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Abstract

Background: The image of the “epigenetic landscape”, with a series of branching valleys and ridges depicting
stable cellular states and the barriers between those states, has been a popular visual metaphor for cell lineage
specification - especially in light of the recent discovery that terminally differentiated adult cells can be
reprogrammed into pluripotent stem cells or into alternative cell lineages. However the question of whether the
epigenetic landscape can be mapped out quantitatively to provide a predictive model of cellular differentiation
remains largely unanswered.

Results: Here we derive a simple deterministic path-integral quasi-potential, based on the kinetic parameters of a
gene network regulating cell fate, and show that this quantity is minimized along a temporal trajectory in the state
space of the gene network, thus providing a marker of directionality for cell differentiation processes. We then use
the derived quasi-potential as a measure of “elevation” to quantitatively map the epigenetic landscape, on which
trajectories flow “downhill” from any location. Stochastic simulations confirm that the elevation of this computed
landscape correlates to the likelihood of occurrence of particular cell fates, with well-populated low-lying “valleys”
representing stable cellular states and higher “ridges” acting as barriers to transitions between the stable states.

Conclusions: This quantitative map of the epigenetic landscape underlying cell fate choice provides mechanistic
insights into the “forces” that direct cellular differentiation in the context of physiological development, as well as
during artificially induced cell lineage reprogramming. Our generalized approach to mapping the landscape is
applicable to non-gradient gene regulatory systems for which an analytical potential function cannot be derived,
and also to high-dimensional gene networks. Rigorous quantification of the gene regulatory circuits that govern
cell lineage choice and subsequent mapping of the epigenetic landscape can potentially help identify optimal
routes of cell fate reprogramming.

Background
The biologist Conrad Hal Waddington, in the course of
a career spanning four decades (1930s - 1970s),
attempted a bold synthesis of the fields of genetics,
embryology and evolution [1,2]. The centerpiece of his
vision was the idea of the “epigenetic landscape”, first
described in An Introduction to Modern Genetics [3],
and elaborated in subsequent monographs [4,5]. Wad-
dington portrayed the epigenetic landscape as an
inclined surface with a cascade of branching ridges and
valleys (Figure 1A), which in the context of cell lineage
selection, represent the series of “either/or” fate choices
made by a developing cell. He envisioned that on this

landscape, “the presence or absence of particular genes
acts by determining which path shall be followed from a
certain point of divergence [1,4]“, thus providing in a
single image an appealing, and influential, metaphor for
the connection between genotype and phenotype.
In the quantitative view of a cell as a dynamical sys-

tem governed by genetic interaction networks [6], an
intuitive association can be made between the valleys
("creodes” in Waddington’s terminology) on the epige-
netic landscape and the trajectories leading to the
attractors, or stable steady states, of the gene networks
that regulate cell fate [7-9]. But can we quantitatively
map the undulating surface of the landscape, thereby
providing a predictive model of the “directionality” of
cellular differentiation? Waddington himself cautioned
that the epigenetic landscape, while useful as a “rough
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and ready picture” of development, “cannot be inter-
preted rigorously [5]“. The mathematician René Thom,
in his formulation of catastrophe theory inspired by
Waddington’s ideas, proposed that a generalized “poten-
tial surface” could be derived for any dynamical system
[2,10]. However Thom’s later writings suggest that he
did not believe it possible to quantify the epigenetic
landscape [11]. This view has been echoed by other
authors, who have described the landscape as a “colorful
metaphor [2]“ with “no grounding in physical reality
[1]“.
Huang, Wang and colleagues have recently proposed a

probabilistic “pseudo-potential” to quantify the epige-
netic landscape for a gene network regulating cell fate,
where the elevation of the surface is inversely related to
the likelihood of occurrence of a particular state in
phase space [8,12,13]. In this formulation a stochastic
potential energy landscape is characterized for a gene
network, based on a Hartree mean-field approximation
of the underlying master equation [14]. Such stochastic
formulations have also been used to derive probabilistic
potential landscapes for the lysis-lysogeny switch in bac-
teriophage lambda [15-17], the mitogen-activated pro-
tein kinase (MAPK) signal transduction network [18],
biochemical oscillations [19], and the predator-prey sys-
tem [20].
Here we propose a simple numerical method to map

the epigenetic landscape that is not based on a probabil-
istic or master-equation approach. Instead, a quasi-
potential surface (Figure 1B) is derived directly from the
deterministic rate equations governing the dynamic
behavior of a gene regulatory circuit. We then use sto-
chastic simulations to show that the elevation of this
computed landscape correlates to the likelihood of
occurrence of particular cell fates, with well-populated
low-lying valleys representing stable cellular states and

higher ridges acting as barriers to transitions between
the stable states.
Finally, we discuss ways in which this quantitatively

mapped landscape may help predict the efficiency of cel-
lular de-differentiation or trans-differentiation, and iden-
tify optimal routes of cell fate reprogramming. Recent
discoveries have challenged the dogma of cell fate deter-
mination as a unidirectional and irreversible process.
Even terminally differentiated adult cells have now been
shown to retain considerable phenotypic plasticity and
the ability to be reprogrammed into pluripotent stem
cell-like states [21-27] or into alternative differentiated
lineages [28-34] by forced expression of a single gene or
a small number of genes. These findings have led to a
resurgence of interest in Waddington’s ideas about cell
lineage choice, with several authors invoking the image
of the epigenetic landscape [7-9,35-39]. However the
theoretical basis of plasticity in cell fate is still not fully
understood, and the efficiency of reprogramming in
these studies is often quite low [36]. A quantitative
understanding of the “forces” that drive cell differentia-
tion, and the “barriers” that separate stable cell states, is
urgently needed. Such understanding may eventually
enable us to predict the relative ease or difficulty of de-
differentiation or trans-differentiation among multiple
cellular states.

Results and Discussion
Derivation of the quasi-potential landscape
We first illustrate our quantitative approach with a sim-
ple circuit of two genes x and y that inhibit each other,
forming a double-negative feedback loop structure (see
Methods). This circuit works as a toggle switch with
two stable steady states: one state with high y and low x
expression, and the other state with high x and low y
expression [40]. Such “bistable” switches formed by

Figure 1 Mapping Waddington’s epigenetic landscape. (A) The “epigenetic landscape” proposed by Conrad Waddington shows a ball rolling
down valleys separated by ridges on an inclined surface, as a visual metaphor for the branching pathways of cell fate determination. Figure
reproduced from original text by Waddington [5]. (B) The computed epigenetic landscape for a two-gene (x and y) regulatory network with
mutual inhibition and positive autoregulation, where the elevation represents a path-integral quasi-potential derived from the deterministic rate
equations describing the interactions of the two genes. We show that the “valleys” on this computed surface correspond to stable steady states
(attractors) of the network, while the “ridges” separating the valleys represent barriers to stochastic transitions among multiple steady states.
Colored circles represent a population of stochastically simulated “cells” (multiple instances of the network) residing in different stable steady
states.
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mutual antagonism of a pair of key regulatory genes
underlie many binary cell fate choices [7,13]. The circuit
can be described as a two-variable dynamical system,
with the rate of change in expression of each of the two
genes given as a function of their expression levels:

dx
dt

= f (x, y)

dy
dt

= g(x, y)
(1)

If we were able to derive a closed-form potential func-
tion V(x,y) for the system in Eq. 1 that satisfied the con-
ditions:

∂V
∂x

= −dx
dt

∂V
∂y

= −dy
dt

(2)

then the local minima on the two-variable potential
surface V(x,y) would correspond mathematically to the
stable steady states of the system, given that at the local
minima on the surface (∂V/∂x = 0; ∂V/∂y = 0), the rates
of change in expression of both genes x and y would be
zero (per Eq. 2). But such a closed-form potential func-
tion can be derived only in the case of a gradient system,
defined by the condition [41]:

∂f (x, y)
∂y

=
∂g(x, y)

∂x
(3)

In general, condition (3) will not be valid for an arbi-
trary circuit of two genes x and y that regulate each
other as per Eq. 1, making it impossible to derive a
closed-form potential function.
Therefore, given that a gene circuit is in general a

non-gradient system, we define a term Vq that changes
incrementally along a trajectory followed by the system
in x-y phase space (Figure 2A) as follows:

�Vq =
∂Vq

∂x
· �x +

∂Vq

∂y
· �y

= −dx
dt

· �x − dy
dt

· �y

(4)

where Δx and Δy are sufficiently small increments

along the trajectory such that
dx
dt

and
dy
dt

can be assumed

to remain unchanged over the interval [(x, x+Δx); (y, y
+Δy)]. The quantities Δx and Δy are obtained as the

products
dx
dt

· �t and
dy
dt

· �t, respectively, where Δt is

the time increment. We use the term “quasi-potential”
to describe Vq, to emphasize its distinction from a
closed-form potential function.

The change in the quasi-potential, Δ Vq, can be
rewritten from Eq. 4 as:

�Vq = −dx
dt

·
(
dx
dt

· �t
)
− dy

dt
·
(
dy
dt

· �t
)

= −
[(

dx
dt

)2

+
(
dy
dt

)2
]
· �t

(5)

For positive increments in time Δt, Δ Vq is thus
always negative along an evolving trajectory, ensuring
that trajectories flow “downhill” along a putative “quasi-
potential surface”. Stable steady states of the system (dx/
dt = 0; dy/dt = 0) would correspond to local minima on
this quasi-potential surface, given that at these states Δ
Vq = 0 (per Eq. 5). The overall change in the quasi-
potential along a trajectory can then be calculated by
numerically integrating the quantity Δ Vq in Eq. 4 from
a given initial configuration up to a stable steady state,
thereby allowing us to map out a temporal trajectory
along the putative quasi-potential surface (Figure 2B).
The quasi-potential thus defined is a measurable quan-
tity that is minimized along a trajectory from any initial
condition to an attractor in the phase space of the two
genes, and is in effect a Liapunov function of the dyna-
mical system represented by the two-gene circuit [41].
The procedure described above was repeated to evalu-

ate the change in the quasi-potential along trajectories
originating from different points in x-y phase space. To
derive a quasi-potential surface from multiple trajec-
tories, we then make the following assumptions: (i) two
trajectories with different initial conditions that con-
verge to the same steady state must also converge to the
same final quasi-potential level (Figure 2B); (ii) two tra-
jectories that originate from “adjacent” initial conditions
that are sufficiently close in x-y phase space, but con-
verge to different steady states, must start from the
same initial quasi-potential level (Figure 2C). Observa-
tion (i) allows us to map out a basin of attraction from
multiple trajectories converging to a single steady state;
while observation (ii) enables the alignment of two adja-
cent basins of attraction along their shared basin bound-
ary, or separatrix. (Essentially, (i) and (ii) together
amount to the assumption that the putative epigenetic
landscape is continuous.) The quasi-potential surface
can then be obtained by interpolation among the aligned
trajectories (Figure 2D, E), yielding the epigenetic
landscape with its characteristic ridges and valleys
(Figure 3A, B).
The same procedure can be applied to systems with

more than two stable steady states - for instance, a “tris-
table” system produced by a circuit of two genes that
induce their own expression, in addition to mutual inhi-
bition (Figure 3C, D). This system has three steady
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Figure 2 Computing the epigenetic landscape for a bistable switch based on a double-negative feedback circuit of two genes x and y.
(A) Paths followed by a simulated cell on the epigenetic landscape are obtained by integrating the change in quasi-potential ΔVq (Eq. 4 in text)
along a trajectory as a function of time. (x+Δx) and (y+Δy) give the new position at each step along the trajectory in x-y phase space, while (Vq
+ΔVq) gives the new elevation on the quasi-potential surface. The initial value of the quasi-potential at the start of any individual trajectory is
arbitrarily set to zero. (B) Two trajectories (1 and 2) that converge to the same attractor on the x-y phase plane are aligned vertically so that
both trajectories also converge to the same quasi-potential level. (C) Two trajectories that originate at adjacent points on the phase plane but
converge to different attractors A and B are aligned vertically so that the initial quasi-potential levels of the two trajectories are equal. (D)
Multiple trajectories starting from different points on the x-y phase plane are then aligned as described in panels B and C. To identify distinct
basins of attraction, trajectories are shown colored according to the attractor to which they converge (arrows). This two-gene double-negative
feedback circuit produces a bistable system with two attractors A and B. (E) Finally, interpolation among multiple trajectories aligned across the
phase plane produces the epigenetic landscape.
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states - two of which represent alternative differentiated
cell lineages, while the third state depicts the common
progenitor cell of the two lineages [8,13,42].

Quantitative interpretation of the quasi-potential
landscape
To establish that the “elevation” of the computed land-
scape at a given location in x-y phase space correlates
inversely to the probability of occurrence of the corre-
sponding network state, we used stochastic simulations
[43] of the underlying gene network. These simulations,
which take into account fluctuations in gene expression
levels [44] in a population of simulated “cells” (multiple
instances of the gene network), showed that the “valleys”

of low elevation on the computed epigenetic landscape
correspond to stable cellular states, with “deeper” valleys
associated with higher probability of occupancy than
shallower valleys (Figure 4A-D). On the other hand, the
“ridges” separating the valleys represent barriers to sto-
chastic transitions between multiple steady states. Vary-
ing the parameters in the network model to increase the
height of the ridges relative to the valleys dramatically
reduced the probability of transitions between the steady
states (Figure 5), even though there was no appreciable
change in the relative distance between the steady states
on the x-y phase plane (Figure 4A-D, right panels).
The “third dimension” (elevation) of the landscape

represented by the quasi-potential, although directly

Figure 3 Ridges and valleys on the computed epigenetic landscape of a bistable (A, B) and a tristable (C, D) regulatory network of
two genes x and y. The alignment of trajectories produces the “ridges” on the epigenetic landscape (indicated by arrows in panels B and D)
that separate the “valleys”, or basins of attraction of multiple stable states of the network (points A, B and C). Equi-potential lines are drawn on
the landscape to depict the curvature of the surface. In addition to the double-negative feedback loop between genes x and y that produces
the bistable network (panels A and B), the tristable network (panels C and D) requires additional positive autoregulation of the two genes
[8,13,42] (see Methods).
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Figure 4 Valleys on the computed epigenetic landscape represent high-occupancy stable steady states, while ridges represent
barriers to stochastic transitions between those stable states. For the tristable two-gene system, increasing the Hill coefficient nH, which
represents the degree of ultrasensitivity in autoregulation and mutual inhibition of the two genes (see Methods), makes the ridges (barriers)
higher and steeper relative to the valleys (attractors). Higher ridges reduce the probability of stochastic switching among adjacent attractors. (A)
nH = 2; (B) nH = 3; (C) nH = 4; (D) nH = 10. Left Panels: Colored circles represent a population of 1000 stochastically simulated “cells” residing in
the three stable steady states A (blue), B (green) and C (red). States A and B represent two alternative differentiated cell fates, and state C their
common progenitor state [8,13,42]. All simulations were started from state B as the initial condition, and run to time t = 10,000 (dimensionless
units). As the ridges separating the steady states grow higher, fewer cells are able to escape state B for states A and C through stochastic
fluctuations. Middle Panels: Projections of the epigenetic landscape onto the x-y phase plane. Numbers refer to the percentage of simulated
cells residing in the respective steady states. Dashed yellow lines show boundaries between the basins of attraction of the steady states. Right
Panels: An alternative view of the epigenetic landscape. The vertical dashed red lines are guides to the eye to show that the relative distance
between the steady states on the x-y phase plane does not change appreciably even as the Hill coefficient nH is increased from 2 to 6. The
change in relative occupancy of the attractors can therefore be attributed to the increased height and steepness of the barriers separating them.
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derived from the dynamic rate equations without any
additional information, thus yields an interpretation of
cellular stability not immediately apparent from two-
dimensional phase portrait analysis. The analysis above
supports the contention that the length of the “least
action trajectory” along the contours of the epigenetic
landscape is more important in predicting transitions
between alternative cellular states than the simple “aerial
distance” in state space [13]. It is also interesting to note
that the contours of the quantitatively mapped epige-
netic landscape act as a constraint on the extent of sto-
chastic fluctuations in protein levels, with simulated
cells “smeared out” on the surface of a shallower basin
(Figure 4A, middle panel) compared to a tighter distri-
bution of cells on a deeper valley (Figure 4D, middle
panel).
These results suggest that calculating the relative

heights of the ridges and valleys on the computed epige-
netic landscape of a multi-gene system can help predict
the probability of trans-differentiation from one cell
lineage to another, or de-differentiation of a particular
cell type to its progenitor state. Current efforts to repro-
gram cell fate with potential application in regenerative

medicine suffer from a low rate of successful reprogram-
ming [36] and a trial-and-error approach to choice of a
reprogramming strategy [13]. Computing the epigenetic
landscape for the critical gene interactions regulating
the transition between two cellular states may indicate
particular genetic manipulations that would lower the
barriers separating the two states, thereby increasing the
efficiency of the reprogramming process. It can also
help characterize the relative ease or difficulty of alter-
native routes of cell fate transition [7,9,36]. For instance,
comparison of the elevation of the barriers separating
two terminally-differentiated cell lineages on the epige-
netic landscape might suggest that de-differentiation of
cells of one lineage to the common progenitor cell of
the two lineages followed by redirection to the second
lineage would lead to more efficient reprogramming
than direct trans-differentiation (Figure S2, Additional
File 1).

A dynamic landscape
The computed epigenetic landscape derived above
should not be interpreted as a static surface [45]. Altera-
tions in gene interactions in course of development or

Figure 5 Height and steepness of barriers affects stochastic occupancy of stable states. (A) Percentage of stochastically simulated cells in
the three attractors A, B and C in the tristable two-gene system at time t = 10,000 for a range of values of the Hill coefficient nH. All simulations
were started from state B as the initial condition, and run to time t = 10,000 (dimensionless units). (B, C) With increasing nH, the height and
steepness of the ridges relative to the valleys is increased, making stochastic transitions (arrows) from state B to state C, and thereafter to state A,
less likely. (At longer time scales, where the distribution of the cell population among various attractors approaches an equilibrium, the percentage
of cells in each attractor correlates simply to the relative depth of the attractor: see Figure S1, Additional File 1.) (B) nH = 2; (C) nH = 6.
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experimental manipulation will change the shape of the
landscape, in turn altering the stability of individual
steady states or creating novel steady states. For
instance, increasing the basal expression of one gene in
the tristable gene network sharply lowers the elevation
of the corresponding attractor state relative to the other
attractors (Figure 6A, B). As a result, cells located in the
shallower attractor are destabilized and “roll into” the
valley representing the deeper, more stable attractor
state. This may explain the phenomenon of trans-differ-
entiation of cells of one lineage into another by forced
expression of a gene regulating the second lineage or by
conditional deletion of a gene required for the first line-
age [29,30].
Interestingly, this flexibility of the quasi-potential sur-

face under gene manipulation gives a quantitative inter-
pretation of the revised image of the epigenetic landscape
proposed by Waddington (Figure S3, Additional File 1),
which showed an array of pegs representing genes, hold-
ing up a sheet of fabric (the landscape) through a net-
work of guy ropes (gene interactions) - meant to convey
the idea that “the modelling of the epigenetic landscape
... is controlled by the pull of these numerous guy-ropes
which are ultimately anchored to the genes [5]“. Similar
changes in the shape of the epigenetic landscape may
also be brought about by external signals - for example
endogenous cytokines or environmental chemicals -
which by transiently altering the landscape could have an
instructive effect on cell fate choice.

Conclusions
In this work, we have defined a deterministic quasi-
potential that is minimized along a temporal trajectory
followed by a gene network, and used it to quantitatively
derive the corresponding epigenetic landscape. A gene

network not being a mechanical system, this quasi-
potential should not be confused with a potential energy
function. It is rather a Liapunov function of the dynami-
cal system represented by the gene network, along
which trajectories flow monotonically “downhill”
towards the steady states of the network [41]. Other
investigators have used a term analogous to the quasi-
potential difference Δ Vq in Eq. 4 to calculate the
“energy landscape” for concentrations of one component
in a gene network [46,47]. Here we have used the con-
cept of alignment of multiple trajectories to interpolate
the epigenetic landscape of a two-variable system.
This novel and simple process for deriving the surface

of the landscape from a path-integral quasi-potential is
not restricted to two-gene systems. While the landscape
cannot be visually rendered for circuits with more than
two genes, the rates of transition across the potential
barriers between multiple steady states in the system
can still be computed to predict optimum routes of cell
fate reprogramming.
However, many binary branching points in develop-

ment, particularly in blood cell lineage specification, are
governed by mutual antagonism of only two transcrip-
tion factors associated with alternative lineage choices
[37]. Mapping the epigenetic landscape of pairs of such
cross-inhibitory “master regulators” should therefore be
of particular interest in understanding both normal
development and induced cell fate reprogramming, and
can be greatly aided by detailed quantitative characteri-
zation of the interactions between these regulators.

Methods
Bistable network model
To illustrate the derivation of the epigenetic landscape,
we used a simplified mathematical model of a bistable

Figure 6 The shape of the computed epigenetic landscape can be altered by modifying gene interaction parameters. When basal
expression By of gene y in the tristable two-gene system (see Methods) is increased from By = 0 (A) to By = 4 (B) (dimensionless units),
attractor A on the landscape is “lowered” relative to attractor B, causing cells to “roll into” the more stable state A from the destabilized state B.
Numbers on the figure refer to the percentage of stochastically simulated cells in the respective attractors. All simulations were started from
state B as the initial condition, and run to time t = 10,000. Hill coefficient nH = 10 in both figures.
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network of two genes, x and y, that suppress each other
to form a double-negative feedback loop. The dynamics
of the model are described by the two rate equations:

dx
dt

= BX +
foldYX · KnH

DYX

KnH
DYX + ynH

− degX · x (6)

dy
dt

= BY +
foldXY · KnH

DXY

KnH
DXY + xnH

− degY · y (7)

where variables x and y represent the concentrations
of the two gene products, and parameters BX and BY

denote the basal (constitutive) expression rates of genes
x and y, respectively. The parameters foldYX and foldXY
represent the rate constants, and KDYX and KDXY the
effective affinity constants, for the suppressive effects of
gene y on gene x, and of gene x on gene y, respectively.
The mutual suppression of the two genes is quantified
by the Hill-coefficient nH (the interaction is ultrasensi-
tive for values of nH > 1). Parameters degX and degY
represent the first-order degradation rate constants for
the two gene products x and y, respectively. For this
simplified model we used dimensionless parameters
with the following values: foldYX = foldXY = 2; KDYX =
0.7; KDXY = 0.5; BX = BY = 0.2; degX = degY = 1; nH = 4.
These values were tuned to ensure bistable switching
behavior in the model.

Tristable network model
The tristable network model consisted of two genes, x
and y, that in addition to mutual suppression, induce
their own expression (positive autoregulation). The
dynamics of this model are described by:

dx
dt

= BX +
foldXX · xnH
KnH
DXX + xnH

+
foldYX · KnH

DYX

KnH
DYX + ynH

− degX · x (8)

dy
dt

= BY +
foldYY · ynH
KnH
DYY + xnH

+
foldXY · KnH

DXY

KnH
DXY + xnH

− degY · y (9)

where the new parameters foldXX and foldYY represent
the rate constants, and KDXX and KXYY the effective affi-
nity constants, for the positive autoregulation of genes x
and y, respectively. The default parameter values chosen
to ensure three robust stable states in this model were
as follows: foldXX = foldYY = foldYX = foldXY = 10; KDXX

= KDYY = KDYX = KDXY = 4; BX = BY = 0; degX = degY =
1; nH = 4. This system has been modeled previously
[42,48,49] in the context of mutual inhibition of the
transcription factors PU.1 and GATA1 in common mye-
loid progenitor (CMP) cells, which gives rise to either
bipotential granulocyte/macrophage progenitor (GMP)
cells or megakaryocyte/erythroid progenitor (MEP) cells.

Integration Algorithm
To evaluate the change in the quasi-potential along each
trajectory in x-y phase space by numerical integration,
the initial level of the quasi-potential at time t = 0 at
the origin of the trajectory was arbitrarily set to zero
(the same initial quasi-potential level was used for all
trajectories so that the drop in the quasi-potential along
each trajectory could be compared and used as a basis
for alignment of multiple trajectories along a basin of
attraction).
Thereafter, at each time step:

• The rates
dx
dt

and
dy
dt

were updated to the current

value of x and y according to Eqs. 8 and 9.
• Expression levels x and y were updated as:

xnew = xold + �x (10)

ynew = yold + �y (11)

where for increments in time Δt (fixed for a simula-
tion to ensure convergence), the changes in x and y are
given by:

�x =
dx
dt

· �t (12)

�y =
dy
dt

· �t (13)

• The quasi-potential Vq was updated as:

Vq
new = Vq

old + �Vq (14)

where:

�Vq = −dx
dt

· �x− dy
dt

· �y (15)

The above steps were repeated until the quasi-poten-
tial Vq converged to a minimum (decided by a pre-set
tolerance). Multiple trajectories thus obtained were
aligned into basins of attraction according to the process
described in the main text. The quasi-potential surface
was then derived by linear interpolation among the
aligned trajectories.

Software platforms used
The deterministic models were implemented and simu-
lated on the MATLAB® (R2009a, The MathWorks, Inc.,
Natick, MA) platform, while the BioNetS program [50],
based on the Gillespie algorithm [51,52], was used for
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stochastic simulations. All graphics were rendered on
MATLAB®.

Visualization of stochastic simulation results
The stochastically simulated “cells” (i.e. individual reali-
zations of the stochastic network model) were overlaid
on the quasi-potential surface at the x and y values pre-
dicted for each cell. Since stochastic simulations yield
integral values, we added a small random “deviation”
term [= (rand*0.5) where rand is a MATLAB® function
that draws pseudorandom values from the standard uni-
form distribution on the open interval (0,1)] to each
simulated x and y value to visualize multiple cells situ-
ated at the same point in x-y phase space. The appropri-
ate “elevation” for each cell on the quasi-potential
surface was calculated by linear interpolation between
the two points on the deterministic trajectories “closest
to” the location of the cell in x-y phase space. Source
code for the model in MATLAB® format is appended in
Additional File 2.

Additional material

Additional file 1: Supplementary Figures. This file includes additional
figures to supplement the text.

Additional file 2: Supplementary Model Code. This file lists the source
code in MATLAB®® format for the computational algorithm used to
derive the epigenetic landscape.
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