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Abstract

Background: Chromatin immunoprecipitation combined with the next-generation DNA sequencing technologies
(ChIP-seq) becomes a key approach for detecting genome-wide sets of genomic sites bound by proteins, such as
transcription factors (TFs). Several methods and open-source tools have been developed to analyze ChiP-seq data.
However, most of them are designed for detecting TF binding regions instead of accurately locating transcription
factor binding sites (TFBSs). It is still challenging to pinpoint TFBSs directly from ChiP-seq data, especially in regions

with closely spaced binding events.

binding sites compared with existing methods.

Results: With the aim to pinpoint TFBSs at a high resolution, we propose a novel method named SegSite,
implementing a two-step strategy: detecting tag-enriched regions first and pinpointing binding sites in the
detected regions. The second step is done by modeling the tag density profile, locating TFBSs on each strand with
a least-squares model fitting strategy, and merging the detections from the two strands. Experiments on simulation
data show that SeqSite can locate most of the binding sites more than 40-bp from each other. Applications on
three human TF ChiP-seq datasets demonstrate the advantage of SeqgSite for its higher resolution in pinpointing

Conclusions: We have developed a computational tool named SeqSite, which can pinpoint both closely spaced
and isolated binding sites, and consequently improves the resolution of TFBS detection from ChiIP-seq data.

Introduction

Exploring protein-DNA binding events in a genome-
wide manner is a key step in studying transcription reg-
ulation. Chromatin immunoprecipitation (ChIP) [1] fol-
lowed by hybridization to DNA tiling arrays (ChIP-chip)
[2-4] or by next-generation high-throughput sequencing
(ChIP-seq) [5-9] are major techniques for experimentally
profiling the binding events. Due to many advantages of
next-generation sequencing [10,11], ChIP-seq measures
immunoprecipitated DNA fragments at a higher signal-
to-noise ratio than ChIP-chip, and provides the potential
to detect protein-DNA binding locations at a higher
resolution [9]. ChIP-seq is being widely used on large
mammalian genomes to comprehensively map in vivo
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transcription factor (TF)-binding events [6,12] and his-
tone marks [5,13].

In ChIP-seq, DNA molecules are isolated after pro-
tein-DNA cross-linking, and randomly sheared into frag-
ments by sonication, followed by immunoprecipitation.
After cross-link reversal, immunoprecipitated (IPed)
DNA fragments are sequenced with next-generation
sequencing machines, such as the Illumina Genome
Analyzer. Details of the experimental procedures can be
found in recent literature such as [14,15]. Supplemen-
tary Figure S1 in Additional File 1 shows a typical work-
flow of ChIP-seq experiment. The experiment produces
large amounts of short reads measured from 5’end of
each IPed double-strand DNA fragment. Typical read
lengths are 25-36 nucleotides (nt) as in profiling of tran-
scription factors binding events on the human genome
by the ENCODE project [16,17]. The sequenced reads
are then mapped to the reference genome. Unmapped
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reads are excluded in following analyses, and those reads
that can be mapped to multiple locations are also fil-
tered out in most applications. The remaining uniquely
mapped reads (called tags) assigned with genomic posi-
tions and orientations that provide the information of
the starting sites and directions of the IPed DNA
fragments.

Transcription factors recognize and bind to specific
DNA sequences (named motifs, typically about 5~20
base-pair (bp) long) [18,19]. The binding locations are
called transcription factor binding sites (TFBSs). A
major purpose of ChIP-seq experiments with transcrip-
tion factors is to accurately identify TFBSs on the gen-
ome. Several computational methods and tools have
been developed to detect TFBSs from ChIP-seq data.
The most straight-forward method is to count tags
along the genome and detect TFBSs or binding regions
that cover them with highly accumulated reads (e.g.,
[6]). However, as ChIP-ed DNA fragments are of
~150-300-bp long but the sequencing reads are much
shorter, the location detected in this way will be very
imprecise. A better strategy is to extend each tag to a
certain length (usually the estimated fragment length)
along its strand orientation to generate “pseudo frag-
ments” (composing the “extended set” or “XSET” [20]).
Such pseudo fragments are then profiled along the
genomic coordinates, and TFBSs can be detected from
profile peaks. Methods taking this type of strategy
include PeakSeq [21], FindPeaks [22], F-Seq [23],
GLITR [24] and HPeak [25]. The extension step works
similar to a low-pass filtering in signal processing,
which therefore results in a low resolution in detection
of peaks. More sophistical methods were developed to
improve the resolution of TFBS detection without
extending tags [26]. For example, CisGenome [27],
QuEST [28], MACS [29] and USeq [30] take similar
strategies to shift both forward and reverse tag profiles
toward the center to form an integrated tag profile for
peak calling; SISSRs [31] calculates read counts of the
forward and reverse strands as positive and negative
signals, respectively, and takes the transition point as
the candidate site; spp [32] takes into account the sym-
metry of the two-stand tag profiles and detects paired
peaks. Pepke et al [26] gives a comprehensive review
on these methods and discussed the need of peak
deconvolution when there may be multiple binding
sites in one peak region. Laajala et al. [33] and Wil-
banks & Facciotti [34] conducted series of comparative
experiments with most of the open-source methods.
They observed no substantial difference between the
compared methods in the sensitivity and specificity of
binding region detection, but noticeable divergence
was observed in their spatial resolutions for precisely
locating binding sites.
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In many cases, TFs can bind to a genomic region at
closely spaced adjacent sites. Pinpointing TFBSs from
ChIP-seq data is still quite challenging in such cases.
For example, taking the case of two adjacent binding
sites as an example, many existing methods tend to
identify a single site around the two binding sites’ cen-
ter, or report one region covering both sites [26], leaving
binding site detection for a secondary step of sequence
motif analysis. Due to the possible indirect binding of
some TFs and the influence of other factors such as the
chromatin structure, there are cases that TFBS sequence
motifs cannot be found in the detected region and also
cases when sequence motifs do not imply real binding
events. There is a need to develop methods that can
locate multiple adjacent TFBSs from ChIP-seq data at a
higher resolution [26]. In this paper, we developed a
method called SeqSite to pinpoint TFBSs for both iso-
lated and close adjacent binding events from ChIP-seq
data. The method includes a second step for locating
binding sites by modeling the tag density profile after
binding regions are detected in the first step. A series of
simulation experiments were conducted to study the
property and performance of the method. The method
SeqSite was applied on three published datasets of tran-
scription factors GABP [28], STAT1 [21] and NRSF
[28]. Experiments show that it performs better than or
similarly with existing methods on the accuracy of bind-
ing site detection, but SeqSite can locate binding sites at
a higher resolution and can pinpoint adjacent binding
sites even if they are as close as 40-bp from each other.
Recent publications reported three new methods, CSDe-
conv [35], PICS [36] and GPS [37], for similar questions.
We compared them and some other classical tools with
SeqSite in our experiments and discussed the character-
istics and advantages of our method. The software tool
SeqSite implemented in C/C++ code is freely available
at SeqSite website [38].

Results

Characteristics of ChIP-seq data for multiple adjacent
TFBSs

In the ChIP-seq protocol with Illumina Genome Analy-
zer [14,15], the ChIP-ed DNA fragments are sequenced
from either end randomly. So, mappable short reads can
be mapped to the reference genome on the forward or
the reverse strand with equal probability. Figure 1A
shows a typical tag distribution resulting from a single
binding event. Since ChIP-ed DNA fragments always
cover binding sites, the forward tags are not expected to
start from downstream locations of a binding site, and
(the right-most positions of) the reverse tags are not
expected to start from the upstream regions. Besides,
DNA fragmentation is operated after protein-DNA
cross-linking, so these cross-linked regions cannot be
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Figure 1 The evidence for clustered adjacent binding sites. (A)
The sketch illustrates the forward and reverse tag pileups and
smoothed tag profiles resulting from an isolated binding site. (B)
The sketch shows the forward and reverse tag pileups and
smoothed tag profiles resulting from two nearby binding sites in a
binding region. It can be seen that the overlapping of the forward
and reverse tag pileups is mainly due to adjacent binding sites in
the binding region. (C) A snapshot from CisGenome Browser
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showing an example of the overlapped forward and reverse tag
pileups. The example is from the genomic regions of
chr22:29885800-29886400 of the GABP ChlIP-seq data. Also
illustrated are the three distances (d;, d» and ds) defined in the
main text. (D) The average values and standard deviations of d, d,
and ds based on top 5% dense tag-enriched regions of GABP,
STAT1 and NRSF ChIP-seq data, respectively.

sheared. As a result, in ideal cases, sequencing tags on
the forward strand should all start from upstream loca-
tions of a binding site, and those on the other strand
should all start from downstream locations in a sym-
metric manner. For an isolated binding site, the region
containing forward tags should not be overlapped with
the region piled-up with reverse tags (Figure 1A). How-
ever, this is not always the case observed on many real
ChIP-seq datasets. For example, we observed many
overlapping regions from the GABP ChIP-seq dataset
(see Methods for descriptions of the dataset). Figure 1C
shows an example. Besides the effect of possible noises,
the major reason for this phenomenon is the existence
of multiple binding sites close to each other in a short
region. Figure 1B illustrates how two adjacent binding
sites form the overlapped tag signal.

We further demonstrated the ubiquitous phenomenon
of closely spaced binding sites by investigating ChIP-seq
datasets of transcription factors GABP, STAT1 and
NRSF (see Methods). We used a tag-clustering method
to get pairs of neighboring tag clusters on the specific
strands, and defined tag density as a measure of the sig-
nal intensity to rank all tag clusters (see Methods for
details). We focused on genomic regions ranked high to
ensure that they are truly binding regions. We defined
three variables to characterize the overlapping situation
of tag stacks on the two strands. As shown in Figure
1C, variable d; measures the genomic distance between
the density centers of two tag stacks on opposite
strands. Variable d, measures the lag after the center on
the forward strand (the distance from the center to the
ending of the tag stack along the sequencing direction)
and d3 measures the lag on the reverse strand. We esti-
mated the boundary of a tag stack by comparing with
the background signal (see Methods for details). Figure
1D shows average d;, d, and d3 with standard deviations
in the top 5% densest tag clusters in each dataset, and
Supplementary Figure S2 in Additional File 1 provides
the results based on other parameter settings. We can
see that the averages of d, and d3 in all three datasets
are larger than the averages of d;, which indicates that
many TF-binding regions must contain multiple adja-
cent binding sites.

The observed phenomenon is consistent with previous
findings that around half of the binding regions
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identified by existing methods actually contain two or
more associated binding motifs [28,31].

The SeqSite method

We developed a method called SeqSite for detecting
binding regions and pinpointing closely spaced adjacent
binding sites in detected binding regions. It first aggre-
gates tags to form tag clusters on each strand. Then the
Poisson models with dynamic parameters are adopted to
assess the statistical significance of tag enrichment com-
paring to the control data or local background. SeqSite
filters out tag clusters that are not significant according
to a given false discovery rate. Tag clusters with fewer
than 10 tags or shorter than 100-nt are also excluded,
for those tag cluster regions are probably artifacts [26]
and too noisy for the secondary binding site detection.
The remaining tag clusters are reported as TF binding
regions with refined boundaries. This is the first step of
the method.

The second step of SeqSite detection is to pinpoint
binding sites in putative binding regions. SeqSite first
estimates the average length L of ChIP-ed DNA frag-
ments in the dataset using a gamma distribution and
models the tag density profile of a binding site. In a
given tag sets, we use the starting point of each tag (5'-
end of each read) to represent the tag, avoiding the
effect of unwanted low-pass filtering of sequence reads,
and get tag profiles in binding regions. A least-squares
model-fitting strategy is then applied on each binding
region to detect the most likely binding sites. The pro-
file is fitted with the tag signal in a scanning window of
width W. W is set to be close to but smaller than L to
take into account the effect of fragment size selection in
ChIP-seq protocol [14,15]. A goodness-of-fit is calcu-
lated at each genomic location when the window is slid-
ing in the region, resulting in a goodness-of-fit curve.
Strong peaks on the curve indicate possible binding
sites, and the slope in the fitting associated with the
most likely site is use to indicate the relative binding
affinity of the site. The detection procedure is applied
on both strands and results are merged by some rules.
Figure 2 illustrates the principle of the SeqSite method
and demonstrates the detection of multiple adjacent
binding sites in a binding region. Details of the method
are described in the Methods section.

Supplementary Figure S3 in Additional File 1 gives the
diagram of the whole system. We implemented SeqSite
in C/C++ code with efficient algorithm design. The soft-
ware tool SeqSite can be downloaded for free academic
use at SeqSite website [38].

Binding site detection on simulated data
We conducted a series of simulation experiments to
study the property of the proposed method, as true
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answers are not available for real ChIP-seq data. Here
we focused on the locating of multiple binding sites
within a binding region, i.e., the major purpose is to see
how well SeqSite performs in pinpointing binding sites
given binding regions. Different sequencing depths and
the distance between two adjacent binding sites were
simulated. We set the average DNA fragment size to be
120-bp in the simulation, according to the estimated
values in the GABP and NRSF datasets (Table 1).
Details of the simulation procedures are described in
Methods. Figure 3A shows an example of the simulated
data that contains two binding sites in a binding region.
Each experiment with the same setting was repeated
100 times to estimate the variance of the results.

We first studied the effect of sequencing depth on the
resolution of detecting the binding site locations. We
generated 10 to 200 tags for each binding region on one
strand, which covers most (82.8%) of the situations in
the real data (Supplementary Figure S4 in Additional
File 1 shows the distribution on the real data). Figure 3B
shows the distribution of the detected binding sites at
different sequencing depths for a single binding site. We
can see that the detected binding sites center at the true
binding site location. Increasing the sequencing depth
can improve the resolution but SeqSite can work rea-
sonably well even when the coverage is low. When there
are more than 70 tags in the binding region on one
strand, most (>97%) of detected binding sites are within
5 bp from the true binding site. When the coverage
drops to only 10 tags on each strand, the variance in the
estimated site locations becomes larger, but still in 78%
of the experiments, the distance between the detected
position and the true binding site is less than 10 bp. For
cases when there are two adjacent binding sites apart by
60 bp as the example shown in Figure 3C, we observed
that the SeqSite successfully distinguish two binding
sites except for the lowest sequencing depth, although
the locations tend to be closer to each other than the
true sites. The effect of sequencing depth is minor
unless it is too low. Except for the cases with only 10
tags in the region, more than 70% of the detected sites
are within 20 bp from the true binding sites.

We then fixed the number of tags in each binding
region as 100 tags on each strand and experimented on
different distances between two adjacent binding sites,
from 10 bp to 100 bp. As shown in Figure 3D, the pro-
posed method can successfully identify the two sites
when their distance is as close as 40 bp. The further
apart the two sites are, the more accurate the detections
are. When the distance is 40-60 bp, 75.7% of the
detected sites are within 20 bp around the true sites on
average; when the distance increases to more than 60
bp, 77.1% of the sites are within 10 bp on average.
When distance is less than 20 bp, the method tends to
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Figure 2 Modeling tag density profile and the detection of binding sites. (A) Shown is the tag density profile resulting from a single
binding site. The binding site is at position 0. In this example, the average DNA fragment length is 120 bp, and the peak of this curve is at the
position 49 bp from the assumed binding site. We use only part of the tag density curve (the right side of the red line) when detecting binding
sites. (B) Shown is the schema of binding site detection. Given the modeled tag density profile, a least-squares fitting strategy is adopted to
detect binding sites for both the forward and reverse strands. We take the goodness of fit as the criterion to identify binding sites, and the
associated regression slope as the relative binding affinity. The two DNA strands are processed separately and the results from the both strand

report one binding sites at approximately the center of
the two true binding sites. Also, considering the length
of binding motifs, it is less likely that the same TF can
bind to two motifs too close to each other. Therefore,
we set the SeqSite software to combine two identified

Table 1 Summary of the SeqSite results on the three
ChlIP-seq datasets at FDR 10%

TF L # BRs # BSs # BRs with multi-BS (%)
GABP 114.6 12,875 28,846 9,786 (76.0)
STAT1 194.6 39,222 82,104 23914 (61.0)

NRSF 107.0 3,786 6,047 1,948 (51.5)

L: average DNA fragment size (bp) estimated; BR: binding region; BS: binding
site.

sites into one if they are closer than 20 bp from each
other (see Methods).

Application to the GABP, STAT1 and NRSF ChIP-seq
datasets

We applied SeqSite to three ChIP-seq datasets: two of
human transcription activators GABP [28] and STAT1
[21] and one of the human transcription repressor NRSF
[28]. Table 1 summarizes the detected binding regions at
FDR 10% and individual TFBSs. Among all the detected
binding regions, SeqSite identified 9,786 (76.0%), 23,914
(61.0%) and 1,948 (51.5%) regions that contain multiple
binding sites in the GABP, STAT1 and NRSF data, respec-
tively. The average fragment lengths that were estimated
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from data are also given in the table. In more details, Fig-
ure 4A-C give the histograms of the number of binding
regions with 1, 2, 3, 4 and >4 binding sites for the three
datasets. A significant portion of the genomic binding
regions of these TFs contain more than one binding sites,
which explains why the forward tag stacks overlap with
the reverse tag stacks. On GABP dataset, we found that
most of the binding regions have two or more adjacent
binding sites, which is consistent with the literature that
GABP binds in a more distributed manner [33]. Several
previous publications based on biological experiments
have reported that GABP-targeted genes have more than
one adjacent binding motifs [39-41], and it has been
shown that all the potential binding sites can be func-
tional. For the other two TFs, our results show that the
multi-binding events also ubiquitously exist across the
genome.

As the true answers of accurate binding sites are not
available on real data, we adopted the strategy to use the
occurrence of known TF-associated motifs as an indicator
of true detection and use the distance between the

detected binding sites and motif centers as an indicator
for the detection resolution. GABP, STAT1 and NRSF are
all well-studied transcription factors. Previous studies on
these ChIP-seq data have shown that many detected bind-
ing regions are associated known canonical motifs of these
factors [6,20,21,28,31]. We extracted the position weight
matrixes or PWMs of these binding motifs from the
TRANSFAC database [42] and studied their occurrence in
the detected binding regions. The sequence LOGOs of the
TF-associated motifs are shown in Supplementary Figure
S5 in Additional File 1. GABP is associated with a 12-bp
canonical motif [28]. STAT1 is associated with three
motifs under the data-generation condition: the GAS
(gamma-activated sequence) motif and the ISRE motifs
(ISRE-3 of 15 bp and ISRE-2 of 14 bp) [20,31]. We took
these motifs together to scan for their occurrence in the
STAT1 binding regions. NRSF is associated with a 21-bp
canonical motif, and its left and right half-site motifs can
also be enriched in detected binding regions [6,28,31].
Therefore, we scanned for the occurrence of both the
canonical motif and half-site motifs in the detected NRSF
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binding regions. In the scanning, we used MAST [43] to
identify the sequence matches with P-value < 0.001.

Two examples of the detected binding regions are
given in Figure 4D,E to demonstrate the performance of
SeqSite. SeqSite detected two adjacent binding sites at
each promoter region of genes ITGB2 (also known as
CD18) and TOMM?22. We can also find two close
occurrences of the corresponding sequence motif in
each region. It has been reported that the two close
GABP binding sites at gene ITGB2 are both essential for
transcriptional activation [39-41]. More examples of the
three datasets can be found in Supplementary Figures
S6, S7 and S8 in Additional File 1.

Comparison with other methods on binding site
detection accuracy

We compared the performance of SeqSite on binding
region/site detection with other existing methods. Three
classic methods QuEST [28], MACS [29], SISSRs [31]
and two recent methods GPS [37] and PICS [36] were
compared. We chose FDR at 10% for MACS and

SISSRs, Q-value cutoff at 0.01 for GPS, and used the
default parameters for other programs (see Methods for
details), and applied them to the three ChIP-seq datasets
for detecting genome-wide sets of TF binding regions
and/or TFBSs. Supplementary Table S1 in Additional
File 1 summarizes the results.

We first compared SeqSite with other tools on the
accuracy of detected binding sites. Since no true answers
are available on the real data, we adopted the motif
occurrence as an indicator. Although it must under-esti-
mate positive detections, this evaluation is fair for any
particular method. Besides, the detected binding sites
and sequence motifs may not necessarily overlap with
each other so we extend binding sites to standardized
binding regions or SBRs for comparison. We did not
directly use the binding regions provided by some of the
tools compared, because the sizes of those regions were
not comparable (Supplementary Figure S9 in Additional
File 1). A SBR is a 200-bp genomic region centered at
the detected binding site (SeqSite, SISSRs, GPS and
PICS) or the binding region summit (QuEST and
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MACS, as did in literature [34]). We define the positive
detection rate or PDR as the fraction of SBRs with cor-
responding motif occurrence.

The PDRs of each tool compared are shown as a func-
tion of the increasing number of ranked SBRs according
to their statistical significance (Figure 5). The proposed
method SeqSite preformed better than others (GABP)
or in the top class among all methods compared
(STAT1 and NRSF). On the three datasets, the PDRs of
most methods were high (>90% for GABP and NRSF;
>80% for STAT1), indicating the canonical motifs of
corresponding TFs were highly conserved and most
tools performed very well on detection specificity.
Except for GPS on STAT1 and NRSF datasets, the PDR
curves went down when more SBRs were included, sug-
gesting the significance metric of those methods, includ-
ing SeqSite, were well defined to rank binding sites
detected. Besides, we also investigated the overlapping
of SBRs given by different tools (Supplementary Tables
S$2-S4 in Additional File 1).

Comparison on binding site detection resolution

The major merit of the proposed SeqSite method is that
it can detect binding sites at a high resolution, and can
locate closely spaced binding sites. We demonstrated
this merit by comparing SeqSite with other tools on
detection resolution.

To assess the resolution of the method on the real
data, we analyzed distances from detected binding sites
to their nearest binding motif centers in the true-posi-
tive SBRs. Supplementary Figures S10-S12 in Additional
File 1 show the histograms of the distances on each
dataset. For better comparison, we also measured the
fraction of the SBRs with one detected binding site
within 10 bp of the nearest motif center. The results are
shown in Figure 6. SeqSite outperforms all other meth-
ods on the GABP and STAT]1 data by a noticeable mar-
gin, and the investigated fractions by SeqSite on the
GABP data (ranging from 0.51 to 0.78) are higher than
those on the STAT1 data (ranging from 0.31 to 0.48).
Supplementary Figures S6 and S7 in Additional File 1
give a few examples showing the binding sites detected
by SeqSite and other methods. These examples indicate
that the other methods usually reported the centers of
two adjacent binding sites as their putative TFBSs, and
therefore lost some resolution. The pinpointing step
based on tag-profile modeling does improve the resolu-
tion for detecting both single and multiple binding sites.

On the NRSF data, however, we found that SeqSite’s
performance is behind that of MACS, QuEST and
SISSRs, although the investigated fractions given by Seq-
Site (all above 0.51) are higher than those on STATI.
To understand why this happens, we looked into some
examples in more details. We found that there are cases
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where SeqSite gives reasonable multiple binding site
detections but doesn’t gain on the resolution measured
in this way. For example, in Supplementary Figure S8D
in Additional File 1, the long overlap between tag clus-
ters on both strands indicates there must be two adja-
cent binding sites, which is also cross-validated by the
occurrence of the canonical sequence motif. However,
because the two motif centers are too close to each
other and the canonical motif is relatively long, the two
binding sites identified by SeqSite do not result in
shorter distances to each motif center, compared with
the distance from the single site in the middle to the
nearest motif center. We noticed that the recent meth-
ods PICS and GPS also perform less well on NRSF data.
This reflects that there must be different patterns in
NRSF binding that need further investigations compar-
ing to the other TFs.

Discussion

The interaction of transcription factors and other pro-
teins with genomic DNA is a major knot in the complex
system of molecular regulation in cells. Profiling DNA
binding sites of these factors at a high resolution is an
important step in understanding their functions and reg-
ulation networks. It has been reported that some tran-
scription factors have multiple binding sites on DNA at
close locations [39-41,44-46]. We developed the method
SeqSite that can detect such clustered multiple binding
sites at a high resolution from ChIP-seq data. Experi-
ments on the GABP, STAT1 and NRSF ChIP-seq data
show that a large portion of TF binding events are asso-
ciated with multiple adjacent binding sites. In recent
years, understanding on the function of transcription
factors has been widened. They not only play the role of
turning on or off their target genes, but also regulate
the gene expression in a quantitative manner. Pinpoint-
ing the details of their binding on DNA is crucial for
better understanding of the mechanism.

Many existing work depends on a secondary step of
sequence motif analysis for locating binding sites in
detected binding regions. However, due to the complex-
ity of the protein-DNA interaction mechanism such as
the involvement of co-factors, sequence motifs are not
sufficient for locating binding sites precisely [47-49]. It
is also widely observed that many genomic regions with
sequence motifs are not bind or not always bind by the
corresponding proteins [48,50]. Chromatin-IP followed
by next-generation sequencing provides protein-DNA
binding tags at a single-base resolution. By modeling the
ChIP-seq signal, methods like SeqSite provide a direct
way in pinpointing protein binding sites accurately. The
detected high-resolution binding sites can also help ana-
lyze sequence features of binding sites where no known
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motif can be found, and therefore identify possible co-
factors.

The current version of SeqSite needs to estimate the
fragment size in modeling tag profiles from a binding
site. This estimation is assumed to be the same for all
binding sites in the same experiment. However, there is
a randomness in the size of ChIP-ed DNA fragments
from different genomic regions with respect to nucleo-
some position [50]. This partially explains cases where
SeqSite may lose resolution and points to a possible
direction for further improving the method. Integrating
ChIP-seq data with other kinds of data such as nucleo-
some positioning data would be a promising approach
to improve the resolution of binding site pinpointing
and to better understand the data. Another possible
improvement is utilizing multi-hit reads by some prob-
abilistic methods such as Gibbs sampling [51], or inte-
grating multi-hit reads in the model-fitting procedure in
SeqSite.

Methods

ChIP-Seq datasets

The three TF ChIP-seq datasets used in this study are:
human transcription activator GABP (growth-associated
binding protein) in Jurkat T lymphoblast cell [28], tran-
scription activator STAT1 (signal transducers and acti-
vator of transcription) in interferon y-stimulated (IFN-y)
HeLa S3 cell [21], and transcription repressor NRSF
(neuron-restrictive silencer factor) in Jurkat T lympho-
blast cell with a polyclonal antibody [28]. We down-
loaded the GABP and NRSF datasets from [53], and the
STAT1 data from [54]. The three datasets were all
sequenced by the Illumina Genome Analyzer, using sin-
gle-end sequencing with read length of 25~27 nt. All
the datasets provide mapped results of short reads
against the human genome (hgl8 or NCBI build 36),
and total numbers of mapped read-tags are 7,862,231,
26,731,492 and 8,813,398 for GABP, STAT1 and NRSF,
respectively. The corresponding control data for GABP
and NRSF are of 17,404,922 tags, and the control data
for STAT1 contain 23,435,631 tags. Unmapped reads
and non-uniquely mapped reads are excluded in this
study.

Detecting tag-enriched regions by tag clustering
Known from the ChIP-seq protocol, tags will be
enriched around binding sites of the studied protein.
Usually, in large mammalian genomes such as the
human genome, there are lots of desert regions with no
or few tags, so efficient ChIP-seq analysis algorithms
first filter out those regions, only leaving tag-enriched
regions for further analysis.

Instead of scanning the genome with a sliding window
for tag-enriched region, SeqSite clusters nearby tags
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within d-bp (d = 30 by default) to form tag clusters, and
the corresponding regions are regarded as tag-enriched
regions. This avoids the extra step for merging neigh-
boring enriched regions with a fixed sliding window-
size. To remove experimental noise and/or artifacts [26]
and to avoid possible false positives in binding site
detecting, SeqSite filters clusters with fewer than 10 tags
or of less than 100-nt length. We noticed on real data
that there are some binding regions with jagged tag pro-
files, which will poison binding site detection, so SeqSite
filters those short tag clusters by setting the cluster
length threshold (100-nt).

Hypothesis testing for tag enrichment

To assess whether a clustered tag-enriched region is
caused by random noise, we carry out a hypothesis test-
ing for each region. Researchers originally adopted Pois-
son distribution to model tag distribution along the
genome [13,29], but recent reports indicated that the
tags are not uniformly distributed along the genome due
to biological and technical biases including local chro-
matin structure [29], DNA amplification and sequencing
bias [55], and sequenced read mappability [21]. There-
fore, we use a dynamic parameter Ay, for the Poisson
model, which is modified from MACS [29]. We define
Alocal for each tag cluster without control data as:

Mocal = Max(Apg, Asi, Aok )s

where Apg is the background parameter estimated
from the whole genome, A5, and A;ox are parameters
estimated from the 5-kb or 10-kb window centered at
the middle position of each tag-enriched region in the
ChIP-seq data itself. For each tag cluster with control
data, Ajgca is defined as:

llocal = maX(ABC’ lcomrol X Rcomro]Zchip' A’conlrolilk X RconlrolZchip)'

where Aconirol is estimated in the control data from the
same region where the tags are enriched in the ChIP-
seq data, Acontrol 1k iS estimated from the 1-kb window
centered at its midpoint, and Reontrol2chip i the normali-
zation ratio for control against the ChIP-seq sample. As
Alocal also reflects the regional noise level, only the bases
with tag density profile above the noise level are
regarded as binding region. Thus, we can define
detected binding regions’ boundary accordingly.

To calculate Apg , we use the efficient genome size as
80% of the whole human genome when the short read
length is ~30 nt, as did in SISSRs [31]. In SeqSite, we
set 2.4 G-bp (0.8x 3 G-bp) as the default effective gen-
ome size for the human genome. But as the read length
changes, the effective genome size should be changed
correspondingly [21].
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Correction for multiple testing

We follow Benjamini and Hochberg [56] in adjusting
the Poisson P-values to correct for occurrence of false
positives. All tag clusters which are tested for statistical
significance are ranked by P-value from most significant
to least. Thus, the Q-value for each tag cluster is given
by:

Count

Q-value = P-value X ,
Rank

where Count is the total number of tag clusters tested,
and Rank is each p-value’s rank from the smallest to the
largest. Tag-enriched regions are then selected by a Q-
value threshold (the given FDR) instead of a P-value
threshold.

The density of tag-enriched regions

For any tag-enriched region, we define its density as the
total tag count divided by the length of this region. We
sort all tag-enriched regions by density from high to
low. A proportion (say 5%) of top-ranking regions are
used for estimating the DNA fragment size, which is a
parameter of our tag profile model, and also used for
investigating the distances in Figure 1. For example, in a
mammalian genome, there are about 10,000 binding
regions for a TF. By default, we choose the top 5%
(~500 regions) with the strongest tag signals to achieve
a reliable and robust estimation. Other choices on the
parameter of top-percentage were also examined (for
fragment size estimation, see d; in Figure 1D and Sup-
plementary Figure S2 in Additional File 1).

DNA fragment size estimation

The estimation of average DNA fragment size is a key
step in modeling tag profiles. This is done within the
densest tag-enriched regions in the data. For each
selected tag-enriched region, the distance between the
density centers of the forward tag cluster and the
reverse tag cluster is calculated (d; in Figure 1C). The
average distance is taken as the estimate of average
DNA fragment size. If the DNA fragment length mean
is known from the experiment protocol, one can set this
parameter with this value instead of estimating. But it is
recommended to estimate this parameter from data [26].

Modeling the tag profile

Following previous work on ChIP-chip studies [57,58],
we assume that the ChIP-ed DNA fragment size (length)
[ in an experiment follows a gamma distribution p(J) =
Gamma(l|a,B). Based on our observation on the real
data, we set the shape parameter & = 10. In binding site
detection (see below), the largest maximum R* value in
least-squares fitting is achieved when o = 10, comparing
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with other « values (1, 2, 5, 20, 50, and 100) on both
the GABP and NRSF ChIP-seq datasets. The other para-
meter can be written as o8, which is the mean of the
gamma distribution, and can be estimated as the average
DNA fragment size L from data.

Note that each DNA fragment has two arms around a
single binding site. We denote g(m) as the probability
that an arm of the DNA fragment is of length m. Since
the convolution of two identical gamma distributions is
a gamma distribution with twice the mean [58], g(m) is
also a gamma distribution but with half the mean of p({)
(Supplementary Figure S13A in Additional File 1, L =
200). By summing over all fragments of at least length
d, we obtain the fragment coverage function at the posi-
tion d nt from the binding site (Figure S13B in Addi-
tional File 1):

ffrag (d) =

D
I=d

1
D atmyati—m),

m=d

where D denotes the maximum of /, decided by the
fragment size selection in the ChIP-seq protocol. We
use the sequencing starting positions (the 5’-ends of
sequenced DNA fragments) to represent the corre-
sponding tags, and get the tag density as (Figure S13C
in Additional File 1):

D—d
flag (d) = ffrag(d) - ffrag(d + 1) = q(d)z q(m)

m=0

From Figure S13D in Additional File 1 we can see that
for a wide range of d <L <D, we have qug):l, and thus
we can ignore the multiplicative terfa’ ) aom. For the
simplicity of computation, the tag density at the position
d nt (d <L) from the binding site can be approximated
by (Figure S13C in Additional File 1):

frag(d) = q(d).

Detecting binding sites by least-squares fitting
Given the modeled tag density profile from a binding
site, we adopt a least-squares fitting technique to iden-
tify TF binding sites. In this case, the least-squares fit-
ting strategy measures the difference between the
theoretic tag profile and the observed signal. A sliding
window is adopted to scan each tag-enriched region,
and sites supporting the least difference are reported as
binding sites.

In the least-squares fitting, the independent variables
are x; = frag (i — 1), i = 1,2,...,W, where W is the width
of the sliding window we will use to scan for binding
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sites. We set W as less than the average fragment length
L, which makes the d’s in f,5 (d) approximation better
satisfying the restriction that d is smaller than L. This
means that we use only a part of the tag density profile
when looking for binding sites.

Meanwhile, we prepare the dependent variable as fol-
lows. Given a tag-enriched region, we first count the
number of tags starting at each position n denoted as ¢,
(n = 1,2,...,G; C is the size of the tag-enriched region).
We then smooth the counts to reduce possible noises
introduced in the procedures of fragmentation by soni-
cation and DNA sequencing, and get the smoothed tag
density s,=Y 1, f2b+1), where b is the size of the smooth-
ing windoW. We set b = 20 in our experiments. A
proper b will reduce noises but not remove adjacent
binding information. We use the sliding window with 1-
nt step to scan the smoothed tag density s,, ’s along the
tag-enriched region. In j-th (j = 1,2,...,C-W+1) sliding
window, we take the tag density s;,;_; as dependent vari-
ables y; (i = 1,2,...,W).

In the least-squares fitting, we use the linear function
written as:

Vi = Bjx; + &5

where f; is the slope for j-th sliding window and ¢;; is
a noise term. Based on this model, we compute the
slope 3; and goodness-of-fit Rf for the j-th sliding win-
dow:

The slope 8; can be used to represent the relative
binding affinity. We move the sliding window along the
tag-enriched region, and get a goodness-of-fit curve as
shown in the example of Figure 2B. A local maximum
on this curve indicates a location where the tag density
signal best fits the derived model, and is therefore
detected as a possible binding site. If there are more
than one binding sites in a tag-enriched region, multiple
peaks would be observed. We report multiple binding
sites from multiple peaks if they are at least 20 bp away
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from each other. A binding affinity threshold is set
according to the signal level of each tag-enriched region
to allow only the “strong peaks” detected. In our experi-
ments, we only extract those peaks with regression slope
B; no smaller than half of the maximum slope obtained
in each tag-enriched region.

The above procedure is carried out on each DNA
strand separately. We take a further step to combine
binding sites detected from both strands. Binding sites
detected from different strands are reserved unless two
sites are too close (less than 20 bp from each other).
When two binding sites are close to each other, their
tag signal may overlap and shows only one peak on a
single strand. But as the signal directions on the two
strands are opposite, each strand will detect each of the
two sites, and the combination will recover both binding
sites. However, considering possible noises and the
widths of binding sites, if the locations of the two
detected sites from the two strands are within 20 bp
from each other, we merge them as one binding sites at
the middle. This combination can also rescue some
binding sites supported only by one-strand signal
because of the exclusion of multiply mapped reads due
to mappability.

Simulation study

We used the derived theoretical tag profile to generate a
series of simulated data. For single binding sites, given
the position of a binding site (denoted as pys ) and w
tags in a tag-enriched region for each strand, we ran-
domly placed w tags each at a position p; with the prob-
ability fr.g (Pbs — pi ) on each strand. For multiple
adjacent binding sites, we generated the tags for each
single binding site, and accumulated the tag counts at
all positions from all binding sites.

We generated simulation data of different situations:
(1) Single binding site, with tag counts varying from 10
to 200 at step-size 10; (2) Two adjacent binding sites of
distance 60 bp, with tag counts varying from 10 to 200
at step-size 10; (3) Two adjacent binding sites with tag
count 100, and with the distance between the two sides
varying from 10 to 100 bp at step-size 10 bp. All data-
sets were generated in 100 duplications.

Existing software tools compared

QUuEST [28] combines forward tags and reverse tags
based on a kernel-density-estimation approach and a
“peak-shift” strategy, and then identifies significant
peaks and provides peak summits an estimate for
TFBSs. MACS [29] models the peak shift size to merge
forward and reverse tags for peak detection. The most
updated version of MACS can identify sub-peaks and
reports the summits of sub-peaks as TFBSs. SISSRs [31]
tries to detect the switch points of the forward and the
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reverse tag profiles and takes the detected points as
binding locations. To locate binding sites, PICS [36]
adopts a t-distribution to model the single-event tag
profile [36], while GPS [37] empirically models the tag
distribution and refines it during iterations. Another
recent method CSDeconv [35] uses a blind deconvolu-
tion strategy to locate TFBSs. Because it cannot be
applied to large mammalian genomes [35], it isn’t
included in the comparison with SeqSite.

We downloaded QuEST-2.4, MACS-1.4.0beta, SISSRs-
1.4 and GPS-0.10.1 from their respective websites, PICS
release version 1.4.0 from Bioconductor. We chose the
FDR for MACS and SISSRs at 10%, Q-value cutoff for
GPS at 0.01. We applied them on the three ChIP-seq
datasets without changing the default setting of other
parameters.

Software availability

We developed a software tool called SeqSite of the
method presented. It is written in C/C++ and can run
on all major computer platforms with Windows, Unix/
Linux. The software tool is available at SeqSite website
[38] for free academic use.

Additional material

Additional file 1: Supplementary Material Supplementary Material
contains all Supplementary Figures and Supplementary Tables.
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