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Abstract

Background: The current genome-wide association (GWA) analysis mainly focuses on the single genetic variant,
which may not reveal some the genetic variants that have small individual effects but large joint effects.
Considering the multiple SNPs jointly in Genome-wide association (GWA) analysis can increase power. When
multiple SNPs are jointly considered, the corresponding SNP-level association measures are likely to be correlated
due to the linkage disequilibrium (LD) among SNPs.

Methods: We propose SNP-based parametric robust analysis of gene-set enrichment (SNP-PRAGE) method which
handles correlation adequately among association measures of SNPs, and minimizes computing effort by the
parametric assumption. SNP-PRAGE first obtains gene-level association measures from SNP-level association
measures by incorporating the size of corresponding (or nearby) genes and the LD structure among SNPs.
Afterward, SNP-PRAGE acquires the gene-set level summary of genes that undergo the same biological knowledge.
This two-step summarization makes the within-set association measures to be independent from each other, and
therefore the central limit theorem can be adequately applied for the parametric model.

Results & conclusions: We applied SNP-PRAGE to two GWA data sets: hypertension data of 8,842 samples from
the Korean population and bipolar disorder data of 4,806 samples from the Wellcome Trust Case Control
Consortium (WTCCC). We found two enriched gene sets for hypertension and three enriched gene sets for bipolar
disorder. By a simulation study, we compared our method to other gene set methods, and we found SNP-PRAGE
reduced many false positives notably while requiring much less computational efforts than other permutation-
based gene set approaches.

Background
The genome-wide association (GWA) studies have been
successful to investigate generic variants associated with
some targeted phenotypes. In general, many GWA
methods only consider association of a single SNP and
provide the list of the most significant SNPs or related
genes due to computational burden.
However, complex diseases often result from com-

pound action of multiple risk factors and therefore the
single-SNP-based analysis may miss the genetic variants
that affect risk effects jointly but have scarce individual

effects. Also, the locus heterogeneity, which implies that
alleles at different loci target the same diseases in differ-
ent individuals, would increase difficulty in replication
of association of a single marker [1]. Furthermore, a
large number of statistical tests may result in high false
positive associations [2]. To resolve these issues, it was
suggested to utilize prior biological knowledge or known
pathway information, and thus to incorporate a set of
related SNPs, which leads a smaller number of tests.
This approach was motivated by the gene set analysis
(GSA), widely used in the analysis of microarray data.
GSA focuses on gene sets rather than individual genes,
and combines weak signals from a number of individual
genes in a set, when individual genes are weakly asso-
ciated with the traits. In this way, GSA increases a
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power of detecting disease-related genes and helps to
interpret underlying genetic background and has been
popularized.
GSA can be classified into non-parametric or para-

metric approach. The most popular non-parametric
GSA method is gene set enrichment analysis (GSEA)
[3]. GSEA uses the enrichment score which represents
whether the members of gene set tend to occur toward
top or bottom in ranked gene list based on a correla-
tion. It permutes the phenotype label and repeats calcu-
lating the enrichment score for the test. This requires
very expensive computational efforts.
On the other hands, the parametric GSA can reduce

computing time by assuming a specific distribution. A
hypergeometric distribution-based test [4,5] is a typical
choice for the parametric method, and binomial, normal,
and chi-square distributions are also widely used [6-8].
There are several prior works for applying GSA methods

to GWA data [1,2,7,9-15]. For simplicity, we call all these
methods as GSA-GWA. We address two issues regarding
GSA-GWA. The first issue is that there has not been a
widely agreed and accepted theory on how to combine the
measures of multiple SNPs into one single gene-level mea-
sure, and moreover how to combine the gene-level mea-
sures into one single gene-set level measure. In original
GSA, the gene-level measure is typically a fold-change or a
correlation to represent the effect of a single gene. In
GWA data, however, it is often required to calculate asso-
ciation measures of genes by combining the SNP-level
measures. The SNP-level measures include p-values, or
chi-square test statistics from the univariate SNP-to-phe-
notype association tests. Once the SNP-level measure is
decided, the gene-level summary statistics are then derived
as the highest SNP-level statistics [10], the sum of SNP-
level statistics [9], or the combined p-value [1].
However, there are some substantial limitations in

current GSA-GWA methods. First, in deriving the sum-
mary statistics the correlation among the SNP-level
association measures has not been taken appropriately
into account which is expected to play an important
role. The SNP-level association measures are usually
correlated because the linkage equilibrium (LD) exists
among SNPs. If this correlation is not correctly adjusted,
the resulting gene-set-level measure would be inflated
[1]. Unfortunately, many GSA-GWA methods have not
considered the LD structures adequately.
Second, the computational burden is heavy. Once hav-

ing the gene-level association measures, it is possible to
apply different GSA methods to get various gene-set-
level statistics and evaluate their performances. How-
ever, as explained later, the majority of GSA-GWA
methods implement non-parametric permutation to cal-
culate the observed significance, which takes a heavy
computing time.

There have been several efforts to resolve these limita-
tions. As the pioneering work of GSA-GWA, GSEA [3]
was extended to GWA data by Wang et al. [10], which
has been implemented in GenGen package [11] It
repeats permutation of sample label and calculation of
gene set statistics 100~1,000 times [2,10,12-14]. This
permutation-based testing can preserve a correlation
among the SNP-level measures, but this is very compu-
tationally expensive in genome-wide scale.
In order to reduce computing time, some GSA-GWA

studies use a parametric test. Peng et al.[1] used various
kinds of the parametric test such as Fisher’s combina-
tion test, Sidak’s combination test, Simes’ combination
test, and a FDR-based test under the independence
assumption of the SNP-level p-values. A GLOSSI
method developed by Chai et al.[9] used Fisher’s combi-
nation test under the assumption of correlated p-values.
Recently, Nam et al. [15] proposed the Z-statistic

method that compares a specific gene-set to others.
This method is the extension of the parametric analysis
of gene set enrichment (PAGE) [7], which is the para-
metric and competitive GSA for microarray data. PAGE
uses the mean of the association measures in a set as a
summary measure and assumes that it follows a normal
distribution by the central limit theorem when the num-
ber of genes is large.
However, these parametric methods including the Z-

statistic method do not consider the LD structures ade-
quately and assume no correlation between SNP-level p-
values. In order to overcome these limitations of current
GSA-GWA, we propose SNP-PRAGE, a SNP-based
parametric robust analysis of gene-set enrichment,
which is based on a simple normality assumption. SNP-
PRAGE estimates the LD information among SNPs
based on haploblock-wise covariance structure to con-
sider the correlation among SNP-level measures without
taking the permutation step.
We compare our method to other GSA-GWA meth-

ods via the simulation study in terms of size, power and
computing time. We also demonstrate SNP-PRAGE
using two GWA data sets: hypertension data of 8,842
samples from the Korean population and bipolar disor-
der data of 4,806 samples from the Wellcome Trust
Case Control Consortium (WTCCC).

Methods
Z-statistic method (GSA-SNP)
Nam et al. [15] implemented the Z statistic method in
their software, GSA-SNP. The negative logarithm of the
mth best p-value within each gene was used as the gene
summary measure. Based on this gene summary mea-
sure, the Z-score was then calculated as gene-set-level
summary. The Z-score was assumed to follow a normal
distribution based on the central limit theorem (CLT).
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In order to meet a normal distribution assumption,
the gene-level order statistic is assumed to have an iden-
tical and independent distribution (i.i.d.). Let nij be the
gene size which is the number of SNPs within the jth
gene in the ith gene set. If we assume a p-value follows
an independent uniform distribution, the mth order p-
value p(m) follows a beta distribution with the mean m/
(nij+1) and the variance m(nij–m+1) /{(nij+1)

2(nij+2)}.
This means that the gene with many SNPs have a lower
p(m) than genes with a few SNPs. (See Figure 1(a)). So p
(m) is not identically distributed over the gene size. To
satisfy the identical distribution assumption, the sum-
mary measures need some modifications.
The gene-level summary measure is also assumed to

have a homogeneous variance. However, the variance of
their summary measures also depends on the gene size.
When the gene size is large, the variance of the sum-
mary measure of the gene tends to be small. This pro-
blem can be easily addressed by modifying Welch’s t
statistic [20] which is designed to handle for the hetero-
geneous variance of the two groups.

SNP-PRAGE
To address these issues of the Z-statistic method we
mentioned above, we multiply p(m) by (nij+1) to have an

approximate identical distribution over the gene size.
The moment generating function of (nij+1)p(m) does not
depend on the gene size nij when p-values are indepen-
dent from each other and nij is large enough. However,
the SNP-level p-values are not independent from each
other because of the LD structure. So (nij+1)p(m) has a
non-identical distribution over the genes (See Figure 1
(b)).
In SNP-PRAGE, we propose using the effective gene

size nij
∗ instead of gene size nij to make sure that the

gene-level summary measure has an approximate identi-
cal distribution over the gene size irrespectively of cor-
relation among p-values. The effective gene size is
computed by using the following equation.

n
Var p

Var p
nij

IID

CORR
ij

∗ = ( )
( )

.

Var pIID( ) is estimated under the independent covar-
iance structure and Var pCORR( ) under the haploblock-
wise compound symmetric covariance structure.
Note that SNP-level measures within a LD block are

correlated. The within-gene covariance matrix can be
estimated by using maximum likelihood (ML) estima-
tion. Among the several candidate covariance structures,
the Akaike information criterion is used to choose the
most appropriate covariance structure [16]. First, we
construct the LD block among SNPs in GWA data so
that any pair of SNPs from different LD blocks is inde-
pendent from each other (r2≤ 0.05) [17]. Second, we
obtain the ML estimator of the covariance matrix within
the LD block for each gene set. The most appropriate
covariance structure is then selected via AIC. In the
Korean GWA data analysis, the LD-block-wise com-
pound symmetric structure (LD-CS) was chosen as the
appropriate covariance structure.

Figure 1 Distribution of gene-level measures over the gene size for hypertension data from Korean population. The x-axis is gene size which is
a number of SNPs within the gene and the y-axis is mean of gene-level summaries with same gene size.
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Within the gene, the highly ranked p-values tend to be
correlated because of the LD structure. Through the
simulation study, we found that the average of the top
m p-values from a gene is a more robust gene-level
summary measure than only the mth p-value (data are
not shown). The following is the final gene-level sum-
mary measure proposed in SNP-PRAGE. In Figure 1(c),
we can see this measure has the identical mean over the
gene size.
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However, our empirical study shows that gene-level
measure t ij

∗ does not have the common variance over
the gene set especially with the small gene set size (See
Figure 2). Thus, we assume that the gene-level measure
has a heterogeneous variance over the gene sets:

t iij i i
∗ ~ ( , )i.i.d for the th set.m s 2

The mean of the gene-level measures in a gene set fol-
lows a normal distribution by the central limit theorem.
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We compute the sample variance distinctly over gene
set and derive the following set-level test statistic:
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The degree of freedom (dfi) is computed by Welch-
Satterthwaite equation [20].

Results
Hypertension data from the Korean GWA study
We used canonical pathways from MsigDB database
[18]. These canonical pathways are curated from other
online database such as BioCarta, KEGG and GO and
so on. MsigDB database contains 639 pathways and
4934 genes.
We applied SNP-PRAGE to GWA data set from the

Korean GWA study which was initiated in 2007 to
undertake a large-scale GWA analysis among 10,038
participants (aged between 40 and 69) of Ansung
(n=5,018) and Ansan (n=5,020) population-based
cohorts [19]. These cohorts, established as part of the
Korean Genome Epidemiology Study (KoGES) in 2001
provide extensive phenotypic data for over 260 traits,
but here we focus on analyses of hypertension. From
the total of 10,038 participants, DNA was available for
10,004, all of whom were genotyped with the Affymetrix
Genome-Wide Human SNP array 5.0 and the Bayesian
Robust Linear Modeling using Mahalanobis Distance
(BRLMM) algorithm. Markers with high missing gene
call rate (>5%), low MAF (<0.01) and significant devia-
tion from Hardy-Weinberg equilibrium (P < 1 × 10-6)
were excluded, leaving 352,228 SNPs. After removing
samples with low call rates (< 96%, n = 401), sample
contamination (n = 11), gender inconsistencies (n = 41),
cryptic relatedness (n = 608) and serious concomitant
illness (n = 101), GWA genotypes from 8,842 individuals
were included. Hypertension phenotype was defined as a
systolic blood pressure (SBP) ≥ 140 mm Hg or a diasto-
lic blood pressure (DBP) ≥ 90 mm Hg. The logistic
regression analysis with an additive model (1 d.f.) is

Figure 2 Variance of gene-level measure over the gene sets. In the left plot (a), x-axis is gene set size (= number of genes in the gene set) and
y-axis is sample variance of gene-level summaries in the gene set. The right plot (b) shows a boxplot of variance of gene-level measures. A red
line represents total sample variance in the data.
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conducted after adjustment for age, sex, and recruitment
area (i.e. Ansung and Ansan). To correct for stratifica-
tion, some methods that infer genetic ancestry, such as
principal component analysis (PCA) and structured
association can be used [21]. In our GWA data, there is
no evidence of population stratification.
We obtained the SNP ID, rs ID, position information

from dbSNP build 128 and gene ID, gene name, and
position information from NCBI build 36. Each SNP is
mapped to a gene closest to it. Only SNPs located
within 500 Kb upstream or downstream of a gene are
considered, because most enhancers and repressors are
less than 500Kb away from genes, and most LD blocks
are within 500Kb [10]. As a result of mapping it covered
60% of all SNPs in our data. If the mapping range is lar-
ger, we could save more SNPs, but the risk of SNP’s
mapping to shared region of overlapping genes also
increases.
Our proposed SNP-PRAGE was used to identify the

significant gene sets associated with hypertension in
Korean GWA data. We used the p-value from the logis-
tic regression as SNP-level association measure for each
SNP. We compared three kinds of gene-level measures,
( ) ( )n pij + 1 1 , ( ) ( )n pij + 1 1 , and ( ) .*

( )n pij + 1 1
In Figure 1, each plot shows the mean of gene-level

measures over the gene size. Figure 1(a) is from the
gene-level measure used in the Z-statistic method. This
measure tends to increase as the gene size increases.
The non-causal gene set which has a larger number of
genes tend to be detected as significant. Figure 1(b)
shows the minimum p-values within the gene multiplied
by (gene size + 1) over the gene size. Figure 1(c) shows
the same plot but uses the effective gene size instead of
the actual gene size. Figure 1(c) is most robust to the
gene size showing the constant pattern.
Next, we checked the homogeneity assumption of var-

iance of gene-level measure ( t ij
∗ ) over the gene sets. Fig-

ure 2 represents whether t ij
∗ has the homogeneous

variance over the gene sets. We can see the sample var-
iances are different over the gene sets especially for the
gene sets with a small number of genes. Thus, it would
be inappropriate to assume the homogeneous variance
assumption for the gene-level measures. SNP-PRAGE
allows the heterogeneous variance of gene-level
measure.
In order to handle multiple testing problems, the false

discovery rate (FDR) was controlled [22]. The q-values
were calculated to guard against the cost of multiple
hypothesis testing [23]. The q-value provides an
expected proportion of false positives among sets with
unadjusted p-values at least as extreme as the current
set of interest. Single SNP association test based on a
logistic regression cannot detect SNP whose q-value is
less than 0.05. Minimum SNP-level p-value is 2.043 ×

10-6 and corresponding q-value is 0.4. Even though
there is no significant SNP-level association in terms of
q-values, multiple SNPs with moderate effects could
affect the phenotype in the gene set-level.
Table 1 and Table 2 summarize the top 5 gene sets

obtained by using the Z-statistic method and SNP-
PRAGE, respectively. In Z-statistic method, minimum q-
value is 0.06, which is not significant if we use 0.05 as
q-value cut-off. SNP-PRAGE yielded 2 significant gene
sets (q-values: 0.01, 0.03) based on q-value 0.05 as cut
off, while Z-statistic method did not yield any significant
gene sets.
The significant gene sets in SNP-PRAGE are

ST_JNK_MAPK_Pathway and ST_ ERK1_ERK2_-
MAPK_Pathway. The MAPK signaling pathway is
known to ultimately result in the dual phosphorylation
and activation of terminal kinases, such as p38, c-Jun N-
terminal kinases (JNKs), and extracellular signal-regu-
lated kinases (ERK1/2 and ERK5), which are related to
pressure-overload–induced cardiac hypertrophy [24].
Esposito et al. [24] mentioned the potential role of ERK
activation in White Blood Cells (WBCs) as a novel
molecular marker to identify uncontrolled human
hypertension. In their study, JNK1 activation was also
significantly induced in uncontrolled hypertension
patients.

Bipolar disorder data from the WTCCC GWA study
We also applied SNP-PRAGE to bipolar disorder (BD)
data from the Wellcome Trust Case Control Consor-
tium (WTCCC) which was established in 2005 to con-
duct GWA analysis for group of 50 research groups
across the UK [25]. In our analysis, 1868 BD cases and
2938 controls were included and markers with high
missing gene call rate (>5%), low MAF (<0.05) and sig-
nificant deviation from Hardy-Weinberg equilibrium (P
< 5.7 x 10-7) were excluded, leaving 354,093 SNPs. The
logistic regression analysis with an additive model (1 d.
f.) was conducted after adjustment for age, sex, region,
and age x region.
SNP-PRAGE yielded 3 gene sets significantly asso-

ciated with BD in terms of q-value at the 5% signifi-
cance level (Table 3), while Z-statistic method did not
detect any significant gene set (Table 4). The significant
gene sets detected by SNP-PRAGE are AGPCR pathway,
DREAM pathway, and CK1 pathway.
AGPCR pathway is G-protein coupled receptors

(GPCRs) signaling pathway which transduces extracel-
luar signals across the plasma membrane. In a genome-
wide linkage survey, the region of chromosome 22q12
containing the GRK3 gene was identified as a suscept-
ibility locus for BD in humans and GRK3 is expected to
play an important role in the regulation of any one of
many GPCRs [26]. DREAM is a multifunctional Ca2
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+-binding protein that can act as a transcriptional
repressor for the prodynorphin gene. Subjects with BD
were reported to show reduction of prodynorphin
mRNA expression in discrete nuclei of the amygdaloid
complex [27]. CK1 pathway is well known to be related
to the circadian clock. Deregulation of this clock is
involved in several human disorders. As a potent CK1ε
inhibitor, a imidazole derivative, PF-670462 could be
used for therapy of cognitive deficits in mood changes
in bipolar disorders [28].

Simulation study
In order to compare the performance of SNP-PRAGE
with other GSA-GWA methods, we conducted the
simulation study. Simulation data was generated based
on a real GWA data. Using the subset of 5 gene sets
from MsigDB canonical pathways, we constituted 5 gene
sets so that each set has 20 genes. Over the gene sets,
we varied the gene size which is the number of SNPs
within a gene in order to study the effect of gene size
on the gene set analysis. For example, one gene set con-
sists of a small number of genes and other gene set con-
sists of a large number of genes. The range of gene size
is from 9 to 49 SNPs. Among 5 gene sets, we chose one
causal gene set and selected 5 causal genes within the
causal gene set. 500 individuals are randomly generated.
For each causal gene, we selected one causal SNP whose
minor allele frequency is about 0.2 for the selected
individuals.
Given the genotype information of causal 5 SNPs and

effect sizes, the case/control status was generated. Let
SNPij denote jth causal SNP in ith individual and b
denotes effect size (=log odds ratio). Effect size of each
causal SNP is given as 0, 0.3, or 0.6.

logit{ ( )}Pr Y SNPi j ij
j

= = ∑1 b

Simulated gene sets and their gene sizes are given in
Table 5. Either set 1, set 3, or set 5 is used as the causal
gene set. For each causal get set, 1000 simulation data-
sets were generated for the effect size 0 to compute type
I error and 100 simulation datasets for effect size 0.3
and 0.6 to compute powers.
In order to determine whether or not the central limit

theorem works for relatively small gene set, we obtained
a null distribution of set-level summary for reduced
number of genes, say 5 and 10. We randomly chose 5
or 10 genes among 20 genes for each set. Figure 3
shows that the set level summary of small gene set fol-
lows a normal distribution when the number of genes is
10 and 20. However, there is a violation of normal
approximation when the number of genes is 5. Thus, we
expect that SNP-PRAGE would work well when the
number of genes is at least 10. For practical applications,
we recommend discarding the gene sets in the analysis
if the number of genes is smaller than 10.
We compared the performance of SNP-PRAGE, Z-sta-

tistic method (Nam et al., 2010), modified GSEA
method (Wang et al., 2007) and GLOSSI (Chai et al.,
2009). We used the GenGen package for GSEA and the
R package for other methods. SNP-PRAGE, Z- statistic
method and GLOSSI use parametric test and GSEA
method use nonparametric test with 1000 permutations.
GLOSSI permute the data 100 times to consider the
correlation of p-values resulting from LD among SNPs.
Type 1 error is defined as the proportion of cases

whose p-values is less than the significance level when
the effect size of causal SNP is zero. Power is defined as

Table 1 KARE result: top 5 gene sets with smallest q-value associated with hypertension phenotype from Z-statistic
method

Gene set No. genes No. SNPs p-value q-value

ST_JNK_MAPK_PATHWAY 36 2410 1.13 × 10-4 6.38 × 10-2

HSA00563_GLYCOSYLPHOSPHATIDYLINOSITOL_ANCHOR_BIOSYNTHESIS 18 700 2.67 × 10-4 6.57 × 10-2

FASPATHWAY 28 1489 8.82 × 10-4 1.44 × 10-1

HSA05060_PRION_DISEASE 117 762 2.42 × 10-3 2.53 × 10-1

HSA04520_ADHERENS_JUNCTION 64 4150 2.58 × 10-3 2.53 × 10-1

Table 2 KARE result: top 5 gene sets with smallest q-value associated with hypertension phenotype from SNP-PRAGE

Gene set No. genes No. SNPs p-value q-value

ST_JNK_MAPK_PATHWAY 36 1701 2.40 × 10-5 9.48× 10-3

ST_ERK1_ERK2_MAPK_PATHWAY 24 1765 1.61 × 10-4 3.16 × 10-2

HSA05214_GLIOMA 52 2301 3.92 × 10-4 5.16 × 10-2

HSA05050_DENTATORUBROPALLIDOLUYSIAN_ATROPHY 14 997 7.97 × 10-4 7.57 × 10-2

EXTRINSICPATHWAY 13 579 9.58 × 10-4 7.57 × 10-2
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the proportion of cases whose p-value is less than the
significant level when effect size of causal SNP is 0.3
and 0.6. Tables 6 and 7 summarize the type 1 error and
power of the methods compared.
Type 1 error and power of the Z-statistic depend lar-

gely on the gene size. When the causal gene set con-
sisted of the genes with 9~12 SNPs, the Z-statistic
method yielded low type 1 error and power. They
tended to decrease, as m increased. We think it is
because the genes with the smaller number of SNPs
tend to have a larger minimum p-value and weaker LDs
than the genes with a larger number of SNPs. When the
causal gene set consists of the genes with 36~49 SNPs,
on the other hand, the Z-statistic method yielded very
high type 1 error and power. They tended to increase,
as m increases. So the results from Z-statistic method
can have high false positive errors, especially when the
gene set has a larger number of genes.
On the other hand, SNP-PRAGE gave the consistent

results irrespective of gene size. As m goes from 1 to 5,
SNP-PRAGE gets a little larger power. Based on these
results, it is desirable to use the mean of top m p-values
instead of the minimum p-value as the gene-level mea-
sure. If the top m p-values are from the SNPs in LD,
the method using the top m p-values can yield larger
power than that using only the minimum p-value. The
computed power based on SNP-PRAGE with appropri-
ate m was similar but slightly larger compared to one of
GLOSSI and GSEA. In SNP-PRAGE, type 1 error is
near 0.05 at the significance level 0.05. Table 8 sum-
marizes the computing time of each method. Z-statistic
method has the fastest computing time, because LD
structure between SNPs is not taken into account. SNP-
PRAGE has the fastest computing time among the

methods which consider LD between SNPs, Specifically,
our simulation results show that GSEA and GLOSSI
methods take 18.5 and 22.1 times, respectively, of com-
putational efforts than SNP-PRAGE.
The single SNP analysis for the Korean GWA data

requires more than 1000 computing time compared to
one set of simulation data. So, it would take a very long
period of time if GSEA and GLOSSI are applied to our
data, because both methods require permutation pro-
cess. Thus, in practice it would not be easy to handle a
large scale GWA data by GSEA and GLOSSI.

Discussion
The power of SNP-PRAGE was computed for the sev-
eral choice of m. When we choose appropriate m for
the gene-level summary, the computed power based on
SNP-PRAGE was similar but slightly larger compared to
one of GLOSSI and GSEA in the simulation study.
Then how can we choose the appropriate m for the
gene-level summary?
The best choice for the number of the top p-values

used in gene-level summary depends on the LD struc-
ture among the SNPs within the causal genes. While we
set a fixed m over the genes for the summary in SNP-
PRAGE, setting different m over the genes according to
each effective gene size can be considered in the future
study.
Our SNP-PRAGE can be extended in several ways. In

this study, we assume the gene sets are independent
from each other. However, the gene sets often share
some common genes because one gene can have multi-
ple biological functions. So handling the overlapped
common genes between gene set is another challenging
issue.

Table 3 WTCCC result: top 5 gene sets with smallest q-value associated with bipolar disorder phenotype from Z-
statistic method

Gene set No. genes No. SNPs p-value q-value

EICOSANOID_SYNTHESIS 15 669 6.85 × 10-4 3.33 × 10-1

HSA04510_FOCAL ADHESION 171 10281 2.50 × 10-3 1.00

HSA01030_GLYCAN_STRUCTURES _BIOSYNTHESIS_1 91 7475 4.01 × 10-3 1.00

BADPATHWAY 17 1045 4.91 × 10-3 1.00

HSA05223_NON_SMALL_CELL_LUNG_CANCER 43 2933 5.49 × 10-3 1.00

Table 4 WTCCC result: top 5 gene sets with smallest q-value associated with bipolar disorder phenotype from SNP-
PRAGE

Gene set No. genes No. SNPs p-value q-value

AGPCRPATHWAY 12 616 5.2 × 10-5 1.45× 10-3

DREAMPATHWAY 13 600 8.5× 10-5 1.45× 10-3

CK1PATHWAY 16 1079 3.1× 10-4 3.52× 10-3

BIOGENIC_AMINE_SYNTHESIS 16 914 1.0× 10-3 8.52× 10-3

BADPATHWAY 21 1045 5.6× 10-3 1.51× 10-1

Lee et al. BMC Systems Biology 2011, 5(Suppl 2):S11
http://www.biomedcentral.com/1752-0509/5/S2/S11

Page 7 of 10



Table 5 Simulated gene set based on MsigDB pathways

Simulated gene set No. genes Gene size Reference gene set

Set1 20 9~12 SNPs HSA04060_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION

Set2 20 12~20 SNPs HSA04010_MAPK_SIGNALING_PATHWAY

Set3 20 20~30 SNPs HSA04810_REGULATION_OF_ACTIN_CYTOSKELETON

Set4 20 26~40 SNPs HSA04510_FOCAL_ADHESION

Set5 20 36~49 SNPs HSA04080_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION

Figure 3 QQ plot of set-level summary with various set size. Under the assumption there is no causal set effect, Figure3 (a), (b), and (c)
show the QQ plot of set summary with set size 5, 10, and 20, respectively.

Table 6 Type 1 error (when effect size is 0) in simulation studies

Causal gene set Gene set size Gene size Significance level Z-statistic method SNP-PRAGE GLOSSI GSEA

m m

1 2 3 4 5 1 2 3 4 5

Set1 20 genes 9~12
SNPs

0.05
0.01

.005

.002
.003
.002

.004

.003
.004
.002

.003

.001
.057
.013

.053

.009
.054
.010

.054

.011
.053
.010

.052

.010
.051
.011

Set2 20 genes 20~30
SNPs

0.05
0.01

.083

.033
.087
.035

.084

.034
.080
.031

.080

.031
.051
.011

.052

.011
.052
.009

.050

.008
.052
.008

.051

.009
.049
.010

Set3 20 genes 36~49
SNPs

0.05
0.01

.430

.144
.641
.294

.760

.429
.864
.634

.891

.671
.047
.008

.049

.010
.050
.010

.050

.011
.051
.011

.049

.011
.052
.012

Table 7 Power (when effect size is 0.3 or 0.6) in the simulation studies

Effect size (=b) Causal gene set Gene set size Gene size significance level Z-statistic method SNP-PRAGE GLOSSI GSEA

m m

1 2 3 4 5 1 2 3 4 5

0.3 Set1 20
genes

9~12
SNPs

0.05
0.01

.81

.78
.81
.75

.74

.66
.67
.55

.59

.38
.92
.90

.92

.91
.94
.92

.95

.92
.95
.91

.92

.89
.95
.91

Set3 20
genes

20 ~30
SNPs

0.05
0.01

.85

.76
.78
.75

.79

.74
.79
.74

.76

.73
.81
.71

.81

.73
.83
.73

.82

.74
.83
.74

.82

.72
.83
.71

Set5 20
genes

36~49
SNPs

0.05
0.01

.98

.95
.99
.97

.99

.97
.99
.99

.99

.98
.74
.61

.74

.62
.75
.62

.75

.62
.76
.63

.74

.60
.73
.61

0.6 Set1 20
genes

9~12
SNPs

0.05
0.01

.84

.80
.83
.75

.78

.69
.69
.60

.62

.48
.97
.94

.98

.95
.98
.97

.98

.97
.97
.96

.98

.96
.98
.97

Set3 20
genes

20 ~30
SNPs

0.05
0.01

.86

.78
.89
.82

.86

.79
.88
.80

.88

.79
.84
.75

.85

.74
.86
.75

.86

.75
.87
.76

.84

.73
.85
.74

Set5 20
genes

36~49
SNPs

0.05
0.01

1.0
.99

.99

.97
1.0
.99

1.0
.99

1.0
.99

.79

.69
.80
.71

.80

.72
.82
.72

.82

.73
.79
.69

.79

.68
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SNP-PRAGE method is based on a normal distribu-
tion and similar to ANOVA (Analysis of Variance)
model. In fact, SNP-PRAGE can be expressed as
ANOVA model with some contrast and modified esti-
mation of variance. As an extension, another well-
defined parametric model can be applied. A nested
ANOVA can be applied to the gene set analysis in
terms of that gene effect is nested within gene-set effect.
A mixed effect model can also be applied by treating
the gene specific effects as random effects. Addressing
these challenges we expect a more powerful GSA-SNP
method in our near future.

Conclusions
Single SNP analysis in GWAS offers only a limited
understanding of complex diseases because the complex
disease often arises from the joint action of multiple
genetic variants. Single SNP analysis can find only a few
most significant SNPs. GSA-GWA increases the power
to detect the genetic variants which have a weak asso-
ciation but a meaningful biological association with a
phenotype .GSA-GWA methods test the significance of
gene set via permutation by generating permuted data
more than hundred times, which requires expensive
computational efforts. The use of a parametric test can
reduce the computing time, because it needs to calculate
the gene set statistic only once.
We compared the performance and computing time of

three parametric test-based GSA-GWAs (Z-statistic
method, GLOSSI, SNP-PRAGE) and one nonparametric
test-based GSA-GWA (GSEA) in simulation study. The
Z-statistic method does not consider the LD and has
the shortest computing time but may have lots of false
positive results because of overestimated gene set statis-
tics when the gene set has many large genes. GLOSSI
uses a parametric test but it needs to permute pheno-
type 100 times for an estimation of the correlation
between association measures and GSEA requires much
more permutations than GLOSSI. SNP-PRAGE reduces
computing time much and has comparable performance
to GLOSSI and GSEA without going through the per-
mutation step.
We found that consideration of LD blocks between

SNPs helps us to deal with the correlation between p-
values more appropriately. The approach based on the
mean of top m p-values provides more consistent and
stable result than the approach based on the top mth p-

value. Multiplying the effective gene size to the mini-
mum p-value for the gene-level summary of SNP-
PRAGE can reduce the false positive errors when the
gene size is large. We expect the SNP-PRAGE to play
an important role in the parametric gene set analysis of
large-scale GWA data.
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