts an increase in
this transport in the absence of oxygen. Another impor-
tant consideration when analysing results for the N2-O2

transition is that the model includes a number of regu-
latory mechanisms to describe the biological response of
the yeast cell to oxygen deprivation accurately. These
regulations were of two kinds. First, we modelled the
induction, under anaerobic conditions, of the Rox1
responsive regulon [46,47]. Second, we modelled the
effects of glucose repression on the alcohol dehydrogen-
ase system, by adjusting the rate of degradation of the
corresponding enzymes as a function of the presence or
absence of oxygen [48]. This reflects the post-transcrip-
tional regulation mechanisms involved in these
processes.
This global validation of the model provides important

evidence that the frequencies of utilization of the reac-
tions during the simulations are qualitatively consistent
with the metabolic fluxes observed experimentally.
We show here that our probabilistic Boolean model-

ling strategy may provide a useful description of the
dynamics of biological systems. Further analysis is now
required to determine the extent to which this key
notion of fluxes, estimated as reaction frequencies at
steady-state, can be generalised.

Global analysis of the output of the simulations
We evaluated the potential of the model to identify emer-
ging properties through a global analysis of the simula-
tions of the in silico mutants. In silico mutations were
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performed on 187 genes of the model. Indeed, it is
impossible to predict the outputs of such a large number
of simulations. We also included in this meta-analysis the
simulations of models in which each of the 11 fixed ele-
ments was removed, independently, representing changes

in the composition of the growth medium We evaluated
whether it was possible to uncover from the simulations
of the different models some specific properties of this
complex system. A Bayesian classification algorithm
(implemented at Autoclass@IJM, [49]) was then used to
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Figure 5 Variations of the fluxes in selected reactions with and without oxygen. Occurrence of 10 reactions (WT model) in the simulations,
compared with experimental fluxes [36] (red). A-I: frequency of the reaction at steady state (green), J: PoP of ethanol at steady state (green).
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cluster the outputs of all simulations, defining classes
of is-mutants with similar phenotypes and classes of
elements varying in a similar manner in the simula-
tions. Genes and elements were clustered into discrete
sets (Figure 6 and Table 3). These mutations were
grouped into seven classes that were consistent to
some extent with the known biology of the system
used (hem mutants, met mutants, cys mutants) and
with additional mutations in genes with no straightfor-
ward relationship to the other members of the classes.
This suggests that these mutations may define pre-
viously masked metabolic states, some of which it may
be impossible to test experimentally, as several ele-
ments may be simultaneously missing, leading to cell
death in vivo. A detailed analysis of each class showed
that most simulations were correlated with biological
data, but it was not always possible to predict the class
to which a given gene would be assigned. Many is-
mutations had only a limited impact on the steady-
state PoP of most of the elements of the model when
simulated with the predefined set of unlimited ele-
ments (Additional file 4). However, several classes of
is-mutations had very pronounced phenotypes.

One of these phenotypes was an increase in the PoP
of toxic oxygen species. Two clusters of is-mutants dis-
played a large increase in the PoP of the hydroxyl radi-
cal. The first cluster (class 2) had defective sulphate
assimilation, sulphur amino-acid synthesis and iron-sul-
phur cluster biogenesis or assembly. Among them were
the sulphate permease (is-sul1), enzymes of the methio-
nine/cysteine biosynthesis pathways (is-met1, 2, 3, 4, is-
met8, 14, 16, 25) and enzymes involved in the mito-
chondrial assembly of iron-sulphur clusters (is-isu1, is-
atm1 and is-yfh1, which is known to be extremely sensi-
tive to oxidative stress). The cluster was particularly
interesting, because it also grouped together is-muta-
tions in genes and the depletion of elements involved in
controlling major metabolic pathways (is-sam1, homo-
serine, CH3): CH3, representing the entry point to one-
carbon metabolism, S-adenosyl methionine production
(SAM1), and alpha-ketoglutarate dehydrogenase (KGD1
and KGD2), which connects carbon and nitrogen meta-
bolism in yeast.
The second cluster (class 6) included is-mutants in

which the early steps of haem synthesis (HEM1 to 4)
were impaired, with phenotypes similar to wild-type

Figure 6 Variations of the PoP, at steady state, of each element in the model (columns), in each in silico mutant (rows), with respect

to WT simulations. For each mutant and for each element, 6 ∗ Mutant−WildType
Mutant+WildType was calculated. Positive values (red) indicate that the PoP

was higher in the mutant simulations and negative values (green) imply that the PoP was higher in the WT simulations. For a complete content
of all clusters see additional le 2 (cdt file of this clustering). See methods for details.

Achcar et al. BMC Systems Biology 2011, 5:51
http://www.biomedcentral.com/1752-0509/5/51

Page 10 of 19



models run in the absence of oxygen (except, of course,
for the accumulation of ROS). A similar phenotype was
observed for is-mutants with defective pyridoxal phos-
phate cofactor synthesis (PLP is required for ALA
synthase activity). Interestingly, this class of is-mutants
also included the WT minus Zn conditions, consistent
with the requirement of Zn as a cofactor for ALA dehy-
dratase (HEM2). The is-adk1 mutant, lacking adenylate
kinase, also belonged to this class. All these is-mutants
had a high PoP of toxic forms of oxygen. Most sulphur-
containing compounds had a low PoP, due to the inabil-
ity of these is-mutants to assimilate sulphate.
These two classes of mutations were strongly corre-

lated with an iron-related phenotype, the accumulation
in the nucleus of the iron-responsive transcription factor
Aft1p, thus mimicking the “AFT1-up” phenotype
described for biological Δyfh1 [50,51], Δatm1 [50] and
Δcbf1 [52] mutants (Cbf1 is a global transcriptional reg-
ulator of the cys/met regulon [53]).

Is-mutants affected in the late steps of haem synth-
esis (HEM12 to 15, class 3) had very different pheno-
types. They lacked cytochromes and displayed an
increase in the PoP of hydrogen peroxide due to the
lack of catalase, but their sulphur metabolism was
unaffected.
These results show that our model is robust to in

silico mutations, in that it predicts coherent pheno-
types. To our knowledge, this is the first classification
of such a large number of in silico mutations by a sin-
gle model generating coherent and biologically relevant
results.
Focusing on changes in the PoP of a given element

makes it possible to explore multiple alterations to gene
expression, such as loss of function (gene always “OFF”)
or overexpression (setting a higher weight). In this con-
text, we might speculate as to which mutations might
restore the wild-type level of a missing element in a
given mutant, for example. Approaches of this type

Table 3 Composition of the clusters of mutants from Fig. 6 (rows).

Cluster 1

PCK1 FBP1 POX1 IDH2 IDH1 PIC2 IDP2 GLN1 DUR3 MIR1 STR3 STR2 ALT1 NDI1 CTR2 MHT1 AAT1 GDH1 MSN5 ASN1 MAE1 LSC2 GGC1 DIC1 MDH3
ODC1 PHO89 MAC1 SOD1 ACS1 DUR12 CTP1 CYC7 AAC1

Cluster 2

CH3 MET14 MET16 ISU1 NFS1 ARH1 SUL1 NBP35 NAR1 ACO1 MET2 MET3 MET1 MET6 MET5 MET8 ATM1 HOMOSERINE KGD2 KGD1 CYS4 SAM1
MET25 CYS3 SERINE CFD1 YFH1 SO4 POS5

Cluster 3

TPI1 COX20 HEM14 COX1A13 SFC1 ZWF1 CTA1 PDX3 FAA2 SDH1 SDH3 SDH4 MDH1 NDE1 CCP1 COX2 HEM12 HEM13 HEM15 OSM1 CYC1 CYC3
CTT1 FUM1

Cluster 4

SAH1 PPN1 CDC19 PHO3 PHO2 PEP4 ROX1 LSC1 PHO91 ASP1 PYC1 PDA1 PHO12 COX5A COX5B SDH2 PHO81 CCC1 ADK2 MLS1 OAC1

Cluster 5

ATP689 CYT1 PHO84 ATP710A23 PHO4 QCR2 QCR6 QCR7 QCR8 COR1 PSE1 QCR9 PHO80 ATP1A5 PHO85 CYTB CYT2 QCR10 RIP1

Cluster 6

UTR1 O2 BUD16 COA HEM1 YAT2 ZN2 CRC1 HEM2 HEM3 HEM4 TPN1 CAT2 YIA6 ADK1

Cluster 7

HXK1 ALD2 ICL1 TDH1 FBA1 PFK2 PGK1 PFK1 ENO1 ENO2 GPM1 YNK1

Cluster 8

FET3 FTR1 ATX1 GPX1 GSH2 CU CCC2 CTR1 GSH1

Cluster 9

FET4 AFT12 ZAP1 ISA1 SSQ1 AFT1 AFT2 ZRT1 CIT1

Cluster 10

ADO1 PGI1 GLT1 SAL1 GRX3 MET22 GLR1 SOD2 SMF3

Cluster 11

ACH1 FOX2 LCCA POT1 ADH2 ADH1 PDC1

Cluster 12

FET5 DAL1 FTH1 DAL4 DAL3 DAL2 ALLANTOIN

Cluster 13

FE3 FRE1 CIT2

Each mutant is referred to by its gene name or the constant element that was turned “OFF”. COX1A13 = genes COX1 to COX13; ATP1A5 = genes ATP1 to ATP5;
ATP710A23 = genes ATP7 and ATP10 to ATP23; ATP689 = genes ATP6, ATP8 and ATP; LCCA = long chain carboxylic acid; ZN2 = Zn2+; FE3 = extracellular Fe3+;
COA = coenzyme A.
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should help to target experimental studies trying to
identify functional interactions between genes, but
should also facilitate the exploration of new hypotheses
relating to certain poorly documented aspects of the
control of cellular homeostasis.

Exploration of alternative hypothesis: an example of a
use of the model
Although iron homeostasis in yeast is fairly well
described, some aspects of its metabolism remain
unclear. As an example, it has been reported that some
mutant strains affected in the iron-sulphur biosynthesis
pathway accumulate iron within mitochondria as iron-
phosphate amorphous precipitates or nanoparticules
([54] (Δyfh1), [55] (Δatm1), [56] (Δyah1)). Iron-phos-
phate complexes (FePi) are virtually insoluble in aqu-
eous media at physiological pH (Ksp 9.91 × 10-16) [57]
and iron is therefore not available for biosynthesis.
There should be some mechanism in wild-type cells that
either prevent the formation of FePi complexes or
allows the re-mobilization of iron for haem or iron-sul-
phur biosynthesis.
We used our model to explore alternative hypothesis

related to FePi accumulation within wild-type and iron
suphur deficient cells (the Δyfh1 mutant as an exam-
ple). We first postulated the presence within cells of a
highly efficient reaction that reverts FePi aggregates to
free Fe and Pi. This reaction is catalyzed in the model
by an unknown element “X” and the weight of its reac-
tion is set to 1000. As shown in Figure 7-C, removing
this reaction from the model led to a dramatic increase
in the PoP of mitochondrial FePi, a decrease of both
mitochondrial Fe and Pi and a steadily increasing oxi-
dative stress concomitant to the loss of iron-sulphur
clusters.
We wanted however to evaluate the evolution of the

model in situations where the unknown element “X”
was present, using different hypothesis of physiological
relevance. The first hypothesis takes into account the
well described alteration of the function of the major Pi
transporter, Mir1p, when a single cysteine residue is
modified (see Additional file 5). Mir1p shifts from an
anti-port (Pi/Pi or Pi/OH-) activity to a symport (Pi/H+)
activity [58]. We therefore simulated this change of
activity when Mir1p is the target of an oxidative modifi-
cation under stress conditions. Figure 7-B shows that
while the wild-type cells are unaffected by this modifica-
tion, a yfh1 mutant, known to be very sensitive to oxida-
tive stress and to accumulate FePi, indeed exhibits a
slight but significative increase in Fe, Pi and FePi PoP
within mitochondria, while ROS PoP strongly increase
and FeS dramatically drops.
However, in the model, Mir1p is not the only trans-

porter involved in the exchange of Pi between the

cytoplasm and the mitochondria. Sal1p (ATP-ADP/Pi
antiporter) and Dic1p (dicarboxylic acids/Pi antiporter)
also contribute to the Pi homeostasis. We therefore
simulated a model where all the three transporters may
have their activities altered by an oxidative stress. The
phenotypes were similar to those observed under the
previous hypothesis but the PoP of FePi was only
slightly higher (data not shown), indicating a modest
cumulative effect of the oxidative alterations of the three
transporters.
FePi nanoparticles are dissociated in vitro when trea-

ted with hydrosul fite, a strong reductant [56]. We eval-
uated the evolution of the model when “X” was
identified as a thiol as a potential reducing agent. In our
model, this thiol may be either cysteine or reduced glu-
tathione. Removing cysteine impacts dramatically on the
model and precludes the evaluation of its role in FePi
formation. Therefore, we tested the hypothesis that “X”
may be glutathione. Figure 7-D shows that under this
hypothesis, most of the phenotypes of the biological
yfh1 mutant are appropriatly described in the model
since in this mutant, the glutathione PoP is 0% at steady
state: there is a strong increase of the PoP of FePi in
addition to the previously observed high PoP of ROS,
loss of iron-sulphur clusters and drop in mitochondrial
glutathione. This example shows how the model may be
used to investigate poorly understood aspects of the cell
biology. Differents hypothesis were explored to evaluate
the mechanism of the accumulation of iron-phosphate
within mitochondria. The simulations indicated that,
although perturbation of phosphate transport accross
the membrane could be considered, the hypothesis of a
reductive dissociation of FePi by thiols is more likely.
Indeed, many of the phenotypes of the mutant simu-
lated are adequately rendered in this latter case. We are
currently trying to test this hypothesis by using combi-
nation of biological mutants such as the Δgsh1. How-
ever, this study is made difficult since a Δgsh1 strain
was shown to have limited growth without exogeneous
glutathione. The lack of glutathione triggers an apopto-
tic response after few cell divisions [59]. The Δgsh1
strain accumulated mitochondrial iron but the activity
of some FeS enzymes within mitochondria remained
normal (the cytosolic FeS pool was deeply depleted)
[60]. Interestingly, the double mutant Δgsh1 Δatm1 was
described as non-viable.
The example of the investigation of the mechanisms

of accumulation of FePi within mitochondria in patholo-
gical situations illustrates the power of this approach.
Several hypotheses are easily explored by introducing
the appropriate reactions and elements into the initial
model. Testing different hypotheses paves the way to
different type of experiments such as genetic/biochem-
ical identification of the “X” element that makes iron
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soluble even in the presence of phosphate, with special
emphasis on glutathione or other thiol containing com-
pounds status within the cells. It will be also necessary
to measure the activity of the various phosphate exchan-
gers in mitochondria purified from different mutant

strains, or from mitochondria subjected to strong oxida-
tive stress. We believe these applications of the model
will contribute to a better understanding on what con-
tribute most to the control of iron homeostasis. This
approach is to be extended to the analysis of other

Figure 7 Variation of selected elements PoP under different hyptothesis regarding the accumulation of iron-phosphate aggregates. A:
Initial Model - gene YFH1 set to “OFF”, B: Hypothesis 1 - gene YFH1 set to “OFF”, C: Hypothesis 1 - Element X set to “OFF”. Values at steady-
state: Oxydized Mir1p = 90%, non oxidized Mir1p = 20%, hydroxyl radical = 99%, FeS = 1%, D: Hypothesis 2 - gene YFH1 set to “OFF”.
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pathways of important physiological relevance, in nor-
mal or pathological cells.

Application of this methodology to other systems
The new extension of the Biocham language introduced
and validated here could potentially be extended to many
other studies. Systems biology papers frequently contain
“interaction maps” for cellular or biochemical processes,
as defined in a number of studies (see for example [16,61])
based on the formalism of Molecular Interaction Maps
http://discover.nci.nih.gov/mim. Several authors have sug-
gested that their interaction maps could serve as a first
step towards the development of a computational model
and have highlighted the need for appropriate tools to
translate these maps into models [62]. Our approach
appears highly suitable for this purpose. Each edge of an
interaction map could be translated into a rule, as used in
this paper. The weights of rules may be defined as a func-
tion of biological knowledge, as shown here. This last step
seems to be manageable, because these maps are gener-
ated by qualified biologists and are based on extensive
mining of published texts. The definition of weights simply
provides a means of translating a biologist’s intuition and
knowledge into a numerical value; this value does not
need to be obtained through experimentation (although it
could be) and requires definition only with respect to the
other rules. Our sensitivity analysis shows that only the
orders of magnitude for the weights are relevant. Biologists
should then simulate and analyse their models. We believe
that the analysis of simulations will prove to be a powerful
tool for the analysis of large biological systems [63]).
Such a qualitative approach may be seen as a first step

towards more detailed mathematical models. Indeed, no
quantitative value is required and only a rough descrip-
tion for each interaction is needed. Despite providing
only an approximation of the interaction maps, we
believe that this method can provide biologists with
meaningful information.

Conclusions
Iron homeostasis, oxidative stress and metabolism are
tightly linked within cells, with far-reaching implications
at the level of the whole organisms. Indeed, disturbances
in these processes are increasingly frequently being
linked with disease. However, it remains unclear how
the disruption of part of this system affects the rest of
the network. Previous studies have modelled iron-related
processes at the subcellular level (iron-sulphur cluster
assembly in yeast mitochondria [64,65]), at the cellular
level in E. coli [33] (modelling of the genetic regulation
of iron-related genes) or at the organism level in
humans (regulation of iron levels; [30,34,35,62]. Other
models dealing with oxidative stress-related systems
have been published [66,67] but, to our knowledge, this

is the first large model to include iron homeostasis as
well as oxidative stress and some aspects of metabolism.
Using a Boolean probabilistic methodology based on

the rule-based approach proposed by Biocham, we have
constructed a detailed model of this complex system in
yeast. Our methodology uses:

• Only positive statements (no OR or NOT) to
reflect the molecular nature of biological
interactions,
• Weighted reactions to reproduce large differences
in certain reaction rates,
• Stochastic simulations, to reproduce the variability
of biological systems.

This new methodology combines the adaptability of
Boolean models (no need for quantitative data for every
element or reaction, possibility of including “fuzzy
knowledge” etc.) with the need to reflect the reality of
biological processes as closely as possible.
The resulting model consists of 642 elements and 1007

reactions, including iron homeostasis, oxygen-related
reactions and the main carbon, nitrogen, sulphur and
phosphate pathways. It includes several levels of regula-
tion: gene expression ("housekeeping” or conditionally
expressed genes), proteins production, protein targeting
to specific subcellular locations and degradation, nutrient
supply and transformation through the main metabolic
pathways and the uptake and use of ions. Combined with
our simulation algorithm, this model can be used to
investigate the effects of specific perturbations on simula-
tions, facilitating direct comparison with the “wild-type”
situation. These perturbations may be changes in the
“growth conditions” or gene deletions.
The analysis of simulations for selected in silico

mutants showed the consistency of the model to specific
experimental phenotypes. Comparison of the simula-
tions of the wild-type model run with and without oxy-
gen to experimental metabolic fluxes measured under
similar conditions showed that most aspects of the
adaptive responses of the system were accurately
addressed. In a global analysis, in silico mutations gener-
ated for each gene of the model were compared with the
“wild-type” model. A clustering analysis for all the simu-
lations led to the identification of clear phenotypic pro-
files, thus providing new insights into some metabolic
response to stress conditions. Finally, the model was
also used to explore several new hypotheses in order to
better understand some unexpected phenotypes in given
mutants. All these results show that this model, and the
underlying modelling strategy, are powerful tools for
improving our understanding of iron homeostasis in
relation to the main features of metabolism, energy pro-
duction and oxidative stress.
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Methods
Building the model
The list of reactions
As a starting point, the S. cerevisiae bibliome was
searched for references related to a list of genes known
to be involved in iron homeostasis. The bibliome consist
of all articles concerning S. cerevisiae found on PubMed.
From these articles, a list of reactions was manually

inferred and selected on the basis of our knowledge.
The new genes cited in these articles that we felt to be

critical for model accuracy were then used to direct a
new PubMed search. This process was repeated until we
were unable to identify any new reactions strictly related
to iron homeostasis.
The same process was used for inorganic phosphate

homeostasis, for some oxidative stress reactions and for
any other processes that we felt to be important for our
model that were not described in databases.
We searched the Swissprot database for a list of pro-

teins requiring iron-sulphur clusters or haem as a cofac-
tor. We then selected metabolic pathways involving
these proteins that could be directly or indirectly linked
to iron homeostasis or oxidative stress. The reactions
describing these pathways were expressed according to
SGD pathways [68] on the Saccharomyces Genome
Database website http://www.yeastgenome.org.
However, when including a given pathway, we did not

systematically describe all its steps. If a pathway
included several steps producing intermediate metabo-
lites not required by any other pathway included in our
model, we wrote the whole pathway as one reaction,
unless we had reasons to include the intermediate reac-
tions. For example, siroheme biosynthesis from uropor-
phyrinogen-III involves three reactions. The two
intermediate metabolites produced, precorrin-2 and sir-
ohydrochlorin, are not required by any other reaction
already included in the model, so we could have
expressed the whole process as one reaction. However,
the first step involves S-adenosyl-methionine and S-ade-
nosyl-homocysteine, which are already included in sev-
eral reactions in our model, and the last step involves
iron. Thus, if siroheme cannot be produced - in a
mutant for instance - we want to be able to determine
whether this deficiency is related to 2-S-adenosyl-
methionine synthesis or iron availability. We therefore
included siroheme biosynthesis as two reactions, the
first producing precorrin-2 from uroporphyrinogen-III
and 2-S-adenosyl-methionine and the second producing
siroheme from precorrin-2 and NAD.
Finally, we searched the yeast metabolome (described

in SGD pathways) for reactions that might link several
metabolites already included in our model. This is the
reason for which we included alanine degradation, for
example, in the model.

The weights of the reactions
The default value for the weight of the reactions was
one. However some reactions were given a weight lower
than one (for most degradation reactions, the weight is
0.01), or higher than one. For example, the reaction cat-
alysed by the Sod1 superoxide dismutase was given a
weight of 100, to take into account the extremely high
abundance of this protein in yeast cells (519,000 mole-
cules per cell; [69]), its very high catalytic efficiency and
turnover number. A list of reactions given weights other
than one is provided in Table 2. We simulated our
model with all weights set to 1, and it was unable to
produce realistic outputs (data not shown). For example,
the hydroxyl radical elements have PoP lower than 1%
in the complete model, whereas the PoP is higher than
70% in the model without weights, which is not realistic
(the parameter PoP is defined below, in the Simulations
subsection). The WT model corresponds to a model
where the outputs are biologically meaningfull according
the data of the literature and our own experience. We
performed a sensitivity analysis of the outputs of the
model (PoP at steady state) when the weights of the
reactions are modified. Each weight was multiplied by a
coefficient k. The differences between each PoP of the
initial model and the PoP of the model with the modi-
fied weight were computed. Our results show that the
model is robust to modifications of the weights when
the coefficient k ranges from 0.1 to 10. See Additional
file 2 for more details.

Simulations
Algorithm
We used a modified version of the Biocham asynchro-
nous Boolean simulation algorithm, which can be sum-
marised as follows:

1. Initial state: the list of elements that are “ON” at
the beginning of the simulation.
2. Based on the list of elements that are “ON”, the
list of possible reactions is inferred: A reaction is
possible if its reactants and modifiers are “ON”.
3. A reaction is randomly selected from the list of
possible reactions
4. The products of the selected reaction are set to
“ON”.
5. The reactants are randomly either set to “OFF” or
left “ON”.
6. A new list of elements that are “ON” is computed.
7. Steps 2 to 6 are repeated for each simulation step.

In the Biocham algorithm, the reactants are not always
set to “OFF”, so it is possible to reselect the reaction in
subsequent steps (see above step 5). This possibility
reflects the presence of more than one molecule of each
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sort in biological systems. If the same reaction is
selected over and over again, all the reactants will even-
tually be turned “OFF” and the reaction will cease to be
possible unless other reactions set the reactants back to
“ON”. Indeed, in biological systems, all elements may be
considered to exist in limited quantities.
We also had to overcome a limitation of Biocham to

obtain simulations as close as possible to real biological
systems: this algorithm does not mimic the large differ-
ences in reactions rates observed in real biological sys-
tems. Although we do not precisely know the rate of all
the reactions in the model, we can reasonably state that
the degradation of an enzyme is far less likely to occur
than the reaction this enzyme catalyzes. Another exam-
ple is related to the functioning of the TCA cycle: we
know that some reactions of the cycle are technically
reversible but the reaction always runs in one direction
in practice, because this direction is thermodynamically
more favorable. We needed to mimic this situation, to
make our model as realistic as possible. We therefore
decided to extend the algorithm, by weighting the reac-
tions. From the weights of the possible reaction, at step
2, in the previous algorithm, we calculated the probabil-
ity of a reaction being selected as the weight of the reac-
tion divided by the sum of the weights of all possible
reactions. A reaction is therefore more likely to occur if
it has a high weighting.
If the experimental rates of all reactions in the model

were known, we could set their weights accordingly. As
these rates were not all known, we defined relative
weights, using a default rate of one. The weight of a
given reaction was modified if we had quantitative or
qualitative experimental knowledge relating to its reac-
tion rate (see Table 2 for a list of reactions with weights
other than one).
In this paper, all the elements were set to “ON” at the

beginning of the simulations, defining thus the “initial
conditions”. We tested different initial conditions (for
the non constant elements only) which always resulted
in the same steady-state (data not shown).
Mean profiles
The simulation algorithm was developed in the C (for
computation) and Python (for file/data management) lan-
guages on a Linux workstation. The simulations were
performed on a cluster of 40 nodes (DualCore AMD
64 bits Opteron bi-Processor, 2Go RAM, PBS/Maui sche-
duler). Each type of model was simulated 100 times, until
a steady state was reached (see below). From these 100
simulations and for each element, we defined the PoP as
the percentage of simulations in which the element was
“ON” (present), for each simulation step. This calculation
process is referred to as the profile of an element. Figure
4 shows examples of such profiles in which the mean
PoP was also calculated every 100,000 steps.

Steady states
We checked whether steady state had been reached, by
performing an ANOVA on the last 2 million steps, for
every element (the null hypothesis is that the PoPs are
independent from the iterations). If a significant result was
obtained (p-value below 0.001), then the simulation was
rerun for a larger number of steps. As background noise
in the simulation can generate false positives, if the means
of the last million steps of the new simulation of each ele-
ment was equal to the means of the previous simulations,
then we considered steady state to have been reached.
For some mutants, some elements have PoPs that

increase or decrease slowly. For example, in some
mutants the reactive oxygen species have increasing PoP.
Most of them will have a PoP of 100 at steady-state but
some will reached this maximum value faster than others.
We advocate that comparing the simulations of the
mutants after the same number of steps may be related
to some biological properties of the mutants. To be able
to take into consideration these differences in our sys-
tematic in silico mutants analysis, we used the PoP of the
elements after 20 millions of steps even though the simu-
lations were not at steady-state yet.
74% of the simulations reached steady-state before 20

million steps and among the remaining 26% only some
very slowly increasing or decreasing elements have not
reached steady-state yet.
In silico mutations and mutants
Model simulations began with all elements “ON” and
continued until steady state was reached: this situation
corresponds to “wild-type” simulations. To simulate a
mutant for a given gene, a wild-type simulation was car-
ried out for one million of steps. The gene in question
was then turned “OFF” and the simulation was contin-
ued for 19 more millions of steps for the systematic
mutants analysis or until steady-state was reached for
the other analysis. This method for simulating mutants
mimics experimental Tet-OFF mutants, in which the
transcription of a given gene is controlled by a tetracy-
cline- responsive promoter and can be turned off by
adding tetracycline to the growth medium [70].
The model was simulated according to this procedure

with, for each set of simulations, one of the unlimited ele-
ments deleted. Each type of model in which an unlimited
element was turned “OFF” was referred to as a “mutant”.
Note that none of the reactions were modified.
Clustering
For each “mutant” model, the mean of the last million
of steps of the simulation was calculated for each ele-
ment. Then, for each element and for each “mutant”, a
distance to the “wild-type” was calculated as follows:

6 ∗ Mutant−WildType
Mutant+WildType (formula based on A.Ultsch RelDi

[71]). In the resulting matrix, each column is an element
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of the model and each row a “mutant”. This matrix was
then clustered, using Autoclass@IJM (real location data
type, relative error = 0.01), which identifies classes of
“mutants” causing similar changes in the simulations.
The matrix was then transposed and clustered again:
this generated classes of elements changing in a similar
fashion in the different “mutants”. Figure 6 shows the
matrix clustered for both elements and “mutants”.
Figure 6 is annotated: the rows are annotated with the

most significantly enriched gene ontology process (cal-
culated with GoTermFinder [72]), the columns were
annotated manually (only the columns containing many
elements which PoP changes significantly were anno-
tated - see Additional file 6 for the complete clustering).
Phenotypes analysis
The file containing the manually curated phenotypes of
the yeast mutants was retrieved from SGD (file edited the
03/13/10). From this file, we extracted the phenotypes
associated with mutants of genes present in the model.
From this selection, we further extracted the phenotypes
that could be compared with our simulation results (e.g.
the auxotrophies related to molecules present in the
model). Six types of phenotypes were extracted: “auxotro-
phies” (cysteine, methionine, heme, glutamate), “chemical
compound accumulation” (of elements present in the
model), “oxidative stress resistance”, “respiratory growth”
and “nitrogen source”. Then, we compared these pheno-
types with the PoP of the corresponding elements in the
WT model and in the mutants. For the “oxidative stress
resistance”, we did not simulate the mutants with an addi-
tional source of stress, as where observed the experimental
phenotypes. Instead, we looked for the production of ROS
in the mutant as compared to the WT in standard simula-
tions. Therefore, only the constitutively stressed mutants
showed similar phenotypes in our simulations and in vivo.
As for the “respiratory growth” phenotypes, we compared
the PoP of the protons in the intermembrane space (noted
“Hinter::mitochondria” in the model), because in the
model an increase or a decrease in this element PoP can
be directly linked to a defect in the respiratory metabo-
lism. For the “nitrogen source utilization” phenotypes, we
compared the PoP of the products of the utilization of the
nitrogen source. See Additional file 3 for the full results.

Additional material

Additional file 1: The WT model as used for the simulations. The WT
model as used for the simulations. Lines beginning with “%"are
comments. Each reaction of the model is followed by its weight
(separated by a tab spacing). Elements with name beginning with “#"are
constant elements. The cellular location of an element is separated from
the element name by “::”. Reactions may take four main forms: 1) A + C
= >B + C (A gives B using C) 2) A = [C] = > B (different formalism for the
same reaction) 3) A = > (A is degraded) 4) A < = > B (reversible
reaction).

Additional file 2: Sensitivity analysis of the outputs of the model
(PoP at steady state) when the weights of the reactions are
modified.

Additional file 3: PoP of elements in simulated mutants versus
phenotypes manually curated by SGD in the corresponding
mutants. The spreadsheet le is composed of 6 sheets (one for each type
of phenotype). Each sheet contains the simulated PoP on the left and
the SGD phenotypes on the right panel (as they appeared in the original
file). One phenotype can be represented by multiple lines when multiple
articles reproduced it. ND = no difference between the WT and the
mutant were observed. Red cells mean that the differences observed in
the in silico mutant is not in agreement with the experimental
observations. Yellow cells mean that the differences observed in the in
silico mutant is not in agreement with the experimental observations as
referenced by SGD but that a more recent publication is in agreement
with our simulations (the happened once, see text for more details).
Columns in the “SGD Reference” section: - Reference (SGD REF Required,
PMID optional) -PMID: #### SGD REF: #### (separated by pipe)(one
reference per row) - Experiment Type (Mandatory) -The method used to
detect and analyze the phenotype - Mutant Type (Mandatory)
-Description of the impact of the mutation on activity of the gene
product - Allele (Optional) -Allele name and description, if applicable -
Strain Background (Optional) -Genetic background in which the
phenotype was analyzed - Phenotype (Mandatory) -The feature observed
and the direction of change relative to wild type - Chemical (Optional)
-Any chemicals relevant to the phenotype - Condition (Optional)
-Condition under which the phenotype was observed - Details (Optional)
-Details about the phenotype - Reporter (Optional) -The protein(s) or
RNA(s) used in an experiment to track a process

Additional file 4: List of the elements of the model that are always
“ON” during the simulations.

Additional file 5: The WT model implementing the first hypothesis.
The WT model implementing the first hypothesis explored in “Results/
Exploration of alternative hypothesis: an example of a use of the model”.

Additional file 6: Clustering presented in Figure 6. cdt file (readable
using Java TreeView or a spreadsheet program) of the clustering
presented in Figure 6.
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