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Abstract

Background: Understanding of immune response mechanisms of pathogen-infected host requires multi-scale
analysis of genome-wide data. Data integration methods have proved useful to the study of biological processes in
model organisms, but their systematic application to the study of host immune system response to a pathogen
and human disease is still in the initial stage.

Results: To study host-pathogen interaction on the systems biology level, an extension to the previously described
BiologicalNetworks system is proposed. The developed methods and data integration and querying tools allow
simplifying and streamlining the process of integration of diverse experimental data types, including molecular
interactions and phylogenetic classifications, genomic sequences and protein structure information, gene
expression and virulence data for pathogen-related studies. The data can be integrated from the databases and
user’s files for both public and private use.

Conclusions: The developed system can be used for the systems-level analysis of host-pathogen interactions,
including host molecular pathways that are induced/repressed during the infections, co-expressed genes, and
conserved transcription factor binding sites. Previously unknown to be associated with the influenza infection
genes were identified and suggested for further investigation as potential drug targets. Developed methods and
data are available through the Java application (from BiologicalNetworks program at http://www.
biologicalnetworks.org) and web interface (at http://flu.sdsc.edu).

Background
Public health initiatives increasingly recognize the
importance of the cross-scale data integration, such as
mounting a data-driven risk assessment of potential
pandemic outbreak in specific geographical locations or
discovering novel therapeutic approaches [1-6]. For
example, to facilitate the study of the Influenza infection
outbreaks [7,8], it is desirable to apply the systems biol-
ogy approach that requires integration of heterogeneous
data from various domains of knowledge: flight paths of
migrating birds, animals and humans; virological
aspects, such as the efficiency with which the virus can
be transmitted from the infected subject; cellular

phenomena, such as interaction of viral proteins with
surface receptors in the inner and outer respiratory
tracts of hosts; phylogenetic properties of viral strains
and viral proteins; structural properties of proteins; and
molecular interactions of host and virus proteins to
each other and small molecules [9-11]. Thus, there is a
need in the integration system able to integrate hetero-
geneous biological and clinical data and enable cross-
domain and cross-scale analyses of those data.
Experimental data on host-pathogen interaction are

distributed throughout many heterogeneous data
sources. Among the integration systems enabling study-
ing host-pathogen interactions at multi-level scale are
PHI-base [12], PHIDIAS [13], PIG [14], IVDB (Influenza
Virus Database) [15], and the NCBI Influenza Virus
Database [16]. In these resources, data sources are inte-
grated mostly through URL links. Despite the active
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research in the field, most of the published data con-
cerning host-pathogen interactions [17-28] are not avail-
able for the study in the concert with other data: they
can be accessed only as supplemental tables to the
papers and at best visualized using the network visuali-
zation and navigation tools, such as Cytoscape [29],
GenMAPP [30], GeneSpring (Agilent). These solutions,
however, do not allow integration of orthogonal types of
data, such as 3D protein structures or sequences of gene
regulatory regions, for example. They also do not allow
phylogenetic, orthologous or phylogeographic analysis
that is necessary, considering the fact that the detail
experimental analysis of host-pathogen interactions for
each of the existing, emerging and reemerging patho-
gens is not feasible.
At the same time, existing link-based integration sys-

tems, such as Entrez [31], Ensembl [32], or BioMart
[33], provide limited capabilities for analysis of host-
pathogen interactions and pathways specifically. While
most heterogeneous data integration systems, or ware-
houses, are either domain-specific–for example,
STRING [34], GeneCards [35], or PharmGKB [36] deal
with genomic data exclusively–or do not allow sequence
search and annotation, for example, ONDEX [37], BIO-
ZON [38], or BNDB [39].
In this paper, the approach at cross-scale data integra-

tion to study host-pathogen interactions is proposed
and demonstrated on a study of the Influenza infection.
The proposed system is an extension of the previously
developed BiologicalNetworks [40,41] and IntegromeDB
[42]. It represents a general-purpose graph warehouse
with its own data definition and query language, aug-
mented with data types for biological entities. Developed
methods and implemented solutions for the integration,
search, visualization and analysis of host-pathogen inter-
action data are available through the BiologicalNetworks
application http://www.biologicalnetworks.org and web
interface http://flu.sdsc.edu; Demo page: http://flu.sdsc.
edu/examples.jsp.

Methods
System
The architecture of the system, data integration and
mapping procedures, database schema, ontology model
and data query engine are described in detail elsewhere
[42]. Therefore, only brief description is provided here.
Data integration and mapping to the internal database is
fully automated and based on Semantic Web technolo-
gies and Web Ontology Language (OWL) http://www.
w3.org/TR/owl-ref. The IntegromeDB [42] internal data-
base schema is RDF-compatible (Resource Description
Framework; http://www.w3.org/RDF/); that is, it stores
biological data in an RDF-compatible format, the stan-
dard format of the Semantic Web [43]. The database

architecture and database schema are provided at http://
www.BiologicalNetworks.net/Database/tut0.php. The
ontology is available as an OWL file at http://flu.sdsc.
edu/bionetsonto.jsp.

Data
The full list of integrated databases and statistics are pro-
vided at http://www.biologicalnetworks.net/Database/
tut5.php [42]. To enable research on host-pathogen
interactions, in addition to previous integrated data on
genome and protein sequences, gene expression and reg-
ulation data, protein-protein and protein-DNA interac-
tions [42], the following data were integrated (Table 1):

• Phylogenetic trees that connect host and pathogen
proteins/genes with orthologs/homologs in model
organisms (with their molecular sequence, structure,
expression and interaction data). These data were
obtained from PhyloFacts database [44].
• Literature-curated information on physiological
effects of pathogen infection in experimental systems
(including cell cultures and in vivo models)
• Virulence data about mortality/morbidity informa-
tion related to isolate and incidence, isolated organ-
ism’s sequence data (from WHO statistics)
• Epidemiological data on infection occurrence,
pathogen culture sites and dates, migration data of
vectors, past movement data of infected individuals,
etc. (from NCBI Influenza Virus Resource).

Additional experimental data sets on host-pathogen
interactions integrated into our system include human
interactomes used by Influenza virus, HIV, HCV, den-
gue virus and West Nile virus (WNV) (based on the
results reported in [17,22-28]).

Data access
The web page http://flu.sdsc.edu (Figure 1) provides
genomes/pathogenic strains searches by keywords and
genomic and protein sequences, statistics on integrated
data by category and data source, information relating
to retrieved properties by data sources for each gene/
protein that can be accessed from the query result page,
and data inconsistencies in public data. The web site
was designed primarily for the purpose of giving the
user an opportunity to quickly search for phylogenetic
relations among sequence strains and perform at inte-
grated data rather than to provide complex data analysis
capabilities, which are implemented in the Biological-
Networks application, which can be downloaded at
http://www.BiologicalNetworks.org (Figure 1).
To integrate the user’s data into the system, the web

page http://flu.sdsc.edu/integration.jsp (see Section ‘Inte-
gration of user’s data’ below) is provided. The data will
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become public, but unless curated by the data adminis-
trators, will remain “tagged” as ‘uncurated’ under the
contributor’s name. The user’s data integration proce-
dure consists of 3 simple steps: 1) User registration, 2)
Data Mapping and 3) Data integration (see Section
‘Integration of user’s data’ below). To be integrated, the
data needs to be in the table format.

Internal Data Model and Data Structures
The internal schema of the BiologicalNetworks database
is shown in Figure 2. Four orthogonal types of biological

data–graphs, sequences, histograms, and tree struc-
tures–are integrated to enable multi-scale data analysis
for the host-pathogen studies. In the process of integra-
tion, all external data types (Figure 2A) are transformed
into graph and tree data structures (Figure 2B): one-
dimensional sequence data (e.g. sequences) into interval
trees; two- and three-dimensional data (e.g. images) into
R-trees. To keep the number of the index structures
small, a single interval tree is created per chromosome
instead of per annotated DNA sequence regions, and
the images of the same resolution are referenced with

Table 1 Integrated data for the Host-Pathogen interaction studies

Host Pathogen Host-Pathogen

Genome strains - 22949 11843 (H)

Genome Sequences (complete genomes) 354 3994 -

Protein Sequences 99117 58218 -

cDNA library Sequences (+conditions, tissue sources) 79431 47175 -

Gene expression 12983 - 29

3D structures 135819 380 -

Protein- protein interactions/Reactions/Relations > 200 000 000 in more than 1000 organisms 650 250

Phylogeny 9 phylogenetic tree libraries from PhyloFacts database [44]

Virulence Statistics on confirmed Human cases of Influenza reported to WHO

Epidemiology Infection occurrence, pathogen culture sites, dates, migration data vectors, movement
data of infected individuals for 113 countries, 1605 locations

Figure 1 BiologicalNetworks and web interfaces for host-pathogen interaction studies.
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Figure 2 Integration of diverse genomic and meta-genomic data in BiologicalNetworks for the host-pathogen interaction studies.
(A) Four main data types (i.e. Graphs, Sequences, Trees and ‘Histograms’) representing diverse range of biological data are integrated in the
BiologicalNetworks. (B) Internal data representation of main four data-types. Interaction/Relation networks are stored as general graphs,
Genomic/Protein/3D-structure sequences- as interval (RI-) trees and Suffix trees, Ontologies/Phylogenies as DAGs (Directed Acyclic Graph),
Histograms as Oracle structures for multidimensional data. (C) Data storage schema, internal data tables and binary files for storing and
integrating diverse data types. (D) BiologicalNetworks Ontology reflects the current knowledge of the domain, taking information from many
ontologies provided by OBO consortium at http://www.bioontology.org.
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respect to the same coordinate system and placed in
a single R-tree. The examples of operations on RI-trees
that are used in BiologicalNetworks for Navigation and
Annotation of multiply overlapping gene regulatory
regions, protein binding regions, disease and geographical
maps are provided in the Additional File 1, Section S1.1.
Nodes of the interval and R-trees (Figure 2C) are con-

nected to ontology nodes (Figure 2D) through the inter-
nal Objects and Attribute values tables that are in turn
connected through BioNets Ontology http://flu.sdsc.edu/
bionetsonto.jsp (Figure 2D). BioNets ontology consists
of three parts: (i) the general-purpose Basic Ontology,
which is the modification of BioPAX Level 2 ontology;
(ii) manually (by the authors) mapped to the basic
ontology 25 selected OBO ontologies (specified at
http://flu.sdsc.edu/bionetsonto.jsp and provided in the
Additional File 1, Figure S2); and (iii) 72 OBO ontolo-
gies that are mapped to each other and the selected 25
ontologies as provided by the OBO consortium. The
basic ontology and mappings to the selected 25 ontolo-
gies are provided in the file basic.owl available at http://
flu.sdsc.edu/bionetsonto.jsp under “MappinSuperClass”
class and “sameAs” properties.
A new ontology can be introduced without modifica-

tion of the BioNets ontology classes and through ‘ontol-
ogy mapping’ [43]. For example, for a SequenceOntology
that maps a class Gene ’SO:12345’, a new class ‘map-
pingSO:012345’ will be generated using ‘same_as’ relation.
More detailed information on BioNets ontology is pro-
vided in the Additional File 1, Section S1.2.
Versatile suffix tree structures (Figure 2B) are used to

solve a variety of sequence-based problems, such as
exact and approximate matching, database querying, and
finding the longest common substrings [45]. A variety of
efficient in-memory suffix tree construction algorithms
have been proposed [45-50], that are scalable with extre-
mely large (for example, the human and mouse genomes
are approximately 3 Gbp and 2.5 Gbp long, respectively)
sequences. External biological sequences are trans-
formed to internal suffix tree structures, using TRELLIS
algorithm [51]; sequence search operations such as
exact sequence search, best match, and longest substring
are allowed. Suffix tree representation of genomic/pro-
tein sequences is stored as indexed binary files and is
mapped to the database sequence objects as property
values (Figure 2B and 2C (right)).

Data Querying
As different categories of data are added to the system,
it becomes critical to have an augmented (internal)
query language that provides constructs (operators and
functions) to search, manipulate and query the data.
The developed for this purpose the BioNetQL query
language is used behind the user interface in the

BiologicalNetwork application. It can be also used by
the users accessing the database directly through the
API; for example, our database is extensively used
through the BioNetQL API in the CAMERA metage-
nomic project [52]. The syntax of BioNetQL and its dis-
tinction from SQL and SPARQL are considered in the
Additional File 1, Section S1.3.
To enable systems-level study of host-pathogen inter-

action, in addition to the query capabilities described
previously [42], a number of new methods were imple-
mented that now allow answering the specific questions
concerning host-pathogen interactions. For example, the
following questions: (1) What is the evolutionary dis-
tance between two specified genome sequences?
(2) Which genome sequences are within the specified
evolutionary distance from a given genome? (3) What is
the probability of a given protein/gene sequence to be
virulent? and (4) What is the probability of a protein of
a given 3D structure to be virulent? Evolutionary dis-
tance was chosen to rationalize the information integra-
tion scheme of our database, because virus properties,
such as virulence, infectivity, host-specificity, geographic
locations, morbidity in an epidemic, or host-specific
reactions are related by evolutionary lineages [53].
To address the first question, the database can be

searched for evolutionary distances between two speci-
fied genome sequences of different species/strains/iso-
lates, executing the following three queries (Figure 3A,
B): (1) reconstruct the PhyloTree containing both
sequences; (2) find the least common ancestor (LCA)
for two sequences; and (3) find the sum of distances
from each of the two sequences to the LCA.
To find the answer to the second question–Which

genome sequences are within the evolutionary distance
Lmax from a given genome X?–the following queries

Figure 3 The rationale of phylogenetic querying in Biological-
Networks. (A) Phylotree database table. (B) Calculation of the
evolutionary distance between two strains X and Y. (C) Find
genome strains with the range of evolutionary distance.
(D) Estimation of the probability for node Y to be virulent by
multiple sequence analysis of it’s neighbors.
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need to be executed (Figure 3C): (1) reconstruct the
phylogenetic tree containing X; (2) find the ancestor A
of the node X that is no farther than Lmax from X; and
(3) in the ancestor A rooted sub-tree, find the nodes at
the distance Lmax from X.
To predict the virulence of a species/strain/isolate by

its gene/protein sequence, the published method for
virulence evaluation of low and high pathogenic avian
influenza LPAI and HPAI [53] was implemented in the
system. Using this method, it was shown that HPAI
strains in addition to phylogenetic grouping exhibit
grouping by geographical region [53]. The following
sequence of queries allows applying the method (Figure
3D): (1) recalculate/modify the phylogenetic tree based
on multiple sequence alignment; (2) find the nodes
nearest to a given node X; and (3) calculate the prob-
ability for the node X to be virulent if its neighbors are
known to be virulent or not virulent.
Similarly, the probability of a protein of a given 3D

structure to be virulent can be estimated, using the phy-
logenetic tree built based on 3D structure multiple
sequence alignment (Figure 3D).
To enable the aforementioned queries, a number of

bioinformatics methods were implemented in Biological-
Networks both in house and by the others to: recon-
struct the phylogenetic tree, recalculate/modify the
phylogenetic tree, for multiple sequence alignment
[54,55].
Also, for identifying phylogenetically conserved tran-

scription factor binding sites in the gene regulatory
regions, the method [56] was applied to the promoter
sequences ( the region from -500 to +500 bp relative to
the transcription start site) of all integrated genes, using
known binding sites that have been integrated in the
IntegromeDB [42]. Identified gene pairs and their con-
served binding sites were integrated into the system. In
addition to the queries by keywords, this data can be
queried by sequences (the examples are given in the
Application section). The implemented in BiologicalNet-
works approach to the sequence querying is discussed
in detail elsewhere [42].

Results and Discussion
The severity of flu pandemic outbreaks, including the
recent one of the swine-origin H1N1 influenza virus,
and widespread resistance to the existing antiviral
drugs demand for new therapeutics targeting host fac-
tors. Identification of host genes involved in the virus-
host interactions is the first step towards developing
such therapeutics [17]. In this work, we attempted
to identify these genes, analyzing the broad spectrum
of publicly available data on influenza viruses and
infections, using the BiologicalNetworks application
(Figure 4A-D).

To find the potential therapeutic targets in the host,
we first identified the genes that were differentially
expressed in mouse and human in response to the influ-
enza infection and interacted with the virus and to each
other. Then, using the constructed interaction network,
we studied the proteins that directly interacted with the
virus and co-expressed genes. Sub-networks that were
induced/repressed at different stages of the influenza
infection were also analyzed. In the result of analysis of
co-expressed genes and transcription factor binding sites
in their promoters, 118 genes were identified as poten-
tial candidates for further investigation; after filtering
the genes that are known to be associated with influenza
infections, 7 genes were obtained.
Using the influenza viruses as an example, in the fol-

lowing four sections we demonstrate and discuss differ-
ent types of host-pathogen interactions that are available
in BiologicalNetworks. Since at the moment of the ana-
lysis, the data were available for only two influenza pro-
teins, neuraminidase and hemagglutinin, the provided
below analysis was narrowed down to these two viral
proteins. All discussed queries are provided in detail in
the Additional file 1, Section S1.4.
The last two sections show additional capabilities of the

system, phylogeographical analysis and integration of the
user’s data, following by the comparison with other sys-
tems designed for studying host-pathogen interactions.

Building the influenza virus-host interaction network
To construct the interaction network for further study,
BiologicalNetworks was first queried for the host proteins
interacting with the virus and localized in nucleus or cyto-
plasm (Query 1, Additional File 1, Section S1.4). This
query returns the set of pair-wise interactions in the form
of a graph. Then, BiologicalNetworks was searched for the
genes that were differentially expressed and related to the
influenza infection in the microarray experiments (Query
2 Additional File 1, Section S1.4). Since different experi-
ments have different number of time points and condi-
tions, data from every experiment were normalized (for
details see Additional File 1, Section S1.4).
Finally, for the discovered genes, we extracted all

known interactions among host proteins. Thus, among
3,972 differentially expressed genes in mouse, ~12,000
interactions were found for the proteins implicated in
the influenza expression data set. After narrowing the
search to the curated interactions from HPRD and
BIND databases, we obtained the resulting network con-
sisting of 4,592 interactions among 1,950 molecules
(Figure 4E). Due to limited data available in human, the
network for human was much smaller and contained
only 413 influenza-human and human-human interac-
tions. Now, the constructed networks can be examined
in detail.
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Analyzing sub-networks
In this section, we demonstrate the analysis of sub-net-
works and individual interactions in the interaction
network.

First, we were interested in identifying sub-networks
that were significantly induced or repressed relative
to randomly selected sub-network [57]. Six such sub-net-
works were found; they overlapped and each consisted of

Figure 4 BiologicalNetworks data querying interface for host-pathogen interaction studies. (A) Keyword and multi-word search.
(B) Specialized search. (C) Comprehensive search by attributes. (D) Build Pathway Wizard. (E) Composite network of molecular pathways active
in Influenza A-infected dendritic tissue implicated by genomic expression data. (F) Extracted graph of flu virus antagonist effects on Glycolysis
metabolism in dendritic cells.
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about a hundred interactions. The pathways found in
these sub-networks were consistent with a large-scale
response of complex molecular pathways to the viral
infection. Thus, genes involved in the interferon-response
pathway were induced, owing to the immune response to
viral infection. Nearly all genes involved in the Jak-STAT
interferon-response signaling pathway and apoptosis-
related genes were activated; whereas the genes involved
in the growth factors (IGF and connected pathways), cell-
cycle and translation-related pathways (CDKN and con-
nected pathways) were repressed.
Second, six sub-networks were combined into a single

fully-connected network (Figure 4F); that is, all interac-
tions that did not belong any of the sub-network
were excluded. In this network, we looked for the sub-
networks that were significantly perturbed at early, mid-
dle or late stages of the influenza infection. As it was
expected, “early” sub-networks contained pathways of
the general immune response, whereas “middle” and
“late” sub-networks - pathways specific for the infection.
The genes involved in the pathways significant for early,
middle and late stages are shown in Figure 4F and
colored according to the stage. Further, we looked at
the GeneOntology terms for the genes in the pathways
that were perturbed at early, middle or late stages of the
influenza infection. The following biological processes
from GeneOntology were identified: immune response
(p-value <1.0e-6), proteolysis and peptidolysis (p-value
< 1.0e-5), lipid transport (p-value < 0.001), and comple-
ment activation (p-value < 0.01).

Studying individual genes
To study individual genes, we used the constructed in
the previous section network of significantly induced/
repressed genes in the influenza infection (Figure 4F).
For example, one can search for the genes that directly
interact with the viral proteins and are known to be
up- or down-regulated in human or mice (Query 3 in
Additional File 1, Section S1.4). Thus, among the down-
regulated genes were the genes of the immune response
(Toll-like receptors TLR1/TLR2 and interleukin), inter-
feron-regulated genes (interferon-induced protein with
tetratricopeptide repeats 2 (IFIT2) and vipirin), and the
other genes involved in defense, inflammatory response
and intracellular signaling pathways, including chemo-
kine, apoptosis, MAPK, Notch, Jak-STAT, T-cell recep-
tor, complement and coagulation cascades–pathways
and genes are known to participate in the viral response
and recruited by the virus for the entry [17,58,59].
Further, we decided to focus on co-expressed genes.

Such an analysis can give us host genes that can be
potential targets for anti-viral drugs. We selected from
the mouse network 45 co-expressed genes that were
also differentially expressed in response to the influenza

infection (Query 4 Additional File 1, Section S1.4). Since
our database contains information on transcription fac-
tor binding sites, both experimental, predicted and con-
served, we used that information to extend the network
beyond the reported interactions. In the promoters of
45 co-expressed genes, we searched for binding sites
that were conserved in the three species, Homo sapiens,
Mus musculus and Rattus norvegicus. Such sites were
found in 7 genes: SFRS11, SFRS1, FMNl2, LEPROT,
NICN1, FHOD2, f3-contactin; if one is interested, the
binding sites can be searched by sequence (Query 6 in
Additional File 1, Section S1.4). Identified conserved
binding sites were regulated by 73 transcription factors,
including CREB, HNF1, NRF2, FOXP3, and factors from
Pax, Gata and Stat families.

Potential drug targets
Which of the identified 7 co-expressed genes with phy-
logenetically conserved binding sites and their 73 poten-
tial transcription factors were not previously reported as
associated with the influenza infection? The search
(Query 7 in Additional File 1, Section S1.4) gave us 7
such genes/proteins: NFE2L2 (NRF2), FOXI1, SMAD6,
HOXA3, SFRS11, GRAP, and AMPD1.
Based on available information, 5 genes, SMAD6,

GRAP, HOXA3, NFE2L2, and AMPD1, might be sug-
gested to be further investigated as drug targets in the
influenza infection. Thus, SMAD6 is known to be
involved in immune response (GO:0006955), signal
transduction and transcriptional modulation of multiple
signaling pathways, including BMP (GO:0030509) and
TGF-beta receptor-signaling (GO:0030512). GRAP is
involved in activation of the T-cell antigen receptor
(TCR) signal transduction pathway [60], Ras protein sig-
nal transduction (GO:0007265) and cell-cell signaling
(GO:0007267). HOXA3 transcription factor may be
required for the induction of pathogen-response genes
in humans as it was shown that S. aureus infection
induced a number of HOX genes that modulated the
NF-�B -dependent transcription and exerted this func-
tion redundantly [61].
AMPD, or AMP deaminase, is an enzyme that con-

verts adenosine monophosphate (AMP) to inosine
monophosphate (IMP), freeing an ammonia molecule in
the process. Deficiency of this enzyme is a common
cause of myopathy and rhabdomyolysis (the rapid break-
down of skeletal muscle). The influenza infections are
known to be a cause of rhabdomyolysis, including seaso-
nal [62] and recent H1N1 [63].
NFE2L2 gene codes the transcription factor NRF2 that

is a known master regulator of the antioxidant response
[64]. By inducing genes involved in combating oxidative
stress that results in inflammation, neurological diseases,
and renal disease, NRF2 protects body from a variety of
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oxidative stress-related complications. NRF2 activators
have been studied as cancer [65] and diabetes drugs
[66]. Our research shows that NRF2 might be consid-
ered a therapeutic candidate in the influenza infection
as well.

Adding phylogeography
BiologicalNetwork allows phylogeographical analysis of
a pathogen(s) strains/isolates. In particular, host-patho-
gen interaction networks for two or more pathogen gen-
omes can be compared, using both phylogenetic and
geographical data (Figure 5). Phylogeography seeks to
explain the molecular evolution, genealogy and migra-
tion of species [54]. The strains in question are more
likely to have similar pathogen-host interactions (and
virulence properties) if they originated from the same
geographical location and have relatively small phyloge-
netic distances [53,67]. Using phylogeographical
approach, the closest phylogenetic neighbor for a new
sequenced pathogen strain can be found, and its prob-
ability to be virulent can be estimated. The phylogeogra-
phical methods implemented in BiologicalNetworks are

described in the section Methods and Demonstration
page at http://flu.sdsc.edu/examples.jsp. Together with
capability to integrate new phylogeographic data, these
methods make BiologicalNetworks a unique among
other integration systems. BiologicalNetworks allows
visualizing and comparing host-pathogen networks in
respect to the pathogens phylogenetic distance and geo-
graphic origin (Figure 5).

Integration of user’s data
Any public or user’s data in the table-format can be
integrated into BiologicalNetworks automatically and
studied together with other already integrated data.
The user can do it at http://flu.sdsc.edu/integration.jsp
(Figure 6A). We integrated host-pathogen interaction
networks, pathways and all other data provided in the
studies of Konig et. al. [17] and others [21-28]. Data
from [17] are provided in 13 supplementary tables and
contain: human cellular factors required for early-stage
influenza virus replication, biochemical complexes that
are required by different RNA viruses, host proteins
confirmed to be required for wild-type influenza virus

Figure 5 Visualization of phylogeographic data in Influenza virus study project. (A) Influenza virus clades are labeled by corresponding
geographical region and visualized phylogenetically on GoogleEarth. Every spot on the globe corresponds to a particular strain of Influenza
outbreak. Each leaf of the phylogenetic tree represents an influenza strain, and is located in the place where corresponding virus genome was
found. This representation allows easily identify approximate location of the root node. The host-virus interaction network corresponds to one
specific virus study. (B) Example of the genome detail page, with map showing location where a particular virus strain was isolated.
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Figure 6 User’s Data integration. (A) User’s Data Integration page allows integrate host-pathogen data which is interesting for particular user,
but we didn’t integrated. The integration procedure consists of three easy steps: 1) User registration, 2) Mapping of the data and 3) Integration
of the data. We have integrated supplementary data provided in the studies of Konig et. al. [17] and others [21-28]. (B) Meta-network model of
the Konig et. al. data integrated (in A)) into the IntegromeDB database and available to be analyzed in concert with wealth of other host-
pathogen data available in BiologicalNetworks [40-42]. Host factors that were already present in our database and known to be related to viral
response are colored green, whereas host factors newly discovered by Konig et. al. as being related to viral infection are colored red.
Supplementary data from Konig et. al. integrated into our system are represented as colored meta-nodes (boxes): cyan- functional groups,
yellow- molecular complexes, green - factors over-expressed after siRNA silencing, purple- biochemical complexes that are required by different
RNA viruses, blue- host proteins confirmed to be required for wild-type influenza virus growth, pink -other virus experiments/publications (e.g.
HIV, HCV, WNV, etc.) (see Supplementary data in Konig et. al.).
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growth, groups of genes over-expressed after siRNA
silencing, other virus experiments/publications (e.g.
HIV, HCV, WNV, etc.), etc. After automatic mapping
and integrating those tables, we were able to visualize
them as an integrated meta-network model in Biologi-
calNetworks. Now this meta-network model can be stu-
died in relation to the data it was generated from–for
example, different modules described in different data
tables in relation to each other (Figure 6B, colored
boxes)–and in relation to the other integrated data. For
example, asking the system on what is known about the
data imported from [17] (BuildPathwayWizard function
“Find Meta Models” with specified parameters can be
used for that), genes/proteins in the network can be
seen in connection to the papers they were co-cited
(Figure 6B) and/or mentioned together in supplemen-
tary materials. Similarly, the nodes in the network can
be analyzed for co-expression, expression in particular
tissues/cell types, and other functional information, such
as functional modules, protein complexes and canonical
pathways. The model is available for exploration either
from BiologicalNetworks application as Demo Project or
from the web site http://www.biologicalnetworks.org.
The ability to integrate Supplementary data for hos-

t-pathogen studies and to represent it in the digital inte-
grated form is an extremely important feature for
reproducible and integrated research. Several journals
including Nature, PLoS, Cell are working towards estab-
lishing the reproducible research standards for their
publications. In addition to asking the authors to repre-
sent their data in standard formats (e.g. MIAME for

microarray data, SBML/SIF for network data, etc.), Cell
journal, for example, now asks the authors to accom-
pany their publications with graphical abstracts. Present-
ing the data in the form of a digital integrated model
(e.g. BiologicalNetworks project file that can be opened
on any computer) instead of the graphical picture would
be much more useful for researchers and our future
work will be towards that direction.

Comparison with other systems
We chose for comparison six resources: Cytoscape [29]
and five resources developed specifically for studying
host-pathogen interactions, PHI-base [12], PHIDIAS
[13], PIG [14], IVDB (Influenza Virus Database) [15],
and the NCBI Influenza Virus Database [16].
No two resources were similar by all 15 properties

considered (Table 2). Most of the resources provide
pathways and microarray data, however analysis and
search of both types of data is provided only in Cytos-
cape and BiologicalNetworks. Phylogenetic analysis and
sequence search are provided only in BiologicalNet-
works and NCBI Influenza Virus Database. No resource
except BiologicalNetworks is capable of analyzing regu-
latory regions, orthologous genes, 3D structural data, or
dealing with phylogeographical data.
Due to the graph-based data integration model and

the Semantic Web technologies implemented in Biologi-
calNetworks [42], it is scalable in respect to the number
of integrated resources and therefore allows integration
of user’s data–this is the absolute merit of the proposed
system for studying host-pathogen interactions.

Table 2 Comparison of BiologicalNetworks/HostPathogen database with public host-pathogen interaction resources

PHI-
base

PHIDIAS NCBI Influenza
db

PIG IVDB Cytoscape BiologicalNetworks/
HostPathogenDB

Scalability* no no no no no no yes

Data integration engine no no no no no no yes

Interaction and Pathways data/
analysis

yes yes no yes no yes yes

Chemicals/Drug Discovery no no no no no yes yes

3D structure no no no no no no yes

Sequence annotation/search no/yes yes/yes yes/yes no/
yes

no/no no/no yes/yes

Phylogenetic analysis no no yes no yes no yes

Regulatory regions analysis no no no no no no yes

Orthology analysis no no no no no no yes

Phylogeoraphy no no no no no no yes

Microarray data/analysis no/no yes/no yes/yes yes/
no

no/no yes/yes yes/yes

Web search/
Research environment

yes/no yes/no yes/no yes/
no

yes/
no

no/yes yes/yes

*Scalability to the number of integrated data sources.
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Conclusion
BiologicalNetworks extensions for the host-pathogen
studies enable diverse data in major human-disease sys-
tems to be subjected to efficient integrated analysis. The
results show the utility of multi-scale data integration
from large-scale human molecular-interaction, sequence
and expression data to epidemiological and virulence
data. The approach described allows information to be
extracted that is not restricted to any one data type.
Moreover, our analyses suggest how various host path-
ways act in response to viral infection, and serve as a
large-scale window into the genomic response to Influ-
enza and other respiratory infections. The pathways
identified should provide insights into the mechanisms
by which the host interacts with different pathogens,
useful information about stage of disease, and selection
of suitable targets for early diagnosis and treatments.
BiologicalNetworks has general purpose graph archi-

tecture and is data-type-neutral. Therefore, there is the
prospect of further integration of data such as detailed
clinical data that will enable clinical variables to be asso-
ciated quantitatively with the activities of molecular
pathways and processes. Capacity for integration gives
our system a unique capability, the full potential of
which will be realizable when a multitude of host-virus
interaction data are available, so that similarities and dif-
ferences between the interaction networks can be inter-
rogated across the phylogenetic distance for more
accurate prediction of the potential virulence of a newly
isolated virus identified only by its sequence. We believe
that the methods and tools we have implemented and
described here will allow for the efficient dynamic inte-
gration and analysis of diverse data in other disease
systems.

Additional material

Additional file 1: Methods. Detailed description of the methods and
data types used in the BiologicalNetworks system for host-pathogen
studies.
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