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Abstract

Background: Identification of gene regulatory networks is useful in understanding gene regulation in any
organism. Some regulatory network information has already been determined experimentally for model organisms,
but much less has been identified for non-model organisms, and the limited amount of gene expression data
available for non-model organisms makes inference of regulatory networks difficult.

Results: This paper proposes a method to determine the regulatory links that can be mapped from a model to a
non-model organism. Mapping a regulatory network involves mapping the transcription factors and target genes
from one genome to another. In the proposed method, Basic Local Alignment Search Tool (BLAST) and
InterProScan are used to map the transcription factors, whereas BLAST along with transcription factor binding site
motifs and the GALF-P tool are used to map the target genes. Experiments are performed to map the regulatory
network data of S. cerevisiae to A. thaliana and analyze the results. Since limited information is available about gene
regulatory network links, gene expression data is used to analyze results. A set of rules are defined on the gene
expression experiments to identify the predicted regulatory links that are well supported.

Conclusions: Combining transcription factors mapped using BLAST and subfamily classification, together with
target genes mapped using BLAST and binding site motifs, produced the best regulatory link predictions. More
than two-thirds of these predicted regulatory links that were analyzed using gene expression data have been
verified as correctly mapped regulatory links in the target genome.

Background
A transcriptional gene regulatory network [1] represents
a collection of regulatory elements, which are target
genes and transcription factors, interacting with each
other in a cell to regulate the rate of transcription of
genes in the network. A regulatory relationship in a
gene regulatory network consists of a transcription fac-
tor, a target gene, and the type of regulatory relationship
between the regulatory elements, either positive or
negative.
These regulatory relationships in a network can help

answer current biological questions, such as the identifi-
cation of genes and proteins related to various diseases,
and are useful in novel drug design and development
[2]. These regulatory relationships can also be useful in

understanding the differences in gene regulation
between different organisms. Since it is critical to study
how genes are involved in regulation, or the way they
are themselves regulated by other genes, the determina-
tion of gene regulatory networks is extremely important
for understanding gene regulation by identifying these
genes and their relationships.
Significant time and resources are required for the

experimental determination of these gene regulatory
networks. Experimental techniques such as gene-knock-
out experiments [3] are extremely time-consuming and
in many cases inadequate to identify a regulatory net-
work for an organism at the genome level. The amount
of genetic information available for newly sequenced
genomes is increasing exponentially, and therefore it is
essential to develop methods to bridge the gap and infer
regulatory networks for these new genomes. Several
computational models have been used to represent gene
regulatory pathways for model organisms using gene
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expression data, and some models incorporate additional
available biological knowledge. These models include
Boolean Networks [4,5], Bayesian Networks [6-8], Dif-
ferential equation models [9] and Hybrid Petri Nets
[10]. Recently, many techniques have started incorporat-
ing additional data, such as protein-protein interaction
data, protein-DNA interaction data, and binding site
data, along with the gene expression data to get more
accurate gene regulatory networks. Additionally, many
methods are now focusing on using time-course beha-
vior of gene expression along with available biological
knowledge. Some of the above techniques have been
discussed in a comparative review [11,12] of determina-
tion of gene regulatory networks. The above mentioned
techniques cannot be used for most non-model organ-
isms due to data sparseness.
Some methods, as discussed in [11], are building on

gene expression techniques by integrating a variety of
different information sources in order to improve their
results. Recent work [13] has pushed the uses of these
methods further, using expression-based network infer-
ence for multiple related organisms and pattern discov-
ery techniques to find transcription binding site motifs.
This type of extension of regulatory network prediction
is very useful to explore organisms for which a signifi-
cant amount of data is available. However, to use an
organism as a model, once this exploration is done, we
need to be able to determine how much of its informa-
tion can be transferred to related organisms about
which we may know very little. These aforementioned
methods, which infer regulatory networks either entirely
or primarily from gene expression data, work well with
the large amounts of gene expression data that are read-
ily available for model organisms, or for other popular
organisms. Model organisms are investigated thoroughly
by biologists, by virtue of being simpler and easy to
manipulate and having short life cycles. Some other
organisms are more complex, but are similar to model
organisms in their popularity, leading to significant
quantities of data being available for them as well. The
information from these model organisms can be mapped
to newly sequenced organisms about which less is
known, referred to as non-model organisms. These non-
model organisms in many cases have very limited data
available, which prevents the success of the previously
discussed methods for inferring regulatory relationships
and other information.
There have been two methods developed, P-MAP [14]

and another one used in KEGG [15], that use a regula-
tory network of a model organism to infer a regulatory
network for a non-model organism. However, these
methods are limited in their usability for mapping regu-
latory pathways. The mapping in P-MAP, taken as a
constrained minimum spanning tree problem, is based

on keeping overall sequence similarity between mapped
gene pairs and preserving the co-regulated gene struc-
tures in the predicted pathway. The P-MAP algorithm is
also limited in that it does not predict the direction and
type of regulatory relationships between the genes. In
KEGG [15], organism specific pathways are constructed
based on ortholog identifier assignments in the GENES
database. It relies on previously determined information
about homologous genes, and it does not consider any
other data.
This paper determines the amount of gene regulatory

information that can be mapped from a model organism
(source genome) to a non-model organism (target gen-
ome), based only on gene and promotor sequences and
transcription factor binding site motifs. The use of gene
expression data for testing also suggests how it could be
incorporated into the technique to improve results while
still not requiring large quantities of experimental data.
This technique is thus useable for a variety of different
organisms for which there is insufficient data to infer
regulation using gene expression data. Due to the
extreme differences between the minimal amount of
data used in this method and the large quantities of
data, particularly expression data, that are used by other
techniques, it is not appropriate to directly compare the
results. Identification of regulatory information for a
non-model organism will help the biologists investigate
any new organism at the genome level and provide
information about the common regulatory relationships
between the two genomes. The method in this paper
involves mapping the transcription factors (TFs), target
genes (TGs) and their regulatory relationships from one
genome to another. Gene expression data available for
the target genome is used in this paper to evaluate the
results due to insufficient reliable regulatory network
information being available for testing. A set of rules is
established to use the information from the gene expres-
sion experiments to analyze the regulatory relationships
predicted for the target genome.
In the proposed method, any model organism with an

available experimentally confirmed regulatory network
and transcription factor binding site (TFBS) motif infor-
mation can be used as the source genome. However, a
model organism closer to the target genome is prefer-
able, since evolutionarily closer organisms will tend to
have more similar regulatory relationships. The target
genome can be any non-model organism with available
nucleotide sequence data. For experimentation and test-
ing purposes S. cerevisiae and A. thaliana have been
used in this paper as source and target genomes, respec-
tively. S. cerevisiae is a model organism with all the
required information required for a source genome. A.
thaliana, not being a non-model organism, is used as
the target genome for experimentation purposes only, so
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that the gene expression data available for A. thaliana
can be used for analysis and verification of the mapped
regulatory relationships determined using the proposed
method. A. thaliana is also a suitable test organism to
investigate regulatory inference for plants, for which
there are far fewer well-investigated examples and thus
are likely targets of the technique presented in this
paper. While closer organisms are preferred, S. cerevi-
siae and A. thaliana are used as the source and target
genomes since there is no suitable pair of organisms
that are evolutionarily close that have both sufficient
regulatory network and gene expression information
available for verification. This non-ideal situation can
nevertheless be common for many non-model organ-
isms, due to the limited availability of well-investigated
model organisms, and the results in this paper thus
identify the proportion of regulatory relationships that
can be mapped from an evolutionarily distant model
organism.
The mapping of TFs between genomes based on evo-

lutionary distance has been investigated in our pre-
vious work using bacterial genomes [16]. We
considered 14 bacterial genomes, and for each of them,
based on the ROC curve analysis, we determined the
best e-value threshold for BLAST [17] and the best
model organism to use, between Bacillus subtilis and
E. coli, to map regulatory information. The results
were evaluated based on sensitivity, PPV and Receiver
Operating Characteristic (ROC) curve to determine the
best combination to use for every target bacterial gen-
ome used. The PPV ratio (accuracy) and sensitivity is
high for suitable e-value thresholds. The sensitivity
decreases for lower e-value thresholds, whereas the
accuracy decreases with increase in e-value thresholds.
Therefore, the best e-value thresholds provide a good
balance between losing the true TFs and predicting
more non-factors. The best e-value thresholds deter-
mined for all examined bacterial genomes and both
source organisms were either the same or very close to
each other. Therefore, it is likely that the best e-value
determined may also work well for TF mapping
between other set of genomes. A key finding was that
using the correct e-value threshold was just as, and in
some cases more, important than using the closer
model organism; this result provides a foundation for
this exploration of methods to map regulatory links
using more distantly related organisms.

Methods
Transcription factor mapping
Mapping TFs from one genome to another involves
finding similar protein sequences in the target genome
performing similar functions. The sequence alignment

tool BLAST [17] and the functional similarity tool Inter-
ProScan [18] are used for TF mapping, which is the first
step in regulatory link mapping.
Similar regions in the gene sequences tend to indicate

similar structure or function preserved by evolution.
Additionally, specific conserved motifs in the protein
sequences, called protein signatures, define the structure
and function of the proteins. Therefore, similar protein
sequences with common protein signatures generally
perform similar functions and belong to the same func-
tional group. InterPro [19] is a non-redundant database
that integrates the commonly used protein signature
databases. In this paper, the PANTHER (Protein ANaly-
sis THrough Evolutionary Relationships) database [20]
and its corresponding scanning tools, BLAST and
hmmsearch, are used within InterProScan. The
PANTHER database consists of protein sequences clas-
sified into families and subfamilies with similar function
based on published experimental evidence and evolu-
tionary relationships.
Figure 1 shows that first the BLAST tool is executed,

using the target genome nucleotide sequence data as the
BLAST database and the source genome TFs as the
query sequences. The BLAST results are those target
genome sequences that are similar to the source genome
TFs. Three different variations can then be followed in
this method: the BLAST results can be used without
further refinement, or they can be refined further by
InterProScan using either family or subfamily classifica-
tion. Three result sets of predicted TFs are determined
based on sequence similarity (TFbl), same protein family
(TFf) and subfamily classification (TFsf). Not all the TFs
can be mapped from one genome to another genome,
even when these genomes are evolutionarily very close.
Moreover, there is no knowledge of the number of TFs
that should be mapped from one genome to another.
Hence, the number of confirmed TF mappings is based
on the definition of correct mapping used. Each of the
results from the method are analyzed to find out if a
sequence predicted as a TF is an experimentally verified
TF of the target genome or not.
The result sets are compared and analyzed using a

binary classifier [21]. The results are classified into four
groups, true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN). The TPs are
the predicted TFs that are present in the available TF
database of the target genome. FPs are the predicted
TFs that are not present in the available TF database.
The TFs that are present in the available TF database of
the target genome but have not been identified by the
method are the FNs. The sequences that are not present
in the available TF database and are discarded by the
method are TNs.
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Target gene mapping
Mapping TGs from one genome to another, for a parti-
cular TF in a regulatory network, involves finding simi-
lar TGs in the target genome. These similar TGs should
have the same function as the source genome TGs.
Similar function is important in order to have the same
type of regulatory relationship in the target genome as
the regulatory relationship being mapped from in the
source genome. Since TGs may or may not produce
proteins, they cannot be grouped based on similar pro-
tein signatures, but the BLAST tool can be used to find
highly similar nucleotide sequences that will tend to
have similar function.
Additionally, being part of the gene regulation process,

the TF of a regulatory link binds to the binding site
containing the TF binding site (TFBS) motif, which is
generally located upstream of the TG sequence [22].
The TFs look for specific motifs (patterns) in the bind-
ing site regions of the TGs based on the type and family
of the TF. Different TFs have different sets of TFBS
motifs that they look for in order to regulate their TGs.
Hence, the TG being regulated by a certain TF in the
source genome will tend to have one of the specific

TFBS motifs of that TF in its binding site region. The
binding sites of the mapped TGs in the target genome
will also tend to contain one of the TFBS motifs of the
source genome TF from the regulatory link being
mapped. If the TFBS motif information is not available
for the source genome, then the TFBS motifs can be
located using one of the available methods used for
finding TFBS motifs. The current genetic algorithms for
identifying TFBS motifs use position-led and consensus-
led representations independently whereas GALF-P
(Genetic Algorithm with Local Filtering and adaptive
post-processing techniques) [23] combines both repre-
sentations and uses local filtering to decrease false posi-
tives and improve efficiency.
Figure 2 shows the second step of regulatory link

mapping where the TGs are mapped from one genome
to another. For a particular TG in a regulatory link, the
BLAST tool is used to find the similar TGs in the target
genome. Target genome nucleotide sequence data is the
BLAST database, and the source genome TGs from the
regulatory network being mapped are the query
sequences. The output of BLAST is a set of similar TGs
that are then the input for the next step of locating the

Figure 1 Method to map transcription factors from a source to a target genome Three sets of transcription factors are determined for the
target genome: TFbl, TFf and TFsf. These result sets are obtained based on sequence similarity, protein family classification and protein subfamily
classification.
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binding sites. The binding site motif locator searches for
the TFBS motifs of the source genome TF in the similar
TG sequences found in the target genome. Finally, the
genes that are similar (found using BLAST) and have
the right TFBS motifs (found using the Binding site
motif locator) are determined to be the predicted TGs
for the target genome. This set of predicted TGs are
termed TGblbs. TGs are also identified using only the
BLAST tool, the first step in this TG mapping method,
producing set TGbl. Another set of predicted TGs
named TGbs is determined by only searching the TFBS
motifs, the second step in this method. The promoter
sequence data of the target genome is searched with the
TFBS motifs to obtain the predicted TGs in set TGpr.
The final set TGgalf of predicted TGs is determined by
using the GALF-P tool to identify the TFBS motifs, fol-
lowed by searching for these motifs in the target gen-
ome promoter sequence database.
The result sets are evaluated by comparing the

mapped TGs with the available binding site data for A.
thaliana to determine the number of mapped TGs pre-
dicted as the correct TGs in the target genome. A bin-
ary classifier is used to analyze these results in the same
way as the mapped TFs are analyzed in the previous
subsection.

Mapped regulatory elements integration
The final step of mapping a regulatory network from the
source genome is to integrate the mapped regulatory
elements to obtain the regulatory links of the target gen-
ome. It is crucial to find out if the predicted TG in the
target genome is correctly linked to the right TF by the
link mapped from the source genome.
Two regulatory links from two different genomes tend

to be similar if the two TFs from these links bind to the
same motifs in the TGs, implying that these TFs might
regulate the TGs in a similar way. Hence, the TFBS
motif of the TF present in the TG of the source genome
should also be present in the TG of the target genome.
In this final step of regulatory network mapping shown
in Figure 3, for every link in the source genome regula-
tory network, the corresponding predicted TFs are
located among the mapped TFs identified in the first
step of network mapping. The TFBS motifs of the
source genome TF are searched in its TG. The TFBS
motifs that are present in the source genome TG are
then searched in the corresponding mapped TG nucleo-
tide sequences of the target genome. Finally, these TFs
and the TGs, which contain the specific TFBS motifs,
are combined to obtain the target genome regulatory
links.

Figure 2 Method to map target genes from a source to a target genome Five sets of target genes are identified for the target genome:
TGbl, TGbs, TGblbs, TGpr and TGgalf. These sets are determined based on sequence similarity, searching TFBS motifs and sequence similarity
combined with locating TFBS motifs.
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Six sets of predicted regulatory links are identified
using this method. The first set TFsf-TGblbs is obtained
by integrating the predicted TF set TFsf, combining
BLAST similiarity and subfamily classification, and the
predicted TG set TGblbs, combining BLAST similarity
and TF binding sites. The set TFf found using BLAST
similarity and family classification is integrated with the
set TGblbs to identify the second predicted regulatory
links set TFf-TGblbs. The third set TFsf-TGbs is identi-
fied by combining the mapped TFs from the set TFsf
and the mapped TGs from the set TGbs, found using
binding sites alone. The fourth and fifth sets, TFsf-TGpr
and TFf-TGpr, are identified by combining the target
genes in TGpr from searching promotor regions for

binding site motifs with the transcription factors found
with protein subfamily and family classification, respec-
tively. The sixth and final set TFf-TGgalf is identified by
combining the transcription factors using family classifi-
cation with the target genes TGgalf found through
locating motifs determined by GALF-P in the promotor
sequences.

Regulatory link confirmation
The mapped regulatory links of the target genome can-
not be confirmed easily because very limited gene regu-
latory information is available for the model organisms
that can be used to verify the predicted regulatory links.
Gene expression data can be used for analyzing the

Figure 3 Method to integrate mapped regulatory elements for the target genome Two sets of transcription factors (TFf and TFsf) are
integrated with four sets of target genes (TGblbs, TGbs, TGpr and TGgalf) to determine six sets of regulatory links for the target genome: TFsf-
TGblbs, TFf- TGblbs, TFsf- TGbs, TFsf-TGpr, TFf-TGpr and TFf-TGgalf.
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mapped regulatory links of the target genome and is
available for verification.
Gene expression data contains expression levels of

some of the genes investigated for a genome in any
gene expression experiment. Different experiments for
the genome contain different expression levels of the
genes depending on the experimental conditions. On
the basis of the expression value, a gene is considered
expressed or not in any given experiment. The expres-
sion levels of the TF and the TG from a predicted regu-
latory link in different experiments can be investigated
to determine if the expression data supports the regula-
tory relationship in the predicted link. In the first step,
the predicted regulatory links’ data and the gene expres-
sion data from a few experiments for the target genome
is used to check if the expression values of the regula-
tory elements are present in the experiments. For any
predicted regulatory link, the information of the regula-
tory elements, as expressed (Yes), not expressed (No) or
absent (ab), in every gene expression experiment is col-
lected. A set of rules is established to verify the regula-
tory links based on regulation type, TF expression and
TG expression in the gene expression experiments as
shown in Table 1. Using these rules, the gene expression
experiments for every predicted regulatory link are dis-
tributed into three groups, Confirming (C), Contradic-
tory (C ) and Neutral (N). The number of elements in
the Confirming group (c) for a predicted regulatory link
represents the number of gene expression experiments
that verify that the predicted regulatory link is correctly
mapped in the target genome. The number of gene
expression experiments that contradict the regulatory
relationship in the predicted regulatory link act as the
number of elements in the Contradictory group ( c ) for
that regulatory link. The number of elements in the
Neutral group (n) for a predicted regulatory link corre-
sponds to the number of gene expression experiments
that neither confirm nor contradict that regulatory link
but can provide additional information. The gene
expression experiments for a predicted regulatory link
are ignored if they have the expression values of the TFs

and TGs present in the experiments but neither support
nor contradict that regulatory link and also do not pro-
vide any further information. If the expression informa-
tion of a TF or TG from a regulatory link is absent in a
gene expression experiment, then that experiment is
ignored for that regulatory link, since nothing can be
inferred unless the expression information of all regula-
tory elements is available.
For a positive gene regulation type (+) in a regulatory

link, the TG should be expressed if the TF is expressed
in an experiment. Therefore, if both the TF and TG
from a predicted regulatory link are expressed in an
experiment then this experiment is classified as Con-
firming. If the TF is expressed but the TG is not, then
the experiment is considered to be Contradictory
because the expressed TF is not able to express the TG
as it should in the case of positive gene regulation. For a
regulatory link, if the TG is expressed but the TF is not,
then the experiment is marked as Neutral because it
does not confirm or contradict the regulatory link. This
experiment does allow that the TG may be regulated by
other TFs as well. The TF not expressed in the experi-
ment might be expressed in another experiment sup-
porting the regulatory link. Additionally, if either the TF
or the TG from a predicted regulatory link is not
expressed in an experiment, then nothing can be
inferred and that experiment is ignored for that regula-
tory link.
In the case of negative gene regulation (-), the TG

should not be expressed if the TF is expressed in the
experiment. Accordingly, if both the TF and the TG
from a predicted regulatory link are expressed or are
not expressed, then the experiment is marked Contra-
dictory. But for a predicted regulatory link, if the TF is
expressed and the TG is not, or if the TF is not
expressed and the TG is expressed, then the experiment
is considered to be Confirming that regulatory link.
Finally, each regulatory link is analyzed by identifying

the number of times that link has been Confirmed, Con-
tradicted and Neutral in all the gene expression experi-
ments used. These values are then compared in
different ways to evaluate the results for the regulatory
links. This counting-based approach is needed because
the limited number of experiments normally available
for non-model organisms are usually insufficient to pre-
dict regulatory links from the expression data.

Limitations of regulatory network mapping
Using the method for regulatory network mapping
described in the previous subsection, only transcription
gene regulatory network data is being mapped from
one genome to another, and this does not include any
information about the post-transcription regulation
process.

Table 1 Rules to verify regulatory links using gene
expression data

TF Expression Gene Expression Result

(+) (-)

Yes Yes C C
Yes No C C

No Yes N C

No No – C
The predicted regulatory links, of type positive (+) or negative (-) regulation,
are confirmed using the gene expression data based on a set of rules. C
represents the confirmed links, c represents the contradictory links and N
represents the neutral links.
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It is important to understand how many regulatory
links are conserved over different genomes since there is
no distinct definition of these. Many regulatory links
from the source genome cannot be mapped to the target
genome for various reasons. Firstly, both the TF and the
TG in a regulatory link might not have similar TFs and
TGs at all in the source genome, depending on how dif-
ferent the genomes are. Secondly, many similar TFs or
TGs present in the source genome might not have their
corresponding similar TFs or TGs present in the target
genome. Thirdly, TFBS motifs need not be conserved
well among genomes due to changes in the sequences
over time. Fourthly, not all source genome TGs contain
the TFBS motifs of their regulator (TF) in the available
regulatory network used for mapping.
Additionally, some binding sites are present in the

nucleotide sequences but are not involved in the regula-
tion of genes in certain conditions by being inactive
[23]. These binding sites can be inactive due to the
occupancy of nucleosomes hindering the binding of the
TF to the binding site in any genome. About 75 to 90
percent of the DNA in a genome is bundled up in
nucleosomes. The unwrapped DNA stretching between
two neighboring nucleosomes is called linker DNA.
Hence, binding sites present on the linker DNA are lar-
gely the active binding sites available to interact with
the proteins to form protein complexes.
It has been estimated in a research study [24] that

there might be 0 to 200 possible TGs for a TF in S. cer-
evisiae, though approximately only 3 percent of the TGs
will have their binding sites bind to these TFs of S. cere-
visiae. Similar density of binding between TGs and TFs
is also found in higher eukaryotes. This suggests that
gene expression data can only support the three percent
of the possible regulatory relationships that actually
exist at a certain time. Some binding sites may not even
be involved in the gene regulation process and have no
change in their gene expression values in two different
treatments. These binding sites might be conditional
relying on the presence or absence of other TFs.
It is also shown [24] that binding patterns for some

TFs are dynamic and change under different environ-
mental conditions. Also, all the predicted regulatory
links may not necessarily be the direct links in the target
genome [24], and so the TGs can be regulated indirectly
by the TFs based on the feedforward loop motif con-
cept. In feedforward motifs, one TF regulates another
TF, and they both regulate a TG, though the regulation
between the first TF and the TG is at least partly an
indirect regulation. It is extremely difficult to predict
indirect regulatory links without using substantial gene
expression data, and so far only limited information
about the direct regulatory links is available for the
model organisms.

All the above facts show that gene regulatory net-
works are very complex networks and it is extremely
difficult to integrate all the different factors mentioned
earlier to determine regulatory networks, even for a
model organism.

Results
Transcription factor mapping
The TF mapping result sets from S. cerevisiae to A.
thaliana are shown in Table 2. There are 35351 nucleo-
tide sequences [25] used for TF mapping, and 1922 TFs
[26] for A. thaliana used to analyze the results.
Even though S. cerevisiae is a much smaller genome

than A. thaliana, many confirmed TFs have been identi-
fied for A. thaliana. A large number of nucleotide
sequences have been determined by this method to not
be TFs, thus contributing to the high value of true nega-
tives. The number of mapped links decreases more from
set TFf to set TFsf than from set TFbl to set TFf. The
number of distinct TFs mapped decreases from set TFbl
to set TFf by 333 and from set TFf to set TFsf by 316.
This indicates that the results are refined from set TFbl
to TFf when protein family classification is used along
with sequence similarity for TF mapping. Protein sub-
family classification further refines the results from set
TFf to TFsf. Comparing results in set TFbl and set TFf,
there is a large decrease of 261 in false positives and a
low decrease of 72 in true positives from set TFbl to set
TFf. Therefore, set TFf is better than set TFbl by refin-
ing the BLAST results based on family classification.
There is also a low decline in the percentage of available
TFs correctly identified in set TFbl and set TFf. This
indicates that mapping TFs with sequence similarity and
protein family classification gives better results than
using only sequence similarity. Comparing results in set
TFf and set TFsf, there is a huge decline of 237 in true
positives and a low decrease of 79 in false positives from
set TFf to set TFsf. This indicates that large number of
true TFs are lost with only a few wrongly mapped TFs
discarded from set TFf to set TFsf. Therefore, with a

Table 2 TP, FP, FN and TN values for the mapped TFs in
the target genome

TFbl TFf TFsf

Number of mapped links 1344 903 212

Number of mapped TFs 767 434 118

True Positives (TP) 400 328 91

False Positives (FP) 367 106 27

True Negatives (TN) 33062 33323 33402

False Negatives (FN) 1522 1594 1831

Comparison of the three result sets of predicted transcription factors (TFs)
identified for the A. thaliana genome based on binary classifier. TFf result set
is analysed as the preferred set for transcription factor mapping. E-value
threshold used for BLAST is 1e-1.
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huge decline in true positives and in the percentage of
available TFs correctly predicted, and a low decrease in
false positives, set TFf has better results than set TFsf.
This suggests that the refined results in set TFsf that are
obtained using protein subfamily classification are not
better than the results in set TFf based on protein
family classification. True negatives in all the mapped
TF sets are very high because most of the sequences
that are not TFs have very low similarity to the TF
sequences.

Target gene mapping
The five sets of results for TGs mapped from S. cerevi-
siae to A. thaliana are shown in Table 3. There are
25191 TGs present in the available binding site data of
A. thaliana[27] used for analyzing the results.
The first three sets, TGbl, TGbs and TGblbs, use the

nucleotide sequence data of A. thaliana as the target
genome database for searching the target genes. The
first set TGbl is obtained as a result of using BLAST
only, the first step in the TG mapping method. The sec-
ond step in the TG mapping method, which includes
searching TFBS motifs, is used to identify the second set
TGbs. To refine these results, BLAST is used first to
find highly similar TGs before searching for the TFBS
motifs. To refine these results, BLAST is used first to
find highly similar TGs before searching for the TFBS
motifs. Hence, the third set TGblbs is determined using
both BLAST and searching TFBS motifs. Results for set
TGbs show that most of the A. thaliana sequences are
predicted as TGs containing TFBS motifs in the target
genome. True positives are the highest for this set,
among the first three sets, along with low false nega-
tives. However, it does have quite a high false positive
count.
Comparing set TGbl and set TGblbs, the same set of

target genes are identified in both result sets. These
results show that the TFBS motifs were found in all the
highly similar TGs identified using BLAST. Hence, no
true TG is lost when the predicted TGs (set TGbl)
determined using BLAST are refined further by

searching the TFBS motifs in the nucleotide sequences,
resulting in set TGblbs.
The last two sets, TGpr and TGgalf, use the promoter

sequence data of A. thaliana as the target genome data-
base for searching the target genes. The fourth set TGpr
is determined by searching TFBS motifs in the target
genome database. The last set TGgalf is obtained by
using the GALF-P tool (Genetic Algorithm with Local
Filtering and adaptive post-processing techniques) to
identify TFBS motifs, followed by searching these TFBS
motifs in the target genome database. A large number
of target genes are identified in set TGpr and set TGgalf
with lower false positives as compared to set TGbs. This
decrease in false positives reflects the increased selectiv-
ity of the promoter sequence data used for sets TGpr
and TGgalf instead of the nucleotide sequence data used
for set TGbs. This improvement in accuracy over TGbs,
TGbl and TGblbs makes TGpr and TGgalf the best sets
for mapping target genes. There is little difference
between the results for these two sets.
Almost all the TGs are identified in A. thaliana, but

to work properly for mapping regulatory links these pre-
dicted TGs need to be the correctly mapped TGs link-
ing to the right TF. This will be verified in the analysis
of predicted regulatory links discussed in the following
subsection.

Mapped regulatory elements integration and
confirmation
The two sets of TFs based on the same family (TFf) and
subfamily (TFsf), identified in the first step of regulatory
network mapping, are integrated with the four sets of
predicted TGs (TGbs, TGblbs, TGpr, TGgalf) deter-
mined in the second step. The results of regulatory ele-
ments integration consist of six sets of regulatory links
mapped from S. cerevisiae to A. thaliana as shown in
Table 4. There are 14254 regulatory links present in the
available regulatory network [28] of S. cerevisiae. The
predicted regulatory links for A. thaliana are then ana-
lyzed using gene expression data [24] to classify the
gene expression experiments for each regulatory link
into Confirming (C), Contradictory (C ), and Neutral
(N) groups based on the rules described in the previous
section. The total number of Confirming, Contradictory
and Neutral values for a regulatory link to be analyzed
should be equal to the number of gene expression
experiments of A. thaliana used. Then the Confirming
(c), Contradictory ( c ), and Neutral (n) values are com-
pared in different ways in Table 4 to analyze the pre-
dicted regulatory links using the 43 gene expression
experiments for A. thaliana.
In the fifth row, weights of two and one are assigned

to the Contradictory and Neutral values to obtain a
threshold for comparing it to the Confirming value. If

Table 3 TP, FP, FN and TN values for the mapped TGs in
the target genome

TGbl TGbs TGblbs TGpr TGgalf

Number of mapped TGs 2252 35181 2252 25259 25388

True Positives (TP) 1717 25180 1717 24973 25077

False Positives (FP) 535 10001 535 286 311

True Negatives (TN) 9625 159 9625 49 24

False Negatives (F) 23474 11 23474 218 114

Comparison of the five result sets of predicted target genes (TGs) determined
for the A. thaliana genome based on binary classifier. TGpr and TGgalf are
analyzed as the preferred sets for target gene mapping. E-value threshold
used for BLAST is 1e-1
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the Confirming value is higher than this threshold for a
regulatory link, then the link is considered to be a veri-
fied true regulatory link mapped in the target genome.
This is done to ignore any error due to outliers in the
gene expression data, and to require that a high propor-
tion of the results for a link be Confirming, since the
Confirming experiments need to outweigh not just the
Contradictory experiments but also the Neutral ones. It
is also evaluated based on the ratio between the Con-
firming and Contradictory values for the regulatory
links, to determine for which links there is much greater
evidence to support it than there is to contradict it. The
Confirming value is compared with thrice and twice the
value of Contradictory in the sixth, seventh and eighth
rows of Table 4. The regulatory links satisfying these
conditions are well supported by the gene expression
experiments. In the ninth row, the number of regulatory
links with a Confirming value higher than or equal to
their Contradictory value but lower than twice the Con-
tradictory value are determined. The regulatory links
that meet this condition are not as well supported by
the expression data. The Ninth row shows the number
of regulatory links that have a Contradictory value
higher than their Confirming value. These regulatory
links are not supported by the gene expression data.
Comparing set TFsf-TGblbs and set TFf-TGblbs, two-

third of the analyzed regulatory links are verified as true
regulatory links for set TFsf-TGblbs, whereas only one-
third of the analyzed regulatory links are verified for set
TFf-TGblbs. Therefore, the results from the TFsf-
TGblbs set are better, with a much higher percentage of
correctly mapped regulatory links in the target genome.
Comparing set TFsf-TGblbs and set TFsf-TGbs, the

percentage of regulatory links analyzed with a Contra-
dictory value more than the their Confirming value
increases from approximately 25 percent to about 50
percent from set TFsf-TGblbs to set TFsf-TGbs. This
indicates that half of the regulatory links analyzed in set

TFsf-TGbs are definitely not supported by the gene
expression experiments.
Less than one-fifth of the regulatory links have been

verified as true regulatory links in the set TFsf-TGpr
and set TFf-TGgalf. Comparing set TFsf-TGblbs and set
TFf-TGpr, the correctly mapped regulatory links are
about two-third of the analysed links in the set TFsf-
TGblbs and about one-third in the set TFf-TGpr. The
percentage of regulatory links analyzed with a Contra-
dictory value more than the their Confirming value
increases from approximately 25 percent to about 39
percent from set TFsf-TGblbs and set TFf-TGpr.
Hence, set TFsf-TGblbs has better results than the

other regulatory link sets, based on having a higher per-
centage of true regulatory links identified and a lower
percentage of links contradicted more than they are
confirmed. This set also shows that, even though S. cere-
visiae and A. thaliana are two organisms that are evolu-
tionarily far apart, they still do share a significant
amount of regulatory information among them.

Discussion
The TF mapping result set TFf comprises the best
results when we only consider how many TFs are
mapped, but it does not produce the best regulatory
links set when integrated with the mapped TG set
TGblbs. This indicates that the set TFsf containing the
mapped TFs based on sequence similarity and subfamily
classification contains the most efficiently and correctly
mapped TFs for the purpose of mapping regulatory
links.
The TGbs set, TGpr set and TGgalf set contain the

best results of mapped TGs from the previous subsec-
tion, but they do not work well when used in the inte-
gration of regulatory elements to predict regulatory
links. The additional predicted TGs in these sets lead to
too many false regulatory links in the sets TFsf-TGbs,
TFf-TGpr, TFsf-TGpr, and TFf-TGgalf. These false links

Table 4 Regulatory links confirmed for A. thaliana using gene expression data

TFsf-TGblbs TFf-TGblbs TFsf-TGbs TFsf-TGpr TFf-TGpr TFf-TGgalf

Number of mapped TFs 118 434 118 118 434 434

Number of mapped TGs 2252 2252 35181 25259 25259 25388

Number of links mapped 43423 480524 536154 274400 3182551 242030

Number of links analyzed 3056 8621 6085 34529 236585 25227

c c n≥ +2 2090 2628 2995 2343 93287 3727

c c≥ 3 2109 2375 2968 2323 101224 2012

2 3c c c≤ < 58 344 30 26 12737 1715

c c c≤ < 2 103 215 100 66 19037 503

c c< 786 5687 2987 2050 87983 150

Comparison of the six result sets of predicted regulatory links mapped from the S. cerevisiae genome to the A. thaliana genome. For every result set, the number
of confirmed regulatory links is compared with the number of contradicted and neutral regulatory links to analyze the results. TFsf-TGblbs is the preferred set for
regulatory links mapping.
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indicate that many of the true TGs identified for the tar-
get genome in set TGbs, set TGpr and set TGgalf are,
however, not the correctly mapped TGs linked to the
right TF in their corresponding regulatory link result
sets. All the predicted TGs do contain the TFBS motifs
for some TF but these TGs need to correspond to the
correct TF, identifying the right regulatory link in the
target genome. These results suggest that, in order to be
used to map regulatory links, the TGs identified in the
target genome using TFBS motifs also need to be similar
in sequence to the source genome TGs, as identified in
set TGblbs. Therefore, the result of other possible sets,
TFf-TFbs and TFsf-TGgalf, are not included in this
paper as their sets of regulatory elements are already
determined to lead to many false positives when inte-
grated to produce a predicted regulatory link.

Conclusions
A three step approach has been proposed to map a reg-
ulatory network from a model organism to a non-model
organism. This includes mapping the transcription fac-
tors and the target genes separately and then integrating
these regulatory elements to identify the regulatory rela-
tionships for the target genome. Rules are established to
evaluate the predicted regulatory links using gene
expression data from the target genome.
Results are obtained in the transcription factor map-

ping step based on three techniques, using BLAST,
using BLAST with protein family classification and
using BLAST with protein subfamily classification.
Results show that the technique based on sequence
similarity and protein family classification maps tran-
scription factors most efficiently from S. cerevisiae to A.
thaliana; therefore, it is the preferred method for gen-
eral transcription factor mapping.
There are five techniques used for target gene map-

ping, based on sequence similarity, TFBS motifs, and
sequence similarity along with TFBS motifs. Using three
methods, most of the target genes are identified cor-
rectly for A. thaliana by searching TFBS motifs only.
These methods have better results with many more true
positives than using only sequence similarity and than
using sequence similarity with TFBS motifs. The same
set of target genes is predicted using sequence similarity
and using sequence similarity along with TFBS motifs.
Therefore, the methods using TFBS motifs only are the
preferred method for general target gene mapping.
Among these three methods, the two methods using the
target genome promoter sequence database for search-
ing TFBS motifs are better with much lower false
positives.
Six sets of regulatory links are obtained in the regula-

tory elements integration step. The first set combines
the mapped transcription factors based on sequence

similarity and protein family classification with the tar-
get genes based on sequence similarity and seaching
TFBS motifs in the nucleotide sequence database. The
second set combines the mapped transcription factors
based on sequence similarity and protein subfamily clas-
sification with the target genes based on sequence simi-
larity and seaching TFBS motifs in the nucleotide
sequence database. The mapped transcription factors
based on sequence similarity and protein family classifi-
cation are integrated with the target genes based on
seaching TFBS motifs in the nucleotide sequence data-
base in the third set. The fourth set combines the
mapped transcription factors based on sequence similar-
ity and protein subfamily classification with the target
genes based on searching TFBS in the promoter
sequence database. The mapped transcription factors
based on sequence similarity and protein family classifi-
cation are integrated with the target genes based on
seaching TFBS motifs in the promoter sequence data-
base in the fifth set. The sixth set combines the mapped
transcription factors based on sequence similarity and
protein family classification with the target genes based
on identifying and then searching TFBS motifs in the
promoter sequence database. In the results, the large
amount of target genes identified using the preferred
method for target gene mapping produce many false
regulatory links, since, while they are target genes, they
are not linked to the correct transcription factor.
Additionally, the transcription factors from the pre-

ferred method of transcription factor mapping also con-
tribute to many false regulatory links when used in the
regulatory elements integration step.
Hence, the predicted regulatory links obtained by inte-

grating the mapped transcription factors based on
sequence similarity and protein sub-family classification
and mapped target genes based on sequence similarity
and TFBS motifs contain the most regulatory links for
the target genome that are verified by the gene expres-
sion data. This implies that more correctly mapped tar-
get genes that link to the right transcription factor are
determined by using BLAST along with the TFBS
motifs. Also, the correctly mapped transcription factors
are obtained using the method based on sequence simi-
larity and protein sub-family classification. This suggests
that regulatory relationships are conserved between dif-
ferent genomes and can be mapped between them.
Therefore, for a newly sequenced organism, a related
model organism can be used to determine some regula-
tory information for the lesser explored organism, avoid-
ing the need to complete significant expression
experiments for the target organism.
The use of TFBS information in finding target genes,

while showing the best final results, does cause some
errors. Even when the target genes contain the
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regulatory motifs of certain transcription factors, these
genes may not be regulated by these transcription fac-
tors at all. This is because, only a very small percentage
of binding sites are available to bind to interact with the
transcription factors, as mentioned earlier in the limita-
tion of regulatory networks section. False positives in
our results could then be reduced by integrating infor-
mation about the active binding sites in the target
genes. Considering alternative sources of TFBS informa-
tion could also decrease the false negatives, as we dis-
covered that the lack of an instance of the appropriate
binding site motif did not always correlate to lack of
regulation in the source genome.
More biological and regulatory information can also

be integrated further into the regulatory network map-
ping method as more data becomes available for non-
model organisms. Experimental data, such as gene
expression, time series, or flow cytometry data, can be
used to filter predicted links, even if this data includes
only a small number of experiments. Furthermore, addi-
tional information about gene regulation at different
stages of gene expression can be incorporated as well.
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