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Abstract

levels.

Background: Microarray technology has enabled the measurement of comprehensive transcriptomic information.
However, each data entry may reflect trivial individual differences among samples and also contain technical noise.
Therefore, the certainty of each observed difference should be confirmed at earlier steps of the analyses, and
statistical tests are frequently used for this purpose. Since microarrays analyze a huge number of genes
simultaneously, concerns of multiplicity, i.e. the family wise error rate (FWER) and false discovery rate (FDR), have
been raised in testing the data. To deal with these concerns, several compensation methodologies have been
proposed, making the tests very conservative to the extent that arbitrary tuning of the threshold has been
introduced to relax the conditions. Unexpectedly, however, the appropriateness of the test methodologies, the
concerns of multiplicity, and the compensation methodologies have not been sufficiently confirmed.

Results: The appropriateness was checked by means of coincidence between the methodologies’ premises and
the statistical characteristics of data found in two typical microarray platforms. As expected, normality was
observed in within-group data differences, supporting application of t-test and F-test statistics. However, genes
displayed their own tendencies in the magnitude of variations, and the distributions of p-values were rather
complex. These characteristics are inconsistent with premises underlying the compensation methodologies, which
assume that most of the null hypotheses are true. The evidence also raised concerns about multiplicity. In
transcriptomic studies, FWER should not be critical, as analyses at higher levels would not be influenced by a few
false positives. Additionally, the concerns for FDR are not suitable for the sharp null hypotheses on expression

Conclusions: Therefore, although compensation methods have been recommended to deal with the problem of
multiplicity, the compensations are actually inappropriate for transcriptome analyses. Compensations are not only
unnecessary, but will increase the occurrence of false negative errors, and arbitrary adjustment of the threshold
damages the objectivity of the tests. Rather, the results of parametric tests should be evaluated directly.

Background

Microarray technology has enabled the acquisition of
comprehensive quantitative information about mRNA,
the transcriptome, in a tissue sample. Because the func-
tions of a cell are primarily determined by expression of
the genome, we can assess the state of a cell by examin-
ing its transcriptome. However, microarray data may
contain irrelevant individual differences as well as noise
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arising from artifacts of measurement. Indeed, the qual-
ity of data generated by microarray assays has been
questioned [1,2]. In our efforts to identify essential tran-
scriptomic differences, the significance of observed
changes should be evaluated objectively by statistical
tests. By the tests, uncertain information can be omitted
from further investigations, such as clustering, principal
component analysis or pathway analyses.

The test methodologies should be consistent with the
data characteristics and the purpose of the test. As with
other statistical methods, the principle of a test
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methodology is based on some assumptions; for accu-
rate analyses, the assumptions should be consistent with
the characteristics of the data and the consistency
should be checked. Additionally, application of the
methodology should be adequate for the purpose of the
test [3]. Since a statistical test is in balance between
false positive and negative errors, those with overly
stringent conditions will produce unnecessary false
negatives. Therefore, such strictness is irrelevant when
one considers the intrinsic advantage of having complete
transcriptome-wide coverage for the discovery of novel
findings.

For the tests of gene expression levels, parametric
methods such as Student’s t-test or analysis of variance
(ANOVA) are frequently used. Generally, these meth-
odologies estimate a p-value, which is the probability
that a difference larger than that observed would occur
by chance, when actually no difference among popula-
tions exists. If the p-value is less than a predetermined
threshold, then the observed difference is considered to
be significant. Both in t-test and ANOVA, the p-value is
calculated by assuming that within group differences are
normally distributed; if this assumption does not hold,
we cannot accurately evaluate the observed differences
among the groups.

Microarray methodology simultaneously measures the
expression levels of a large number of genes, and the
expression levels of several genes are frequently analyzed
collectively. Accordingly, some concerns related to mul-
tiple tests [4-6] have been expressed, such as an increase
in the family-wise error rate (FWER) [7] or a false dis-
covery rate (FDR) [8,9]. Efforts to control the multipli-
city effect are becoming common in microarray studies;
according to the assessment of statistical methodologies
for microarray analyses conducted by Jafari and Azuaje
[10], 10.7 and 18.4% have been applied in research and
methodology studies, respectively. Since many tutorial
reviews have strongly recommended control of the mul-
tiplicity effect [10-14], the proportion may be even
higher. Related to this concern, reducing the size of data
by focusing to particular genes were also attempted
[15,16].

Multiplicity of tests can increase FWER when we
group a set of tests together as a family [4-6]; in the
presented cases of microarray, the whole set of data
from a sample is recognized to form a family. Inevitably,
FWER, the expectation of having one or more false
positives among the whole family, will become much
greater than the expectation of the occurrence of a false
positive in an individual test. Therefore, if we wish to
control FWER, a compensation of each estimated p-
value or threshold is required. A simple solution for the
compensation is to use the Bonferroni correction, which
compensates for the threshold by dividing it by the
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multiplicity; i.e., the number of gene contents of a chip.
However, since the number of genes in a typical dataset
is large, a correction involving division by such a large
value will make the test extremely strict. Holm’s proce-
dure [17] obviates this strictness to some extent by
assigning different thresholds according to a ranking of
p-values. Nonetheless, such methods are considered to
be strict since the families of microarray data contain
very large numbers of genes.

As the number of tested subjects increases, FDR, the
number of false positives among the declared positives,
may also increase when large numbers of true null
hypotheses are expected [18,19]. On the assumption
that all null hypotheses are true, methodology that deals
with FDR employs the likely calculation of Holm’s pro-
cedure with more relaxed conditions for the compensat-
ing threshold; however, the FDR methodology is still
stricter than the original tests without compensations.

Despite these efforts to find a practical solution, the
methodologies would inevitably make the tests very con-
servative, increase the false negatives, and reduce the
overall information obtained. To deal with the strictness
and to regain some of information that may be lost,
extremely relaxed thresholds of the tests (10-20%) were
recommended [14]. Actually, such relaxed conditions
have been used in many studies, and it is not difficult to
imagine that the thresholds were invoked ad hoc after
the calculations had been performed. Indeed, posterior
tuning of the threshold to obtain better achievement
was even attempted [20]. Additionally, several offshoots
have been produced for FDR methodologies, providing
new options to analysts [9,19]. Such alterations to the
application would inevitably change the meaning of the
methodology and thus, it seems that FDR has been used
as an indicator in an arbitrary fashion.

Both FWER and FDR assume high prior probabilities
to the null hypotheses; i.e., the population means are
identical. In addition, in a recently published book that
featured microarray data [21], Efron insisted that Pr(H,)
is high in large-scale inferences, because most of the
cases have small, uninteresting, but non-zero differences.
This argument may sound useful for gene selection;
indeed, his purpose was to “reduce a vast collection of
possibilities to a much smaller set of scientifically inter-
esting prospects”. However, this is not necessarily con-
sistent with the current demands of microarray data
analyses; since many genes have functional relationships,
significance can be tested on such cell functions as well.
Interesting functions can be easily found and tested by
pathway analysis using databases [15] and/or annotation
key words [22]. Rather, if the high Pr(H,) scenario
unnecessarily increases false negatives, it could limit
important information that could be used at higher
levels of analyses. Moreover, to negate these small
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differences, renovation of the null hypothesis and test
statistics are required. Nevertheless, Efron did not give
any alternative methods, and the complex concept of
“interesting” therefore introduced ambiguity in the
application of the test. Regardless, in both principle and
application, evidence for estimation of Pr(H,) is critically
important.

We note a trend in the transition of proposed meth-
odologies and the applications described above in that
the tightened conditions to deal with the proposed mul-
tiplicity have been relaxed enough to employ the unu-
sual handling of the threshold. While it is true that such
relaxed application of the test can reduce the number of
false negatives, the arbitrariness in choosing both the
methodologies and the threshold can damage the objec-
tivity of a test. Indeed, as the transition proceeded, the
appropriateness of any of the premises in the methodol-
ogies was not confirmed. Additionally, the suitability of
the methodologies to the purpose of the test has been
left unexamined. For example, no concrete reason has
been proposed to explain why the multiplicity should be
considered. As will be discussed below, handling of
plural test results simultaneously is not a sufficient rea-
son for compensations of the multiplicity [23]. Accord-
ingly, the theoretical bases of present methodologies are
rather fragile. In this article, we verify some of the pre-
mises against real microarray data from two popular
platforms, and we will discuss the appropriateness for
the awareness concerning multiplicity.

Methods

Data sources

Several sets of Agilent 44K chip data [24] and Affyme-
trix GeneChip data [25] were obtained from the Gene
Expression Omnibus (GEO) repository [26]; the series
ID of the data were GSE6089 and GSE3889, respectively
(for a complete list, see Additional File 1: List of data ID
used in the figures). Mouse liver transcriptome data was
obtained from mice administered different diets and the
number of measurements in each group was five. Data
were normalized by sample according to the three-para-
meter lognormal distribution model [22] by using
SuperNORM data processing service (Skylight-Biotech
Inc., Japan); the normalized data are available in the
GEO repository under the series ID of GSE25410. Only
those data in which signal intensity coincided with the
theoretical data distribution were subjected to further
analysis.

Data analysis

Statistical significances in gene expression levels
between groups were estimated by using the t-test with
Welch’s approximation on normalized gene data. Those
were also estimated by two-way ANOVA on normalized
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perfect match (PM) data of Affymetrix GeneChips,
under the assumption that differences in PM data were
the sum of group effects and probe sensitivity [22]. The
compensations were performed by using p.adjust(stats)
function of the R. The threshold used was 0.01 in a two
sided manner.

The integrated distribution of gene-wise data varia-
tions were compared against the normal distribution
using quantile-quantile (QQ) plots. For each gene of the
high calorie-fed group, normalized data - normalized
within each chip - was collected (n=5). Agilent platform
data were selected because an artifact could produce a
normal distribution if the average of many PM cell data
produced on the Affymetrix GeneChip platform were
used, according to the central limit theorem. The col-
lected data were further z-normalized using their mean
and standard deviation (SD) to cancel the differences in
expression levels and SDs among genes. The renorma-
lized data were then ranked from 1 to 5 according to
the signal intensity among the repeats in each gene. In
each of the ranks, distribution of the renormalized data
was presented at the corresponding theoretical quantiles
by using boxplots. The boxes and bars represent the
quartiles, and whiskers represent extreme data points
that are no more than 1.5 times the interquartile range
from the box.

Within-group SD values among the Agilent chip data
were estimated by using normalized z-scores. Within-
group SD values among Affymetrix GeneChips, which
measure a transcript using multiple PM probes, was
estimated as the root mean square of the SDs for the
probes. The degrees of correlations between the SDs
were estimated in Spearman’s p by using cor(stats) func-
tion of the R.

Data simulation

A virtual dataset was produced for simulating a scenario
in which genes share a common level of noise. The vir-
tual dataset was used to estimate within-group standard
deviations and p-values. Each imaginary level was gener-
ated by summing the group effect, probe sensitivity, and
noise component; these components were produced by
generating normally distributed random numbers, of
which SDs were set to be identical to the root mean
square of the SDs observed in each of the genes of real
data. Scripts for the R is available as the Additional File 2.

Results

Variation in biological replications obeys normal
distribution

The inconvenience of using parametric methods is that
their premise assumes a certain distribution of the
population, i.e., in cases of t-tests and ANOVAs, data
variation should be normally distributed. However, it is
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possible to confirm the actual distribution of data when
considering the potential suitability of methodologies. A
gene-wise distribution of variation can be verified by
comparing the quantiles of real data with their corre-
sponding theoretical values on a quantile-quantile (QQ)
plot (Figure 1). Unfortunately, because the number of
experimental replicates is limited, assessment of the
validity of this relationship for each gene is not very pre-
cise. Additionally, this attempt will produce a number of
QQ plots equal to the gene contents, and thus the pro-
blem of making assessments using numerous vague
results becomes apparent.

The general trend of these distributions will be
revealed by integrating the gene-wise QQ plots. The
integration was performed using expression data further
normalized among individual genes, and then determin-
ing the distributions of the renormalized expression data
for each rank among individual genes (see Methods).
The data distribution for each of the ranks was pre-
sented using a box and whisker plot and compared with
the theoretical value of normal distribution (Figure 1).
The median of each rank distributed along the y=x line,
and the height of each box and the length of each whis-
ker showed similar levels of data fluctuations among
ranks. Both the coincidence with the normal distribution
and the similarity in data fluctuations suggest that the
variation of gene expression levels tended toward a nor-
mal distribution (Figure 1).
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Figure 1 The general trend of data variations found in an
experimental group of mice fed a standard diet. The data [24]
that had originally been normalized in a sample-wise manner were
further z-normalized for each gene, and ranked from 1 to 5
according to their intensities in repeated experiments. Distributions
of each rank of the double-normalized data are presented using a
box and whisker plot for corresponding theoretical quantiles of the
normal distribution. The green line shows y=x.
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The compensating method and the number of declared
positive genes

To determine the effects of the FWER and FDR com-
pensating methodologies, the test results were compen-
sated accordingly, and the numbers of significant genes
were compared (Table 1). The first category of groups
compared high calorie and normal diets, with and with-
out Resveratrol administration. The Agilent chips, which
measure a gene by using a probe of a single spot, were
used in this category. Repeats of five or four measure-
ments were normalized and processed by t-tests. The
second category compared the effects of very low fat
and normal diets in the Scd-/- mouse and the +/+
mouse. The Affymetrix GeneChips, which measure a
gene by using several probes separately placed in the
chip, were used in this category. The differences
between the experimental groups were tested by using
two-way ANOVA on the normalized PM data (Meth-
ods). Additionally, as the third category of groups, t-
tests were performed by using gene expression data,
which are estimated by summarizing the corresponding
PM data of a gene. Since ANOVA on the PM data can
handle a ten-fold larger number of data points, the esti-
mated p-values could become quite low. Therefore,
almost half of the genes remained positive in FWER
compensations (Table 1, Bonferroni and Holm entries).
However, in those values estimated from gene data by t-
tests, the compensations severely reduced the number of
positive genes, even by FDR compensation, and no dif-
ferences could be found in some combinations.

Each gene exhibits a unique tendency in stability of
expression levels

To select the proper methodology of testing, the noise
level of the microarray technique must be known. If
data variations are primarily attributed to technical
noise, a constant level of noise can be expected among
the genes, although the variations observed for each
gene will either be over- or underestimated simply by
chance. Consequently, a test can be recognized as a part
of the repetitions performed under the same conditions,
coinciding with Neyman’s perspective [27,28], and there-
fore the observed p-values would fluctuate mainly due
to the noise; in such a case, Pr(Hg) must be high. This

Table 1 Numbers of positive genes found under the
indicated conditions

Agilent [24] Affymetrix [25] PM data [25]

-Resv.  +Resv.  Scd-/-  Scd+/+  Scd-/-  Scd+/+
parametric 2,104 1,969 3338 93 10,061 1,035
Bonferroni 16 5 11 0 4869 179
Holm 16 5 11 0 4,897 179
FDR 230 136 334 0 8,680 370
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could be a valid reason to group a family from the
whole set of a sample. Conversely, if the microarray
assay is sufficiently accurate and shows individual differ-
ences between samples, then each gene will exhibit
unique tendencies with respect to the stability of expres-
sion levels. If this scenario is true, a correlation in the
gene-wise variation of different groups will be apparent.
In this case, p-values will show some evidence of varia-
tion, and grouping of the family would be unnecessary,
negating the FWER scenario.

Such a correlation can be evaluated using the standard
deviation (SD) within experimental groups; because the
data variation is normally distributed (Figure 1), the mag-
nitude of data variation could be evaluated using the SD.
Thus, a correlation was observed in scatter plots compar-
ing gene-wise SDs obtained from experimental groups of
mice (n=5) fed different diets (Figure 2A and 2B, black cir-
cles: the Spearman’s rank correlations were p=0.7589 and
0.5731 for panels A and B, respectively). For comparative
purposes, an artificial dataset (Figure 2A and 2B, green)
was generated to demonstrate the case in which technical
noise was the primary cause of the observed data variation.
Clearly, the real and the virtual datasets are different. In
addition, the SDs observed in the real data did not exhibit
any relationship with the signal intensity (Figure 2C; the
Spearman’s rank correlations were p=-0.002). This inde-
pendence between SDs and signal intensities implies that
the observed correlation between SDs is not restricted to
any particular range of signals, precluding the possibility
that the effect of noise on weaker signals was responsible
for the observed correlation.

Distribution of p-values is complex
Distribution of estimated p-values will give important
information for selecting suitable methodologies for the
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test, since the origin of data variation can also be esti-
mated from the distribution. If variations in the data
can primarily be attributed to technical noise, which is a
suitable case for high Pr(Hy) scenario, then the distribu-
tion of p-values can be simulated by using random
numbers (Figure 3, green bars). In the simulation,
within-group variance, the sensitivity of each PM probe
for their target transcripts, and between-group variance
were set to be identical to those observed in the real
data (Methods). Conversely, if the variation in expres-
sion data originates from biological differences and
therefore is unique to the genes, then prediction of the
p-value frequency distribution will be difficult since it
will be affected by the stability of individual genes,
which cannot be inferred at present. Figure 3 represents
p-value frequencies of real data (open bars), which var-
ied among the combination of groups and are inconsis-
tent with the high-noise scenario described above. The
departure of the simulation from the real data suggests
that the effect of technical noise on the test results
would be limited. Additionally, the rate of true null
hypotheses also can be estimated by the distribution of
p-values. The case for all true null hypotheses, for
example, can be simulated by removing the between-
group variance, which will result in a uniform distribu-
tion (not shown). In Figure 3, the distribution of the
real data is not uniform (open bars); particularly, the
smallest p-value class contained considerably more
genes than expected from the all null scenario. This out-
come shows that the number of true null hypotheses
would not be very large.

Discussion
Variations in the expression levels of each gene within a
group were normally distributed (Figure 1), supporting
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the proposal that parametric tests are appropriate for
the analysis of microarray data. Actually, such falsifiabil-
ity in the principles of a method is necessary to ensure
analytical objectivity and it is one of benefits of para-
metric methods. Even so, the distribution observed in
Figure 1 does not necessarily negate the possible occur-
rence of outliers, such as those attributable to dust dur-
ing hybridization, and it is possible that such outliers
could alter the test results. Rather, the application of
robust alternative functions, such as trimmed-mean and
median absolute deviation to assess the data distribution
parameters of the tests, may be applied to resolve such
problems.

The gene-wise tendency observed for within-group
SDs (Figure 2) as well as the complex distribution of p-
values (Figure 3) revealed that the primary origin of
data variability was not due to technical noise, the level
of which would be common to all genes. The primary
origin of data variation therefore appears to be related
to biological differences between individual samples,
which could be taken to reflect the variability in the
expression of individual genes. While the quality of
microarray assays has been questioned [1,2], the actual
level of noise is therefore low enough to reflect biologi-
cal differences among samples; thus, considerable
improvements have been made to chips, reagents, and
experimental protocols [29], and advances in data analy-
sis have resolved many of the problems previously asso-
ciated with the normalization of data [22], thereby
improving the robustness of the assays and reproducibil-
ity of observations.

As has been described before, the main purpose of
testing significance of a gene is to reduce uncertain sig-
nals in higher level of analyses. Even if the technical
noise is low, individual organisms have biological

differences, and some genes may frequently and drasti-
cally change their expression levels according to biologi-
cal requirements. To observe between-group differences
for such genes, the tested data may lack a sufficient
number of biological repeats. Such volatility or stability
of a gene can be estimated from within-group differ-
ences found in the forms of SDs (Figure 1), and the sig-
nificance of the between-group differences can be tested
by using parametric methods. It should be noted that
the test is performed for each gene independently, since
both the observed SD and the between-group differ-
ences are unique to the gene. In this sense, there is no
reason to combine some test results in order to evaluate
them.

Therefore, the suitability of the definition of a family
by the gene contents of the microarray data should be
reconsidered. Actually, although it is a very crucial deci-
sion, there are no fixed rules for how we determine a
family [5]; rather, a family should be decided according
to the purpose of the test [4-6]. In cases in which we
wish to select only a few genes among the whole set of
data and just concentrate on those genes, FWER could
be important because the genes definitely should not be
false positives. In the early years of microarray technol-
ogy, such an application could be possible; however, in
practice, the expressional changes are often confirmed
by other methods or by a different level of observations
such as enzymatic activities, even in such experiments.
Additionally, we rather tend to analyze the transcrip-
tome as a whole, identifying trends in global changes. It
is true that as the number of items to be analyzed
increases, so too does the FWER. However, a few false
positives may not be problematic, since transcriptome-
wide observations such as primary component analysis
or pathway analysis will not be much affected by a
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single false positive, since we would be handling hun-
dreds of true changes. Consequently, we do not need to
control FWER for microarray data analysis, unless the
purpose of the tests is very sensitive to an error.

The appropriateness for the concerns of increasing FDR
should also be reconsidered. Originally, the concern over
FDR was based on the high probability of a true null
hypothesis [18,19]. In a test for a true null, the p-value will
be given by random effects and hence would not support
the evidence; consequently, the expectation of a false posi-
tive should be estimated by using the threshold and not
the p-value in the premise of FDR methods. However,
each subject of transcriptome analysis is a so called ‘point
null’ or ‘sharp’ hypothesis, i.e., a double-sided test for coin-
cidence of continuous variates, so rarely could this out-
come be true in principle. In particular, we define a
population within each gene under a specified set of
experimental conditions. The expression level of the gene
under those conditions can be represented by the center
of the population’s distribution, which would be normally
distributed (Figure 1). The null hypothesis of each test is
that the centers of the compared populations are identical.
Since expression levels are continuous values, the prob-
ability of the center having any particular value is null, and
the probability of coincidence in some populations’s cen-
ters is also null. Actually, the distribution of the p-values
supports the rare occurrence of a true null (Figure 3, open
bars). Therefore, as the premise of high probability of true
nulls contradicts reality, the concern of increasing FDR is
not applicable for transcriptome analyses.

The idea that compensation is unnecessary would also
be true with respect to data obtained in sequencing-based
methodologies, such as RNA-seq [30], when a transcript is
measured with a sufficient number of reads. Although
those data are intrinsically discrete, they can be viewed as
continuous data in a practical sense with a large number
of reads. However, the precision of the data will become
worse with fewer reads. The expected precision can be
estimated according to the binominal distribution model;
for example, reads of 100 and 10 out of one million reads
would have a 95% interval estimate of 81-121 and 4.8-
18.4, respectively. Such technical noise will be added to
the individual differences; in extreme conditions, the ran-
dom effects will practically determine the test results.
Under such conditions, we should address the multiplicity
problem. Since Pr(Hy) would not be uniformly high but a
function of the numbers of reads, the FDR [30] would be
too conservative; further investigations will be required for
more suitable compensation.

We should not compensate for multiplicity of tests
unless there is a good reason for doing so. It is now
obvious that the high Pr(Hg) scenario is against the evi-
dence presented here. This means that the currently pro-
posed problems for multiplicity in microarray data, FWER

Page 7 of 8

[7] and FDR [8,9], have been negated in their principles.
Additionally, the excessively strict conditions will increase
false negatives (Table 1) and thereby disturb the higher
levels of analyses. Indeed, judgment of whether a finding is
interesting or not is not necessarily performed for each
gene; rather, it is important to remove “uncertainties
about the direction” cases [3], in which we cannot distin-
guish “up” or “down” expressional changes from the fol-
lowing analyses.

A far more important problem should concern the
design and management of experiments. As was discussed,
the principal source of noise is in individual differences
among samples, but not in the measuring technique. Since
experiments are performed by using a limited number of
replicated experiments, any small differences arising in
experimental conditions among groups can introduce sig-
nificant biases that may manifest as a global level of false
positives. Unfortunately, such experiment-based false posi-
tives cannot be controlled by any of statistical methods in
principle, since what was observed actually occurred in
that experiment. To control for such biases, experimental
groups should be randomized (e.g., placement of cages or
pots in experiments) beyond groups, to avoid being treated
in any specific order.

Conclusions

Microarray analysis is accurate enough to observe indivi-
dual differences among samples, and performing para-
metric tests for the results is recommended to confirm
the significance of transcriptomic differences among
groups. It should be noted that, in most of the cases,
FWER or FDR should not be considered with respect to
the tests; these procedures are inappropriate for global
transcriptome analyses and will increase false negative
errors, eliminating information that would otherwise be
obtained. Rather, strict control for false positive errors
should be considered in higher levels of analyses, but not
in the gene-wise case. A more important source of pro-
blems would be in the design and management of the
experiment, since any biological differences of conditions
among groups will produce false biases in the data.
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