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Abstract

Background: Enzymes are known as the largest class of proteins and their functions are usually annotated by the
Enzyme Commission (EC), which uses a hierarchy structure, i.e., four numbers separated by periods, to classify the
function of enzymes. Automatically categorizing enzyme into the EC hierarchy is crucial to understand its specific
molecular mechanism.

Results: In this paper, we introduce two key improvements in predicting enzyme function within the machine
learning framework. One is to introduce the efficient sequence encoding methods for representing given proteins.
The second one is to develop a structure-based prediction method with low computational complexity. In
particular, we propose to use the conjoint triad feature (CTF) to represent the given protein sequences by
considering not only the composition of amino acids but also the neighbor relationships in the sequence. Then
we develop a support vector machine (SVM)-based method, named as SVMHL (SVM for hierarchy labels), to output
enzyme function by fully considering the hierarchical structure of EC. The experimental results show that our
SVMHL with the CTF outperforms SVMHL with the amino acid composition (AAC) feature both in predictive
accuracy and Matthew’s correlation coefficient (MCC). In addition, SVMHL with the CTF obtains the accuracy and
MCC ranging from 81% to 98% and 0.82 to 0.98 when predicting the first three EC digits on a low-homologous
enzyme dataset. We further demonstrate that our method outperforms the methods which do not take account of
hierarchical relationship among enzyme categories and alternative methods which incorporate prior knowledge
about inter-class relationships.

Conclusions: Our structure-based prediction model, SVMHL with the CTF, reduces the computational complexity
and outperforms the alternative approaches in enzyme function prediction. Therefore our new method will be a
useful tool for enzyme function prediction community.

Background
Enzymes are known as the cellular machines that can
catalyze chemical reactions and convert the molecules
called substrates into different molecules called the pro-
ducts. Almost all processes in a biological cell need
enzymes. So it is known that enzymes are the largest
and one of the most important families in the proteins.

It was estimated that about half of all the proteins have
been characterized as function of enzymatic activity by
various biochemical experiments. Therefore, accurate
assignment of enzyme function is crucially important
and is a prerequisite of high-quality metabolic recon-
struction and the analysis of metabolic fluxes [1].
One great effort for enzyme study is from the Interna-

tional Commission on Enzymes to annotate the function
of enzymes by the Enzyme Commission (EC) number,
which is a numerical classification scheme to distinguish
enzymes by the enzyme-catalyzed reactions. The EC
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number has a hierarchy structure and is comprised of
four integers separated by periods to classify the func-
tions of enzymes [2]. The first three digits describe the
overall type of an enzymatic reaction, while the last digit
represents the substrate specificity of the catalyzed reac-
tion. Since the first three digits have the direct relation-
ship with enzyme function, it is in pressing need to
develop computational methods to accurately predict
the first three EC digits for a given protein.
The straightforward idea is to transfer an EC number

between two globally similar protein sequences. How-
ever, this method only works well when two sequences
are very similar. The accuracy of the direct inference
has been reported to significantly drop under 60%
sequence identity [3]. Other efforts are trying to develop
computational methods to automatically categorize
enzyme into EC hierarchy in a machine leaning frame-
work. For example, some works predict the top layer of
the EC taxonomy, and then output the second and third
digits of EC number, respectively. For example, Chou et.
al [4] developed a top-down approach for predicting
enzyme functional classes and sub-classes, and the over-
all accuracy for the first two layers is higher than 90%.
However, they treated functional class independently,
and ignored the inter-class relationships. In this paper,
we develop a support vector machine (SVM)-based
methods which takes hierarchical structure of enzyme
functional labels into account. With this additional
information, the improvement of accuracy can be
expected. In particular, our method is accomplished by
using a generation of the SVM-based discriminant func-
tions that decompose into contributions from different
levels of the hierarchy [5]. Importantly, we reformulate
the previously proposed structure-based model to make
it computational feasible on a large scale dataset by
replacing large number of complicated inequalities with
one simple inequality. We named our simplified model
as the SVMHL (SVM for hierarchy labels). Another key
problem in predicting enzyme function is how to encode
a protein as a real-value vector. In previous studies, the
amino acid composition (AAC) representation has been
widely utilized in predicting enzyme family and subfam-
ily class [6,7]. The AAC feature representation is
denoted by a 20-dimensional vector which consists of
occurrence frequencies of single amino acid. However,
the catalytic residues always reside in the protein
sequence with some particular neighbor amino acids.
For example, catalytic residue database [8] contains 178
enzymes and 615 catalytic residues. Among all 178
enzymes, over 80 enzymes have the adjacent catalytic
residues. Thus, the sequence encoding features should
contain not only the amino acid composition but also
the sequence-order information. If the additional neigh-
bor information in sequence is incorporated into the

predictive model and better results can be expected. We
noticed that some modified versions of AAC consider
the sequence-order information, such as pseudo amino
acid composition (Pse-AAC) [9] and amphiphilic
pseudo-amino acid composition (Am-Pse-AAC) [10].
However, both Pse-AAC and Am-Pse-AAC have intro-
duced some un-determined parameters to consider the
physical chemistry properties of amino acids. Recently, a
much simple feature encoding method, called conjoint
triad feature (CTF), has been proposed for protein-pro-
tein interactions (PPIs) [11]. The authors have shown
that SVM with the CTF outperforms other sequence-
based PPI prediction methods. The CTF considers not
only properties of the target amino acid but also its
neighbor amino acids and treats any three continuous
amino acids as an unit. That is, it contains not only the
composition of amino acids but also sequence-order
information. Inspired by these, in this paper, we intro-
duce the CTF into our SVMHL to predict enzyme
function.
Collectively, we introduce two key improvements in

predicting enzyme function within the machine learning
framework in this paper. One is to introduce the effi-
cient sequence encoding methods (CTF) for represent-
ing given proteins. The second one is to develop a
structure-based prediction method (SVMHL) with low
computational complexity. Specifically, we present the
benchmark dataset collection, the CTF formulation, and
the procedure for formulating the structure-based pre-
dictive model in Materials and Methods section. In
Results section, we compare our method with the exist-
ing methods in different perspectives and demonstrate
the performance of our new method. Also, the discus-
sions and conclusions are presented for further study.

Results and Discussions
Proof-of-concept example for SVMHL
Our model, the SVMHL, is extended from the previous
structural leaning method in (5) ~ (7) denoted as
PMSVMHL in this paper (See Materials and Methods).
Following the idea of Theorem 2, we decrease the num-
ber of variables from l × (q - 1) to l by replacing large
numbers of inequalities with one simple inequality. To
illustrate the improvement of our simplified model-
SVMHL, we carry out a proof-of-concept analysis on a
simple dataset. This dataset is UCI glass dataset (avail-
able at http://www.ics.uci.edu/~mlearn/MLRepository.
html). The glass dataset contains two main classes, and
each main class can be further classified into subclasses.
For convenience, we illustrate the hierarchical structure
of this simple dataset in Figure 3(c) . Concretely, we
take out 70 float processed building windows and 76
non-float processed building windows, and both of them
belong to the window glass. In addition, 29 headlamps
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which belong to the non-window glass are also included
in the training dataset. In total, the toy example contains
175 data points classified into three class, and two
classes of them can be further integrated. We leave 9
headlamps, 10 float processed building windows, and 10
non-float processed building windows for testing, and
the rest data are for training of the classification rule
(Refer to Table 1 for details).
We train the standard SVM, PMSVMHL, and SVMHL

on the training dataset, respectively, and apply the cor-
responding trained classification rules to the testing
examples. The test accuracy is shown in Table 2.
SVMHL can get the competitive results of PMSVMHL.
And both SVMHL and PMSVMHL perform better than
the standard SVM. That’s reasonable because both
SVMHL and PMSVMHL take the relationship among
classes into account, i.e., Class 2 and Class 3 belong to

the same super-family. Besides that, the standard SVM,
PMSVMHL, and SVMHL are implemented on a PC
machine with Intel Core 2 Due CPU 1.60 GHz. The
training time for PMSVMHL and SVMHL are 165 sec-
onds and 10 seconds, respectively. The training time of
PVSVMHL is about ten times longer than SVMHL. The
increased efficiency of our method improves the feasibil-
ity of applying our method for predicting enzyme

Figure 3 The scheme of SVMHL and comparison with standard two-class and multi-class SVMs. The illustration of modeling procedure of
the standard two-class SVM (a), the standard multi-class SVM (b), and the SVMHL (c), respectively. j:Rn ® H is a mapping from the input space
Rn to a Hilbert space H. Red dots have labels yi = +1 while blue dots have labels yi = -1 in Figure 3(a) . And red dots have labels yi = 1, blue
dots have labels yi = 2, while yellow dots have labels yi = 3 in Figure 3(b) and Figure 3(c) .

Table 1 The statistics of training and testing dataset for
the toy example. Class 1 is non-window glass, Class 2 is
float processed building window glass, and Class 3 is
non-float processed building window glass

Dataset type Class1 Class2 Class3

Training set 20 60 66

T esting set 9 10 10
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function in large scale. The proof-of-concept study on
this simple toy example suggests that SVMHL is a rea-
sonable simplified version of PMSVMHL.

The results on the benchmark enzyme dataset
Then we apply the newly developed method to predict
enzyme function in a benchmark dataset collected from
the literature [4] (Refer to Materials and Methods for
detail). To illustrate the contribution of CTF encoding
method and SVMHL, respectively, we designed two
experiments. Firstly, we fix the machine leaning method
and compare the feature encoding methods. Secondly
we fix the feature encoding method and compare the
performance of machine learning methods by consider-
ing the hierarchy structure of labels. We note that we
only report the predictive results on the second and
third level of EC hierarchy in the following experiments
since there are no inter-class relationships in the top
level of EC hierarchy.
Comparison with the alternative encoding methods
Since the catalytic residues tend to reside in the protein
sequence with their vicinal amino acids together, the
sequence features with sequence-order information may
bring the significant improvement in enzyme function
prediction. To validate this, we compare the perfor-
mance of SVMHL with the CTF and SVMHL with the
AAC. We simply take the Ec1 subset as an example. In
Ec1 subset, there are eight enzyme sub-subfamilies in
total: Ec1.1.1, Ec1.2.1,Ec1.3.1, Ec1.5.1, Ec1.6.5, Ec1.6.99,
Ec1.9.3, and Ec1.11.1. It is obvious that, sub-subfamily
Ec1.6.5 and Ec1.6.99 belong to the same subfamily
Ec1.6, so in the second level of the EC hierarchy, there
are seven functional classes in total.
SVMHL with the CTF and SVMHL with the AAC are

validated on the Ec1 subset, respectively, the predictive
accuracy and Matthew’s correlation coefficient (MCC)
on the second and third level of EC hierarchy are
plotted in Figure 1. The Figure 1 shows that SVMHL
with the CTF outperforms SVMHL with the AAC not
only in higher predictive accuracy, but also in higher
MCC. The results are robust to the choice of the second
and the third levels of EC hierarchy. These results sug-
gest that the CTF sequence feature with sequence-
neighbor information brings significant improvement in
enzyme function prediction.
Comparison with the methods without hierarchy
information
Next we would like to show the promising performance
of SVMHL with the CTF by training it on a low-homo-
logous enzyme benchmark dataset (Refer to Materials
and Methods for detail). It should be noted that predict-
ing enzyme function is an imbalance multi-class classifi-
cation problem due to the fact that the numbers of
proteins in each enzyme family and subfamily are very

different. In our previous work [12], we show that the
AM-SVM (SVM with arithmetic mean offset) [13],
which is specially designed for imbalance classification
problem, performs better than the standard SVM with
the CTF in predicting enzyme subfamily classes. There-
fore, we train the AM-SVM with the CTF on the same
benchmark dataset for comparison. The AM-SVM treats
each class label independently, and ignores the inter-
calss relationships. Since both SVMHL and AM-SVM
apply the CTF as the features. We choose to fix the fea-
ture encoding methods here for fair comparison.
We compare two methods regarding to the variabil-

ity of predictive accuracy and MCC for enzyme sub-
family classes and sub-subfamily classes. The results
are presented in Table 3 and Table 4, respectively.
These two tables show that, for the second EC digit
(enzyme subfamily class), SVMHL outperforms AM-
SVM regarding to the two predictive indexes. Specifi-
cally, AM-SVM makes the mean accuracy range from
89% to 95%, while the mean accuracy for SVMHL
ranges from 90% and 98%. For the third EC digit
(enzyme sub-subfamily class), AM-SVM makes the
mean accuracy range from 84% to 96%, while the
mean accuracy for SVMHL ranges from 86% and 98%.
Therefore, for both the second and third EC digits,
SVMHL outperforms AM-SVM not only on the range
of accuracy waved but also on the mean of accuracy
except for the Ec1 subset.
These two tables also show that, AM-SVM makes the

mean MCC range from 0.89 to 0.95 for the second EC
digit, while the mean MCC for SVMHL ranges from
0.92 and 0.98. For the third EC digit, AM-SVM makes
the mean MCC range from 0.81 to 0.96, while the mean
MCC for SVMHL ranges from 0.82 and 0.98. Clearly for
both the second and third EC digits, SVMHL outper-
forms AM-SVM not only on the range of MCC but also
on the mean of MCC except for the Ec6 subset.
The imbalance property is incorporated into AM-

SVM, and the inter-class relationship and imbalance
properties are both introduced into SVMHL. Table 3
and Table 4 show that, SVMHL outperforms AM-SVM
with not only predictive accuracy but also MCC for
both the second and third EC digits. This result suggest
that the more information or properties of dataset are
incorporated into the predictive model, the better results
can be obtained.

Table 2 The predictive accuracy on glass testing set

Class type Standard SVM PMSVMHL SVMHL

class1 100%(9/9) 100%(9/9) 100%(9/9)

class2 50%(5/10) 80%(8/10) 80%(8/10)

class3 100%(10/10) 100%(10/10) 100%(10/10)

overall 82.8% 93.1% 93.1%
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Comparison with other structural learning methods
In this subsection we compare our method with other
structure-based learning methods. In theory, the model
of PMSVHL is a special version of the Hierarchical
Max-Margin Markov (HM3) [14] by using the zero-one
loss. HM3 has been successfully used in many structured
pattern recognition problems, such as document cate-
gorization [5], web contend classification [15] and so on.
Furthermore, in [16], the authors have introduced HM3

and Maximum Margin Regression algorithm (MMR) to
predict enzyme function. The MMR [17] generated one-
class SVM to perform structure-based prediction. The
motivation of the MMR is the same as the SVMHL and
can be implemented with low cost. On a gold-standard
enzyme dataset containing 3090 proteins, MMR
achieved the best accuracy for the all individual EC
digits. While HM3 achieved nearly the same results, and
most importantly, HM3 obtained the best F1 scores and
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Figure 1 The comparison of feature encoding methods ACC and CTF. The predictive accuracy (the left two subfigures) and MCC (the right
two subfigures) on the second and third level of Ec1 subset for SVMHL with the CTF (SVMHLCTF) and SVMHL with the AAC (SVMHLAAC).

Table 3 The predictive accuracy and MCC on the second
level of EC hierarchy for AM-SVM and SVMHL.

Family name AM-SVM SVMHL

Accuracy
(%)

MCC Accuracy
(%)

MCC

EC1 :
Oxidoreductases

95.3 ± 3.8 0.95 ±
2.9%

98.1±4.9 0.98
±2.6%

EC2 : Transferases 94.1 ± 2.9 0.90 ±
8.4%

97.6±2.6 0.93
±8.2%

EC3 : Hydrolases 92.9 ± 3.9 0.91 ±
6.6%

95.4±3.7 0.94
±6.3%

EC4 : Lyases 93.6 ± 9.1 0.93 ±
5.4%

95.8±8.3 0.96
±4.7%

EC5 : Isomerase 94.7 ± 6.4 0.89 ±
4.9%

96.8±6.2 0.92
±4.1%

EC6 : Ligases 89.2 ± 6.9 0.93 ±
5.1%

90.1±6.1 0.96
±6.2%
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the MMR comes close as the second. When predicting
sub-subfamilies, HM3 obtained a 79% F1 score , and
89% when predicting the subfamilies [16]. Like MCC, F1
score can avoid the bias due to the imbalance problem.
For comparison, we train our SVMHL on the same
gold-standard dataset. As a result, SVMHL with the
CTF has obtained over 80% F1 score in predicting
enzyme sub-subfamilies, and over 90% F1 score in pre-
dicting subfamilies. These results suggest that SVMHL
with the CTF has the competitive performance with
HM3, and outperforms the existing low costly structure-
based method MMR. Most importantly, the predictive
results also imply that the performance of SVMHL
comes from the fact that SVMHL takes a better way to
take the hierarchical structure of the inter-class relation-
ships into account.

Discussions
SVMHL is a simplified version of PMSVMHL by repla-
cing the q ( q is the total number of categories) inequal-
ities with a single inequality. The selected yi

* makes the
upper bound of |(w · F(x,y)) - (w · F(x,y′))|,y′ ≠ y be the
lowest (see Materials and Methods). However the ideal
yi

* should make the loss of |(w · F(x,y)) - (w · F(x,y′))|,
y′ ≠ y be the lowest rather than its upper bound. We
emphasize that perhaps this is the simplest form to
reduce the scale of PMSVMHL model under the
requirement of the lowest loss. Surprisingly, SVMHL
with the lowest upper bound of loss obtains the compe-
titive performance of PMSVMHL on a toy example. In
addition, SVMHL outperforms other alternative
approaches, not only the methods without structure
properties but also these structure-based models. Com-
paring other modified versions of PMSVMHL [18], our
approach is easy to be understood and has the advan-
tage of simplicity.

One way to further improve the structure-based
model is to design efficient and simple feature encoding
schemes. Since it is well-known that efficient feature
construction is important in determining the perfor-
mance of a predictive method. Here SVMHL with the
CTF obtains the promising predictive results. One
important reason is that CTF feature capture the pattern
that the catalytic acids tend to reside in the protein
sequence with some particular neighbor amino acids.
Thus future work can focus on improving feature
extracting methods by introducing the sequence features
which consider the sequence-order information, such as
K-space encoding scheme [19]. Another way to improve
the feature construction methods is to integrate more
genome and proteome data sources and use efficient
kernel methods to fuse heterogeneous information [20].
In addition, we can define a different similarity measure
for each data source and thereby incorporate more prior
information into the design of the classifier [21].
There is still plenty room for the improvement on the

modification of the structure-based predictive model. As
mentioned above, the prediction of enzyme family and
subfamily class is an imbalance multi-class classification
problem. Although we try to consider the imbalance
problem into SVMHL by treating yi

* as the class label
belonging to the same subfamily of yi. We are making
the corresponding proteins within this class label are the
largest (See Materials and Methods). However, the
imbalance problem has not been solved in essence.
Future work can reformulate the SVM-based model sui-
table for the imbalance problem, and make the new
model contain not only the hierarchical structure of the
output labels but also the imbalance property. There are
many efficient and simple SVM model specially
designed for imbalance classification problem, such as
Multisurface Proximal Support Vector Machine Classifi-
cation [22], and its extended versions: Twin SVM [23]
and Nonparallel plane proximal classifier (NPPC) [24].
Since user-friendly and publicly accessible web-servers

represent the future direction for developing practically
more useful predictors [25], we shall make efforts in our
future work to provide a web-server for the method pre-
sented in this paper

Conclusions
In this paper, we propose two machine learning ideas in
enzyme function prediction. Firstly, we develop a struc-
ture-based method, the SVMHL, to consider the hierar-
chy structure of the labels to predict enzyme function in
EC hierarchy. Secondly, the CTF, which contains not
only the composition of amino acids but also the
sequence-order information, is introduced to encode
given proteins as the real-value vectors. We first show
that our simplification to PMSVMHL is efficient by a

Table 4 The predictive accuracy and MCC on the third
level of EC hierarchy for AM-SVM and SVMHL

Family name AM-SVM SVMHL

Accuracy
(%)

MCC Accuracy
(%)

MCC

EC1 :
Oxidoreductases

96.2 ± 4.4 0.96 ± 3.2% 98.3 ± 4.6 0.98
±2.4%

EC2 : Transferases 89.2 ± 9.8 0.91 ±
10.1%

92.1±9.7 0.92
±9.5%

EC3 : Hydrolases 78.9 ± 5.2 0.81 ± 9.7% 81.7±4.9 0.81
±8.9%

EC4 : Lyases 95.6 ± 7.1 0.94 ± 3.4% 96.7±6.7 0.97
±2.9%

EC5 : Isomerase 78.8 ± 4.1 0.89 ± 3.1% 81.3±3.4 0.91
±2.7%

EC6 : Ligases 84.5 ± 7.1 0.87 ± 8.4% 86.4±6.4 0.91
±8.7%
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UCI glass dataset. The experimental results show that
SVMHL has the competitive performance with
PMSVMHL. In an Ec1 subset, SVMHL with the CTF
outperforms SVMHL with the AAC with not only in
the high predictive accuracy, but also in high MCC. In
addition, when validated on a low-homologous enzyme
dataset, SVMHL with the CTF obtains the best MCC
and accuracy of 0.91 and 0.98 in predicting the main
families. Furthermore, SVMHL with the CTF obtains
over 0.92 and 0.82 average MCC in predicting subfami-
lies and sub-subfamilies, respectively. The predictive
results suggest that SVMHL with the CTF performs
much better than existing methods which do not take
account of hierarchical relationship among enzyme cate-
gories for predicting the enzyme function in EC hier-
archical taxonomy. Also SVMHL displays better
predictive performance than the existing low cost struc-
ture-based method MMR on a gold-standard enzyme
dataset. Therefore we conclude that our new method
holds the potential as a useful supplementary tool for
the future studies in enzyme function.

Materials and Methods
In this section, we describe the collection of benchmark
datasets and the construction of the predictive model.

Materials
The benchmark dataset is collected from the literature
[4] to validate the performance of our method. The
sequences in this dataset have less than 40% sequence
identity to any other sequences in the same functional
class. The detail information of this dataset can be
found in [4]. In addition, those sub-subfamilies which
contain less than 50 proteins are excluded in our valida-
tion to avoid the extreme sub-subfamily bias. Finally
there are six main functional classes and eighty-five sub-
subfamily classes (i.e., eight for oxidoreductases, seven-
teen for transferases, eighteen for hydrolases, eight for
lyases, eight for isomerases, and six for ligases) in the
benchmark dataset.

Methods
Input feature: CTF
Sequence-based prediction is based on the assumption
that knowledge of the amino acid sequence alone might
be sufficient to estimate the evolutionary history, overall
structure and function, and the interacting propensity
between two proteins. The reason of enzyme function
prediction based only on sequence information is due to
the easily available sequence data. To fully take advan-
tage of sequence information, the most important chal-
lenge is to find a suitable way to fully describe the
important information of protein. To this end, we
manually checked the catalytic residue database [8]

which contains 178 enzymes and 615 catalytic residues.
We found that there are over 80 enzymes have the adja-
cent catalytic residues among all 178 enzymes. For
example, the enzyme 1MEK (EC 5.3.4.1, its structure is
shown in Figure 2) has four catalytic residues in its A
chain: Cys (C), Gly (G), His (H), Cys (C) locate in 36,
37, 38, 39 position, respectively. These four residues are
neighbors in the sequence (highlighted in different col-
ors in Figure 2) and work together for the enzyme func-
tion. This indicates that the catalytic residues tend to
reside in the protein sequence with some neighbor cata-
lytic residues together.
Based on the above observations, we applied a descrip-

tor named conjoint triad which has been successfully
proposed for predicting protein protein interactions.
The feature encoding method considers the properties
of one amino acid and its vicinal amino acids and
regards any three continuous amino acids as a unit.
Further, the triads can be categorized according to the
classes of amino acids, i.e., triads composed by three
amino acids belonging to the same classes could be trea-
ted identically, because they may play similar roles in
performing enzyme function. Specifically, the 20 amino
acids can be classified into seven classes: {A, G, V}, {I, L,
F, P}, {Y, M, T, S}, {H, N, Q, W}, {R, K}, {D, E}, {C}
based on the dipoles and volumes of the side chains.
Thus, a 343(7 × 7 × 7)-dimension vector is used to
represent a given protein, where each element of this
vector is the frequency of the corresponding conjoint
triad appearing in the protein sequence. More detailed
description for the CTF can be found in [11]. In this
way, the sequence features which incorporate not only
the amino acid composition but also the sequence-order
information. In addition, the CTF can be implemented
in a economic way and contains no pre-defined
parameters.
Structure-based prediction model: the SVMHL
Now we give the detailed representation for our
SVMHL model. The schematic plot of SVMHL is
shown in Figure 3(c) . To illustrate our idea more
clearly, we also plot the schemes for standard two class
SVM and multi-class SVM in Figure 3(a) and Figure 3
(b) side by side.
Given samples {xi, yi} for i = 1, ... , l, where xi is a vec-

tor in the input space Rn and yi denotes the correspond-
ing class category taking a value in the output space
{1, ... , q}, where q is the total number of categories. In
addition, the functional hierarchical tree, representing
the relationships among these q categories, is known as
the prior knowledge. The number of leaf nodes in the
tree is q. A tree with q = 3 is shown in Figure 3(c) .
Suppose that, there are a total of s nodes in the hier-

archical functional tree (In Figure 3(c), s = 5). To incor-
porate the inter-class relationships, we generate the
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SVM-based discriminant function to contain the contri-
butions from all nodes along the paths from a root to a
specific leaf node by introducing the class attribute vec-
tors [5].
We introduce the attribute vector Λ(y) to characterize

output label y by

Λ(y) = (l1(y),... ,ls(y))T, (1)

Where

l j y
if j path y

otherwise
( )

, ( );

, ,
=

∈⎧
⎨
⎩

1

0

  
(2)

where path(y) is the category tags for the path from
the root to the leaf node y in the functional hierarchical
tree. For example, path(2) = {2, 5} in Figure 3(c) . Then
the discriminant function becomes

f(x) = arg maxyÎ{l...,q}(w·F(x,y)), (3)

where w = (w , , w )T T T
1  s and

Φ( , )

( ) ( )

( ) ( ).

,x y

y x

y xs

=
⋅

⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

l

l

1  f

f

 (4)

where j:Rn®H is a mapping from the input space Rn

to a Hilbert space H.
A toy example is shown in Figure 3(c) to illustrate the

discriminant function (3) generating procedure. The pri-
mal problem can be formulated as follows by incorpor-
ating the discriminant function (3):

min || || ,
, ,w b i

i

l
C

x
x1

2
2

1
w + ⋅

=
∑ (5)

s.t. (w·δFi(y)) ≽ 1-ξi, i = 1,··· ,l,y ≠ yi, (6)
ξi ≽ 0 i = 1,... ,l, (7)
where δFi(y) = (w · F(xi,yi)) - (w · F(xi,y)).

PDB ID: 1MEK
EC number: 5.3.4.1

Sequence: DAPEEEDHVL VLRKSNFAEA LAAHKYLLVE 
FYAPWCGHCK ALAPEYAKAA GKLKAEGSEI RLAKVDATEE 
SDLAQQYGVR GYPTIKFFRN GDTASPKEYT AGREADDIVN 
WLKKRTGPAA
Figure 2 The protein structure of the enzyme 1MEK and its catalytic residues. The protein structure of the enzyme 1MEK shows the
importance to consider the neighbor amino acids in predicting enzyme function. The colored spheres in the structure and the colored residues
in the sequence represent the catalytic residues. 1MEK contains the adjacent catalytic residues in its A chain: Cys (C: 36), Gly (G: 37), His (H: 38),
Cys (C: 39). The number in the brackets represents the abbreviation of the residues and its positions in the protein sequence.
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The Lagrange dual optimization formulation of pro-
blem (5) ~ (7) becomes:

min (( ( ) ( )) ( ( ) (’

, ’
a

a a
1
2

11

iy jy i

Y Y Y Yj

l

i

l

jy y y y

i j

Λ Λ Λ Λ− ⋅ −
≠ ≠==
∑∑∑ ’’))) ( , ) ,K x xi j iy

y yi

l

i

−
¬=
∑∑ a

1
(8)

s.t. aiy ≽ 0, i = 1, ...,l, y ≠ yi, (9)

a iy i

y y

C i l y y

i

≤ = ≠
≠
∑ , , , , .1 (10)

The number of the variables equals l · ( q - 1), the
problem (8)~(10) will be quite large when l and q are
large. For example, the number of leaf class labels is
sixty-five and the number of proteins is five thousand
and seven in the enzyme benchmark dataset. That is, q
= 65 and l = 5, 007 in this dataset. The number of vari-
ables of problem (5) ~ (7) becomes 320, 448. Therefore,
the computational challenge for this large scale optimi-
zation problem should be solved before applying it into
the real-world problems.
From (5) ~ (7), we can find that, if a label y yi i

* ≠ can
make the following equations established

( ( , )) max( ( , )),*w x y w x yi i
y y

i
i

⋅ = ⋅
≠

Φ Φ (11)

that is,

y w x y w x yi y y i i ii

* arg min{( ( , )) ( ( , ))},= ⋅ − ⋅≠ Φ Φ (12)

the inequality (6) will become
( ( )) , , ,*w y i li i i⋅ ≥ − =d xΦ 1 1 . Then the primal pro-
blem (5) ~ (7) can be reformulated as follows:

min || || ,
, ,w b

i

i

l

C
x

x
1
2

2

1

w + ⋅
=
∑ (13)

s.t. w( ( )) , , ,*⋅ ≥ − =d xΦ i i iy i l1 1 (14)

ξi ≽ 0, i = 1,... ,l, (15)
where dΦ Φ Φi i i i i iy x y x y( ) ( , ) ( , )* *= − . So the

Lagrange dual problem can be reformulated as follows:

min
a

a a
1
2

11

i j i i

j

l

i

l

j j i jy y y y K x x(( ( ) ( )) ( ( ) ( ))) ( ,* *Λ Λ Λ Λ− ⋅ −
==

∑∑ )) ,−
=
∑a i

i

l

1

(16)

s.t. ai ≽ 0, i = 1,... ,l, (17)
ai ≼ C, i = 1,...,l. (18)
The number of the variables for the problem (16) ~

(18) decreases to l. Note that, this problem is reduced to
the standard SVM model by replacing the kernel function
with (( ( ) ( )) ( ( ) ( ))) ( , )* *Λ Λ Λ Λy y y y K x xi i j j i j− ⋅ − . How to
choose a suitable yi

* for each input xi? The following
Theorem provides some information for this task.

Theorem 1.Let k and l be the arbitrary two class
labels in the leaf nodes and x be a test data point. aiy, i
= 1, ... , l , y ≠ yi are the optimal solutions of the pro-
blem (8)~(10). Then for every pair of label tags k and l,
we have the following equation,

|( ( , )) ( |( , )) | || ( ) ( ) || ( ( )) ,w w⋅ − ⋅ ≤ − ⋅
=

∑Φ Φ Λ Λx k x l k l w xj

j

s
2 2

1

2f (19)

Where

( ( )) ( ( ) ( )) ( , ).w j j i j iy

y y

i

i

l

x y y K x x

i

⋅ = −
≠=
∑∑f l l a

1

(20)

Proof: w can be obtained by computing the deriva-
tions of lagrange function with respect to w, that is

w = −
≠=
∑∑ a iy i

y yi

l

x y x y

i

( ( , ) ( , )).Φ Φ
1

(21)

By using the mathematical expressions of j(xi,yi),
j(xi,y) and |(w · F(x,k)) - (w · F(x,l))|2, we have

| ( , )) ( ( , )) | | ( ( ) ( ))( ( )) | ,w w w⋅ − ⋅ = − ⋅
=

∑Φ Φx k x l k l x
j

s

j j j
2

1

2l l f (22)

By applying the Cauchy inequality the following
inequality holds

|( ( , )) ( ( , )) | ( ( ) ( )) ( ( )w w w  ⋅ − ⋅ ≤ − ⋅
= =∑ ∑Φ Φx k x l k l xj
j

s

j j
j

s2

1

2

1
l l f ))2 (23)

= − ⋅
=∑|| ( ) ( ) || ( ( )) ,Λ Λk l w xj
j

s2 2

1
f (24)

Where

( ( )) ( ( ) ( )) ( , ).w x y y K x xj j i j iy i

y yi

l

i

⋅ = −
≠=
∑∑f l l a

1

(25)

Then the theory can be proved.
From the Theorem 1, the following Theorem can be

deduced directly:
Theorem 2.The y* is the solution of the following pro-

blem if y* and y belong to the same superfamily.
y* = arg miny,≠y,y′,Î{l,...,q}Sup(|(w • F(x, y)) -

(w • F(x, y′))|). (26)
where Sup is the least upper bound.
From the Theorem 2, yi

* can be set to be one of the
class labels belonging to the same superfamily of yi. The
choice for yi

* is introduced to put more emphasis on
the class labels with same father to the yi

* rather than
the single class labels. Because the brother class labels
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are more easily to be confused by the predictive model.
In addition, we let yi

* be the class label belonging to
the same super-family of yi with the largest proteins
simultaneously to deal with the imbalance problem
caused by the fact that the proteins in various enzyme
function groups are constantly changing. This is because
the class-boundary will be biased towards the large class
heavily. For the same reason, if yi is a single class, and
there is no class label as its brother, the corresponding
yi

* is set to be the class label with the largest scale.

Implementing predictive model and evaluation criteria
By replacing the kernel function with
(( ( ) ( )) ( ( ) ( ))) ( , )* *Λ Λ Λ Λy y y y K x xi i j i i j− ⋅ − , the freely
available software for SVM implementation, LIBSVM
(v.2.88) [26], can be used to solve our structure-based
SVM model. The RBF kernel function is used here, and
the penalty parameter C and the RBF kernel parameter
g are optimized by grid search approach with 3-fold
cross-validation.
To evaluate the performance of our methods, we run

the 10 fold cross-validation procedure. Besides for the
accuracy, the Matthew’s correlation coefficient (MCC)
[27] is used to further evaluate the performance of our
method, which allows us to overcome the shortcoming
of accuracy on imbalanced data [28].
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