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Abstract

cerevisiae (budding yeast).

Background: Cellular functions depend on genetic, physical and other types of interactions. As such, derived
interaction networks can be utilized to discover novel genes involved in specific biological processes. Epistatic
Miniarray Profile, or E-MAP, which is an experimental platform that measures genetic interactions on a genome-
wide scale, has successfully recovered known pathways and revealed novel protein complexes in Saccharomyces

Results: By combining E-MAP data with co-expression data, we first predicted a potential cell cycle related gene
set. Using Gene Ontology (GO) function annotation as a benchmark, we demonstrated that the prediction by
combining microarray and E-MAP data is generally >50% more accurate in identifying co-functional gene pairs

than the prediction using either data source alone. We also used transcription factor (TF)-DNA binding data (Chip-
chip) and protein phosphorylation data to construct a local cell cycle regulation network based on potential cell
cycle related gene set we predicted. Finally, based on the E-MAP screening with 48 cell cycle genes crossing 1536
library strains, we predicted four unknown genes (YPL158C, YPR174C, YJR0O54W, and YPR045C) as potential cell cycle
genes, and analyzed them in detail.

Conclusion: By integrating E-MAP and DNA microarray data, potential cell cycle-related genes were detected in
budding yeast. This integrative method significantly improves the reliability of identifying co-functional gene pairs.
In addition, the reconstructed network sheds light on both the function of known and predicted genes in the cell
cycle process. Finally, our strategy can be applied to other biological processes and species, given the availability of

relevant data.

Background

According to [1], “mutations in two genes produce a
phenotype that is surprising in light of each mutation’s
individual effects. This phenomenon, which defines
genetic interaction, can reveal functional relationships
between genes and pathways.” Thus, deciphering genetic
interaction networks via high-throughput technologies
can both reveal the schematic wiring of biological pro-
cesses and predict novel genes. Recently, several such
high-throughput technologies have been developed to
identify genetic interactions at the genome scale, includ-
ing Synthetic Genetic Array (SGA) [2], Diploid-based
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Synthetic Lethality Analysis on Microarrays (dSLAM)
[3], and Epistatic Miniarray Profile (E-MAP) [4]. The
first two approaches aim to identify synthetic lethal, or
negative, interactions, meaning that the double mutant
is more lethal than the corresponding single mutants.
On the other hand, assuming that the expected pheno-
type of a double mutation reflects the additional effects
of the single mutations, E-MAP, an extension of SGA,
gains power by identifying positive as well as negative
interactions, which, in this case, would indicate that the
double mutant is healthier than expected.

Here, we exploited the E-MAP methodology to dis-
cover novel genes involved in the cell cycle process in
budding yeast. The distinct advantage of using E-MAP
is the potential of discovering functionally associated
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genes which do not otherwise physically interact. Physi-
cal interaction assays, such as the yeast two-hybrid sys-
tem or DNA-binding microarrays, are unlikely to reveal
these associations. Despite the superiority of E-MAP,
interpretation of the data is still challenging. First,
genetic interactions occur both between and within
functional modules. Thus, the function of a gene cannot
be determined by its interacting partners. Second, E-
MATP suffers from high false positive and negative rates,
making it difficult to infer genetic interaction accurately
and sufficiently. Consequently, the integration of exter-
nal information, such as gene expression, Transcription
Factor (TF)-DNA binding (chip-chip) and protein phos-
phorylation, is necessary in order to identify novel genes
involved in the cell cycle process.

Several methods have been developed to integrate
multiple types of data to infer a transcription regulatory
network in eQTL analysis, including mRNA expression,
chip-chip, physical interaction and protein phosphoryla-
tion [5-8]. In this paper, we integrated genetic interac-
tion and other genomic data to construct a specific
network which we then applied to the cell cycle process
in budding yeast.

Results

Construct a potential cell cycle-related gene set

As indicated in Figure 1, our strategy, which integrates
multiple types of data, aims to include all potential cell
cycle genes within the known cell cycle gene set. Since
both genetic interacting and co-expressed gene pairs
tend to be co-functional, we hypothesized that a poten-
tial cell cycle related gene set with higher confidence
can be achieved through combining the two data
sources, compared with using either data alone.

To accomplish this, we first quantitatively measure
whether genetic interactions and co-expression indicate
co-functional membership and, if so, to what degree.
The E-MAP method was adopted for genetic interaction
analysis. Forty-eight known cell-cycle genes (KCCGs,
Table S1 in Additional file 1) were screened against a
library of 1536 test strains in budding yeast, yielding a
quantitative value (S-Score defined in [3]) for 67680
gene pairs (91% of all possible pair-wise measurements).
Co-expressed data were then calculated from 8 groups
of time-course expression datasets generated in four
previously published studies (see Methods and materials
for details). To calculate the enrichment of co-functional
gene pairs over random gene pairs, we first compute the
fraction f of interactions at each S-score (or cc, correla-
tion coefficient of expression) (Figure 2A and 2B) or
simultaneously more extreme than s and cc (Figure 2C
and 2D) that fall inside one biological process term in
GO for certain bin sizes. Then the enrichment is the
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ratio f/r, where r is the fraction of random gene pairs
which participate in the same GO biological processes.
As expected, Figure 2A confirms that gene pairs having
a higher cc are more likely to be co-functional. Also,
Figure 2B shows that gene pairs with both significant
positive and negative S-scores are more likely to be co-
functional. By comparing the enrichment between Fig-
ures 2A and 2B, it is apparent that extreme S-scores
could indicate co-functional membership more
efficiently.

When combining these two kinds of data, we found
that they were complementary. As shown in Figure 2C,
for a certain cut-off of S-scores, gene pairs with a higher
correlation of expression are more likely to be co-func-
tional, and vice versa. Therefore, the results approved
our original hypothesis that combining these two kinds
of information could help to construct a more accurate
potential cell cycle related gene set. We adopted an area
by which to define significantly interacting gene pairs
based on the data in Figure 2C. For a positive genetic
interaction area, we require that the enrichment over
random be larger than 2, and for a negative genetic
interaction area, we require that it be larger than 4.
Then the constraints are (S-score>2.5 and cc >0.9) or S-
score>6 or (S-score<-3 and cc>0.9) or (S-Score<-14 and
cc>0.85). Compared to the most powerful method at
each point, the combination is generally >50% more
accurate in the areas defined above (Figure 2D). Finally,
259 gene pairs between 206/1536 test strains and 48
KCCGs passed the filter. We use these 206 test genes as
the potential set of cell cycle-related genes (PCCGs).

Recovery of known genetic interactions with our E-MAP
We compared our E-MAP data with the benchmark
data. Similar to previous work [9], we tested the sensi-
tivity and precision of the E-MAP data (see Methods
and materials). Compared to genetic interactions in
BIOGRID, both the positive and negative interactions
are very precise (p-value < 107°°).

We also tested the efficiency when combining E-MAP
with DNA microarray data. When the co-expression test
was applied, the significance level of precision increases
around 2-fold (Table S2 in Additional file 2). This result
indicates that co-expression does indeed provide extra
information about genetic interaction. Hence, our strat-
egy can be used to identify potential cell cycle genes
and their relationships with known cell cycle genes, thus
enabling us to construct a reliable network.

We also compared our S-score with previously pub-
lished large-scale genetic interaction data [8]. Signifi-
cantly interacting gene pairs show obvious correlation
between the two datasets (r=0.64, Figure S1 in Addi-
tional file 3).
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Figure 1 Overview of our strategy to integrate multiple types of data to identify cell cycle gene and infer regulatory pathways.

Functional enrichment analysis in the PCCGs

Functional enrichment analysis was performed on all
GO biological process terms in both positive and nega-
tive parts of PCCGs. We defined the positive part as
those genes having (S-score>2.5 and cc >0.9) or S-

score>6 and the negative part as those genes having

(S-score<-3 and cc>0.9) or (S-Score<-14 and cc>0.85).
We distinguished these two parts because the principles
on which positive and negative genetic interaction are
based may be different for functional analysis, as
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Figure 2 Combining genetic interaction and co-expression data to define co-functional gene pairs. High correlation coefficient (A) and
extreme S-Score both correspond with known co-functional gene pairs in Gene Ontology (GO) (bin size is 1 Correlation and 1.5 for S-Score). (C)
Gene pairs have more extreme S-score and larger correlation of expression have higher enrichment. (D) When combining two criteria, the
enrichment is significantly improved in extreme S-score and large correlation area.
J

discussed in a previous study [10]. For the positive part, consistent with the surprising conclusion of previous
only one functional category, “nucleosome organization,”  work [9] indicating that negative, in contrast to positive,
was enriched under 98% confidence level (q=0.012). For  genetic interactions always occur between genes with
the negative part, five functional categories were overlapping functions.

enriched, including “DNA-dependent DNA replication,” Finally, we also analyzed the functional enrichment of
“chromatin assembly,” “interphase of mitotic cell cycle,” all PCCGs. Three functions, including “chromatin
“cell cycle checkpoint” and “regulation of organelle orga-  assembly,” “regulation of organelle organization” and
nization” (q=0.014, 0.013, 0.015, 0.009, 0.012). All these = “nucleosome organization,” were enriched (q=0.015,
biological processes can either be interpreted as related  0.009, 0.002). This suggests the importance of separating
to the cell cycle process, or just part of it. In addition, PCCGs into two parts for a functional enrichment ana-
KCCGs were found to be mainly involved in “regulation  lysis. Such separation further helps us to understand
of organelle organization,” “regulation of mitotic cell ~how known cell cycle genes, both positive and negative,
cycle,” “interphase of mitotic cell cycle,” “regulation of interact in terms of their functions and also helps us to
cell cycle process” and “cell cycle checkpoint” processes.  find specific functions only enriched in one of the two
Hence, in the negative part, there are more directly co-  parts, such as “DNA-dependent DNA replication,”
functional genes than the positive part. This is “interphase of mitotic cell cycle” and “cell cycle
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checkpoint.” which only enriched in negative part but
not in all PCCGs.

A cell-cycle transcriptional network based on the PCCGs
and KCCGs

In the next step, we searched for main transcription fac-
tors (TFs) regulating both the PCCGs and the KCCGs
based on TF-DNA binding data (Chip-Chip), and then we
constructed the resulting transcriptional regulatory net-
work. In previous studies, Chip-Chip data are usually com-
bined with expression information to construct the
regulatory network. In our method, periodic expression
was required for TF inclusion. Since most genes involved
in the cell cycle process are expressed periodically, it is
reasonable to assume corresponding periodicity of their
transcriptional regulators. In addition, we also assumed
that the regulatory targets of a TF involved in the cell
cycle would be enriched for the known cell cycle gene.
Hence, our transcription network was based on TFs
enriched for cell cycle targets for both potential and
known cell cycle genes combined from the pool of PCCGs
and KCCGs. The significance of periodicity and enrich-
ment of cell cycle genes can be calculated (see Methods
and materials). Both approaches tend to select TFs which
are known to be involved in cell cycle regulation according
to MIPS functional annotation (Figure 3[11]).

Periodicity and enrichment are consistent criteria since
most of the known cell cycle TFs rank at the top in both
cases. However, some TFs are ranked differently (See
Table S3 in Additional file 4). For example, Mcm1 is
ranked 6/130 in the enrichment test (ET); however, it
ranks 124/183 in the periodic test (PT), which means that
its expression does not show periodicity. We know that
Mcml regulates different phases during the cell cycle
[12,13], and its expression will not be periodic. However,
many of its neighboring genes in the transcriptional net-
work are cell cycle genes, making its identification possible
in the enrichment test. Similar to McmI, Skn7 ranks 23
and 114, respectively, in ET and PT. In contrast, HCM1 is
ranked 3 in PT, but 42 in ET. One possible explanation of
this apparent difference is that the PCCGs and KCCGs
only cover a limited part of cell cycle-related genes, and
some targets of HCMI are missing in this set. Other
examples like YHPI are similar to HCM1I. Based on this
analysis, a TF that is significant in either test should be
included. Hence, we use the multiplication of the two
ranks as an index, and we use its rank to evaluate the
priority order (see Methods and materials for details).

To determine how many TFs should be involved, we
examined the coverage rates of TFs. The coverage rate is
evaluated at two levels: the fraction of genes which are
targets of the selected TFs in the PCCGs and KCCGs and
the fraction of gene pairs which are co-regulated by any
one of the selected TFs. In the PCCGs and KCCGs, 232/
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236 genes are involved in the chip-chip dataset (at least
one TF can bind to them), and 77 gene pairs, which are
both genetically interacting and co-expressed, can be
simultaneously bound by the same TF. We noticed that
when the top 25 TFs are selected, most of the 232 genes
and 77 gene pairs (75% and 97%, respectively) could be
covered (Figure S2 in Additional file 5). The cover rate
increases quite slowly when more TFs are selected. We
therefore used these 25 TFs to construct the transcrip-
tional network based on the PCCGs and KCCGs.

Enrichment for cell-cycle genes and TFs

We next determined whether the PCCGs are enriched
with known cell-cycle genes. Among the PCCGs, we cal-
culated the proportion of genes which are annotated to
participate in the cell cycle process (in MIPS database)
and used the hyper-geometric distribution to define the
p-values. About 1/2 of the PCCGs (94/206) were deter-
mined to be known cell-cycle and DNA processing
genes (p = 6 x 107°). We performed the same test to
the selected TFs. Eighteen of them are known to be cell
cycle TFs (p = 5 x 107'", Table S4 in Additional file 6).

Enrichment for CDC28 substrates

Since cell cycle events are controlled by cyclin-depen-
dent kinases (CDKs), we investigated whether Cdkl
(CDC28) substrates were enriched in our PCCGs and
selected TFs. As expected, both of them turned out to
be enriched with CDC28 substrates (Table S5 in Addi-
tional file 7), further supporting the finding that both
PCCGs and selected TFs are cell cycle-related.

Formation of a cooperative transcriptional network by
selected TFs is supported by indirect evidence
We compared the difference between using all TFs in the
database and only the selected 25 TFs to explain indirect
transcriptional relationships between the 25 TFs and 232
target genes. Based on comparing the wild-type and TF
mutant microarray data, we could tell how one TF could
affect the expression of each gene. This data reflects the
transcriptional relationship between the TFs and targets
although the relation could be indirect. This independent
evidence, which describes the transcriptional network,
can be utilized to validate the network we constructed.
Between our 25 TFs and the 232 target genes, there
are 140 indirect TF-target pairs. By using the transcrip-
tional relationships of all 183 TFs in the chip-chip data-
set, 103/140 pairs could be connected within three
steps, although for more steps, quite a few indirect pairs
could be explained (Figure S3 in Additional file 8). We
also tested the fraction of indirect TF-target pairs which
could be connected by only using the relationships of
the 25 TFs. The result (Figure S3) shows that the sub
TF-target network can explain 85.4% (88/103) of the
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by different standards: enriched rank, periodic rank, and their combination (the rank of multiplication of the two ranks). All three methods we
adopted tend to select more cell cycle TFs than random selection (Fraction=37/183=0.2). The enriched test (ET) and periodic test (PT) show
similar power, while ET and PT in combination can increase the power.

indirect relations in the first three steps. This result
illustrates that the 25 TFs form a cooperative transcrip-
tional network which can explain its indirect connec-
tions quite well.

Clustering of the constructed transcriptional network

To understand the structure of our constructed tran-
scriptional network, we used the transcriptional profile
to do cluster analysis (Figure S4 in Additional file 9).
That TFs with similar function regulate similar targets

in the network can be inferred by the presence of sev-
eral established cooperating TF clusters, such as Ace2/
SwiS, Fkh1/Fkh2/Mcml and Swi4/Swi6/Mbpl. In addi-
tion, genes with similar function can also cluster
together and have meaningful explanation in the context
of their TFs. Figure 4 shows three such functional clus-
ters. The first one contains G1/S and S phase functional
genes which are simultaneously regulated by important
G1/S transcriptional regulators, SBF (Swi4/Swi6) and
MBF (Mbp1/Swi6). The second contains DNA
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replication-related genes which are mainly regulated by
Mbpl. The third contains chromosome segregation- and
budding-related genes which are mainly regulated by
Swi4. These results are consistent with our knowledge
about the function of SBF and MBF in the cell-cycle
process. Hence, the structure of our transcriptional net-
work revealed by the cluster analysis could also be used
to infer functional relationships between genes.

Potential cell cycle-related genes
Based on E-MAP, expression, chip-chip, and protein
phosphorelation data and the analysis above, we could

identify PCCGs and know about its structure in tran-
scriptional network (results are summarized in Table S6
in Additional file 10), Among the PCCGs, we will intro-
duce four genes with unknown function (Figure 5).The
first one is YPL158C, which genetically interacts with
PCL9, AMNI and BUD4. These four genes are all regu-
lated by known TFs in M phase (including G2/M and
M/G1). The expression data show that YPL158C, PCL9
and AMNI are simultaneously expressed and that their
peak value of expression is later than that of ACE2 and
SWIS5, which are their transcriptional regulators, as well
as BUD4 (Figure 6A). This is consistent with the
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Figure 5 One network involves four potential cell cycle-related genes with unknown function.
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regulatory network because BUD4, ACE2, and SWI5 are
mainly regulated by FKHI/2 and MCMI, while
YPL158C is mainly regulated by ACE2 and SWIS. They
all act in M phase or early G1 phase. Based on these
observations, YPLI58C is possibly involved in M phase
and co-operates with PCL9, AMNI1 and BUD4. The sec-
ond is YPRI74C, which genetically interacts with CLN3
and potential substrates of CDC28. YPRI74C and CLN3
are co-regulated by MBPI and XBPI, another known
cell cycle TF, which was not selected in the procedure
above because of low periodic rank (rank in PT: 120;
rank in ET: 11; final rank: 34). According to the descrip-
tion in SGA, XBP1I is a member of the SWI4/MBP1
family. Since MBP1 and XBPI do not have significant
periodic expression, we compared the expression of
SWI4 with CLN3 and YPR174C. We found that SWI4
and YPRI174C are significantly co-expressed and that
CLN3 and YPRI174C also show a co-expression pattern,
but with two time points lagging (Figure 6B). It is con-
vincing to consider that YPR174C might be involved in
G1 phase in cell cycle process since all other related
genes are mainly acting in this phase. In addition, based
on the transcriptional analysis above, YPR174C is mainly
regulated by MBPI; hence, it is possibly involved in the
DNA replication process. The third one is YJR054W,
which genetically interacts with BUD4 and potential
substrates of CDC28. In Chip-Chip data, BUD4 is regu-
lated by MCM1. YJR054W is regulated by SWI4 and
SWI6 which are also regulated by MCAM1. In the expres-
sion data (Figure 6C), we found that the expressions of

SWI4 and BUD4 are highly negatively correlated. This
can be explained by the fact that MCM1 participates in
the formation of both repressor and activator com-
plexes, and SWI4 and BUD4 may be regulated by differ-
ent complexes. The expression of YJRO54W is similar to
SWI4 and slightly lags, which supports the regulation
between them. Since BUD4 can influence the next
round of budding and SWI4/6 mainly regulates the G1
phase, YJR054W may be involved in M/G1 phase and
may co-operate with BUD4. The last one is YPR045C,
which genetically interacts with CLN3, albeit negatively,
and potential substrates of CDC28. It is regulated by
HCM1 and ABFI which both regulate S-phase during
the cell cycle process. YPRO45C is negatively correlated
with HCM1 (Figure 6D), which may suggest that HCM 1
suppresses the expression of YPR045C. Considering that
CLN3 is G1 cyclin and activates Cdc28 kinase to pro-
mote the G1 to S phase transition, we suggest that
YPR045C could play a role during G1 and S phase.

Discussion

Our approach integrates the genetic interaction network,
co-expression network, and transcriptional network, and
it performed well in predicting cell cycle genes. Many
previous papers have also discussing integrating these
data source in eQTL analysis. However, comparing to
these approaches, we started from known functional
genes and their E-MAP profiles to build up the network
step by step. In this process, we could see how these
data source could describe the biology network, and
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Figure 6 Expression data analysis for the four cell cycle related genes we predicted. (A) The expression of YJR054W, SWI4 and BUD4 in
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co-expressed, and the peak value of the first group is lagged comparing to the second one. (C) The expression of YPR174C, CLN3 and SWI4 in
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expressed with CLN3. (D) The expression of YPR045C, CLN3 and HCM1 in Pramila-alpha26 experiment. YPRO45C and CLN3 are co-expressed,
while HCM1 is negative correlated with them and is slightly earlier than them.

how they are co-operated together. We illustrate that E-
MAP and DNA microarray could be complementary in
identitying PCCGs, and also the cluster result tells that
how transcriptional relationships could reflect functional
connections of genes in the network.

In addition, there are other types of networks, such as
protein physical interaction networks, which are infor-
mative for the prediction of gene function. However,

because physical interactions annotated in databases are
quite sparse between KCCGs and the 1536 library
strains, we have not performed an analysis of it. We
believe the efficiency of prediction can be increased
when such data are integrated in a reasonable
framework.

Although the current study focused on the cell cycle
process, our approach is not limited, and it can be easily
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applied to other biological processes, given the availabil-
ity of data.

Conclusions

E-MAP technology is a powerful high-throughput tool
to identify novel functional genes which genetic inter-
acted with the known one. By screening forty eight cell
cycle genes crossing 1536 library strains, E-MAP helps
us obtain a large potential cell cycle-related gene set.

Our analysis shows that genetic interaction and gene
co-expression could be complementary for identifying
co-functional gene pairs, and combining them has sig-
nificantly improved the accuracy of the prediction.

TE-DNA binding (chip-chip) and protein phosphoryla-
tion data were used to construct a cell cycle regulation
network. Periodic expressed and being enriched of cell
cycle genes in targets can both be used to identify TFs
which regulate the cell cycle process. When comparing
the cluster result to prior knowledge, we could believe
that our cell cycle transcriptional network is well con-
structed. This network could help to illustrate how
PCCGs are involved in cell cycle process.

Finally, four genes with unknown functions in PCCGs
are laboured. From KCCGs which the four genes are
genetic interacted and co-expressed, we could predict
which phase of cell cycle they may be involved in. In
addition, the time course expression data of them are
consistent with the constructed transcriptional network,
and some of them are substrate of CDK1 (CDC28)
kinase which regulates the cell cycle process in budding
yeast. All these analyses provided strong evidence that
the four novel genes should be participate in cell cycle
related process.

Methods and materials

E-MAP experiment data

The 48 cell cycle genes were manually curate from the
literature, which function in different phases of the cell
cycle process (Figure S5 in Additional file 11). They had
been screened by crossing a 1536 mutant strain library
in budding yeast, and the relative double mutant strains
were selected to obtain the EMAP data. However, the
analytical framework we developed is not affected by the
selection of these genes, and it can be applied to other
processes as well.

Time course expression data and definition of correlation
We use eight time course microarray experiments from
four previously published works to perform the co-
expression analysis [14-17]. The data were downloaded
from the supplementary data from the authors’ website,
and the KNNImpute method was used [18] to impute
the missing value.
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To measure the similarity between the time course
expression profiles of two genes, we used the time-
lagged correlation [19]. For multiple experiments, we
adopted a loose definition for correlation between two
genes which is the maximum time lag correlation score
in all the eight experiments. This means that two genes
showing high correlation in one experiment are consid-
ered to be co-expressed. We can use such a loose defini-
tion because we have already had a stringent constraint
in E-MAP analysis to ensure that the interactions are
reliable, even if two genes only show co-expression in
one experiment.

Comparison with SGA genetic interaction data

The true genetic interactions we used here are pre-
viously published interactions from Biogrid (http://www.
thebiogrid.org). Similar to previous work, for negative
genetic interactions, we also considered interactions
annotated as phenotypic enhancement, synthetic growth
defect and synthetic lethality. For positive genetic inter-
actions, interactions annotated as phenotypic suppres-
sion and synthetic rescue are used. By using S-score
cut-offs, we calculated the number of true positives (TP)
as the number of Biogrid interactions with S-scores
more extreme than the cut-offs. As defined in previously
published work, sensitivity is defined as the fraction of
known interactions.

TP

sensitivity = TP+ EN
+

Precision is defined as the fraction of true interactions
in the set of all predicted pairs.

TP

precision = ————
TP + FP

We also use hyper geometric distribution to calculate
the p-value of precision. The relative results are
reported in Table S2 in Additional file 2.

Definition of p-values of enrichment analysis for
biological process terms in GO

We also use hyper geometric distribution to calculate p-
value to measure the enrichment of one biological pro-
cess in GO annotation as follows:

k ~n-k
CrCNowm;

pi =p(m;,n,M;, N) = me c

Here m; is the number of selected genes which have
the function i; # is the number of selected genes; M; is
the number of test genes which have the function i; N is
the number of test genes.


http://www.thebiogrid.org
http://www.thebiogrid.org

Wang et al. BMC Systems Biology 2011, 5(Suppl 1):59
http://www.biomedcentral.com/1752-0509/5/51/S9

Finally, we use Bonferroni correction to control false
discovery rate in this multiple testing problem and get
the q value.

Transcriptional Regulation and CDC28 substrate datasets
The Chip-Chip data and wild type vs. TF mutant micro-
array data were downloaded from YeastRact (http://
www.yeastract.com[20,21]). Among 183 TFs in our data-
set, 37 are annotated as cell cycle-related in the MIPS
database. The CDC28 substrate dataset was downloaded
from the supplementary data of two previously pub-
lished works [22,23].

Definition of p-values for periodicity and enrichment for
cell cycle genes

The significance of periodicity was previously defined
[24,25]. The data were downloaded from http://www.
cyclebase.org. We also used the hyper geometric distri-
bution to calculate the p-value for the enrichment of
cell cycle targets.

k n—k
Ci;CN-M;

Ck

p; = p(m;,n, M;,N) = Z

k>m;

Here, m; is the neighbor in the PCCGs and KCCGs; n
is the number of genes in PCCGs and KCCGs; M; isT-
F/s targets in the test genes, and N is the number of
test genes.

Multiplication of ranks can represent “or” relationship
between the two methods

Suppose the probability of one TF; not to be enriched
and periodically expressed is p},pf. Then the probabil-
ity that TF; is either enriched or periodically expressed
is. Pry=1- pilpiz. ForTF;, the multiplication of its rank
of p-values (ascending order) rilri2 keeps the order of
the probability; p/p?. Thus the smaller the order of
rlr? is, the larger Pr; of TF; is.

Additional material

Additional file 1: 48 cell cycle query genes This file can be viewed
with Microsoft Excel Viewer.

Additional file 2: Sensitivity and precision of E-MAP genetic
interaction scores This file can be viewed with Microsoft Excel Viewer.
Additional file 3: Correlation between our E-MAP data and
published data This file can be viewed with Adobe Reader.

Additional file 4: Ranks of p-values for top 25 TFs This file can be
viewed with Microsoft Excel Viewer.

Additional file 5: Cover rate when different TFs are selected This file
can be viewed with Adobe Reader.

Additional file 6: Cell cycle genes are enriched in the PCCGs and
TFs This file can be viewed with Microsoft Excel Viewer.

Additional file 7: CDC28 substrates are enriched in the PCCGs and
TFs
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Additional file 8: Indirect TF-Target connection analysis This file can
be viewed with Adobe Reader.

Additional file 9: Cluster results of transcriptional network This file
can be viewed with Adobe Reader. This file can be viewed with
Microsoft Excel Viewer.

Additional file 10: Summary of our analytical results This file can be
viewed with Microsoft Excel Viewer.

Additional file 11: Composition of the signaling E-MAP This file can
be viewed with Adobe Reader.
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