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Abstract

Background: In order to reduce time and efforts to develop microbial strains with better capability of producing
desired bioproducts, genome-scale metabolic simulations have proven useful in identifying gene knockout and
amplification targets. Constraints-based flux analysis has successfully been employed for such simulation, but is
limited in its ability to properly describe the complex nature of biological systems. Gene knockout simulations are
relatively straightforward to implement, simply by constraining the flux values of the target reaction to zero, but the
identification of reliable gene amplification targets is rather difficult. Here, we report a new algorithm which
incorporates physiological data into a model to improve the model’s prediction capabilities and to capitalize on the
relationships between genes and metabolic fluxes.

Results: We developed an algorithm, flux variability scanning based on enforced objective flux (FVSEOF) with
grouping reaction (GR) constraints, in an effort to identify gene amplification targets by considering reactions that
co-carry flux values based on physiological omics data via “GR constraints”. This method scans changes in the
variabilities of metabolic fluxes in response to an artificially enforced objective flux of product formation. The gene
amplification targets predicted using this method were validated by comparing the predicted effects with the
previous experimental results obtained for the production of shikimic acid and putrescine in Escherichia coli.
Moreover, new gene amplification targets for further enhancing putrescine production were validated through
experiments involving the overexpression of each identified targeted gene under condition-controlled batch
cultivation.

Conclusions: FVSEOF with GR constraints allows identification of gene amplification targets for metabolic
engineering of microbial strains in order to enhance the production of desired bioproducts. The algorithm was
validated through the experiments on the enhanced production of putrescine in E. coli, in addition to the
comparison with the previously reported experimental data. The FVSEOF strategy with GR constraints will be
generally useful for developing industrially important microbial strains having enhanced capabilities of producing
chemicals of interest.
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Background
One of the most ambitious goals in metabolic engineering
is the design of biological systems based on in silico pre-
dictions using mathematical models. The advent of high-
throughput technologies and the completion of genome
sequencing for many organisms have led to an explosion
of systems-wide biological data [1,2]. Genome-scale stoi-
chiometric models of the increasing number of microor-
ganisms and mammalian cells have been developed at the
moment [3,4]. Some of such models have been used to
identify gene knockout targets for the efficient production
of important industrial chemicals, including amino acids
[5,6] and chemicals that are conventionally derived from
petroleum [7-9]; other such models have been used to
identify drug targets in pathogens [10-12]. In modeling
and simulation approaches, target reactions whose knock-
out is predicted to overproduce the chemical of interest
can be easily tested experimentally by deleting the corre-
sponding genes in the microbial host.
Increasing the expression levels of the relevant genes

has also been successfully employed for the overproduc-
tion of target chemicals [13,14]. To avoid unnecessarily
massive experiments to be performed, several computa-
tional algorithms have been devised in an effort to reveal
the relationship between metabolic reactions and the bio-
logical properties of interest [15-27]; however, the identifi-
cation of gene amplification targets is more complicated
than the identification of gene knockout targets; hence,
correlations among the genes, mRNAs, transcriptional or
translational regulations, proteins, and metabolic fluxes
must be carefully examined. Genome-scale metabolic
models that rely on constraints-based flux analysis with-
out additional physiological information are limited in
their ability to describe the complex nature of biological
systems, particularly biological phenomena beyond me-
tabolism. Several systematic methods have been devel-
oped to overcome such limitations: flux variability
analysis (FVA) [17,19-21], flux coupling analysis [16-18],
flux sensitivity analysis [15], flux response analysis [26],
OptReg [22], genetic design through local search [25],
OptForce [27], and flux scanning based on enforced ob-
jective flux (FSEOF) [23]. In particular, FSEOF is a
method that first scans and searches for variations in the
metabolic fluxes in response to the enforced fluxes direc-
ted towards a target product. Reactions were then selected
as amplification targets, the flux values of which increased
in accordance with the enforced fluxes toward the produc-
tion of a target chemical. This method was experimentally
validated by identifying amplification targets that
improved the production of lycopene in Escherichia coli
[23]. These approaches demonstrated that incorporating
physiological constraints during the model simulation are
critical to identifying trustworthy gene amplification tar-
gets, but much improvement is still needed [24,28]. One
of the major problems is the existence of a too large flux
solution space in optimization problems.
In this study, in order to systematically handle the large

flux solution spaces, as also revealed in the implementa-
tion of FSEOF [23], we considered functionally grouped
reactions that simultaneously carry fluxes based on unique
features of microbial genomes. Considering such function-
ally grouped reactions helps reducing the number of and
selecting multiple solutions existing for each optimal ob-
jective value, enabling to identify more reliable gene amp-
lification targets when combined with FSEOF. Grouped
reactions were previously revealed by genomic context
and flux-converging pattern analyses as promising con-
straints [28]. Genomic context analysis interrogates con-
served neighborhood, gene fusion, and co-occurrence
using a STRING database with the goal of suggesting
groups of reaction fluxes that are most likely correlated in
their on/off activities [28,29]. Flux-converging pattern ana-
lysis further limits the range of possible flux values in a
metabolic reaction by examining the number of carbon
atoms in metabolites that participate in the reactions and
the converging patterns of fluxes from a carbon source
(see Methods and Figure 1) [28]. Consequently, flux bal-
ance analysis (FBA) with constraints controlling simultan-
eous on/off activity (Con/off) and the flux scale (Cscale) of
the metabolic reactions accurately predicted flux distri-
butions in gene knockout mutant strains [28].
Based on these analyses, the grouping reaction (GR)

constraints that constrain reactions to co-carry fluxes
altogether regardless of the condition were incorporated
into the E. coli genome-scale metabolic model. The model
then facilitated the scanning of changes in the variability
among metabolic fluxes using FVA in response to the
enforced enhancement of the fluxes toward a target chem-
ical. This newly developed method, called flux variability
scanning based on enforced objective flux (FVSEOF) with
GR constraints, was employed in this study to identify
gene amplification targets for the production of target che-
micals. FVSEOF with GR constraints was first validated
based on amplification targets reported for the production
of shikimic acid and putrescine in E. coli, and then further
validated by actually engineering E. coli for the enhanced
production of putrescine based on new amplification
targets.

Methods
E. coli genome-scale metabolic model
EcoMBEL979 was used throughout this study [30], which is
a slightly modified version of the genome-scale E. colimeta-
bolic network model, iJR904 [31]. EcoMBEL979 contains
814 metabolites (144 extracellular metabolites and 670
intermediates) and 979 metabolic reactions, along with a
biomass equation derived from the E. coli biomass compo-
sition [32].



Figure 1 Schematic illustration of the FVSEOF method with GR constraints. Functionally grouped reactions were considered based on
genomic context and flux-converging pattern analyses obtained from the STRING database. FVSEOF was then performed under GR constraints to
identify gene amplification candidates for the production of a target chemical. The candidates were evaluated based on the model predictions
and additional criteria of the flux bias (Vavg) and the slope of the flux changes (qslope). Each rectangle containing a CxJy index and a line with
different colors defines the reaction groups that are likely on or off simultaneously, as determined by genomic context and flux-converging
pattern analyses. The CxJy index for each reaction is determined by flux-converging pattern analysis. Cx and Jy denote the total number of carbon
atoms in metabolites that participate in each reaction and the type of fluxes through the flux-converging metabolites from a carbon source,
respectively. The red metabolites indicate flux-converging metabolites. The flux-converging metabolites indicate metabolites at which two
pathways split by another metabolite recombine. For example, glyceraldehyde-3-phosphate converges the fluxes split by the fructose-
bisphosphate aldolase from the fructose-6-phosphate. The flux-converging metabolites categorize Jy into four types, indicated as JA, JB, JC, and JD.
Each subscript of Jy denotes the number of flux-converging metabolites that are passed zero, one, two, or three times, respectively, for a given
flux from a carbon source. The subscript E is specially denoted to indicate the fluxes derived from pyruvate. The values of CxJy for each reaction
were assigned based on possible flux routes reaching from glucose, and are partitioned by a slash.
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Constraints-based flux analysis
The stoichiometric relationships among the metabolites and
the reactions of the E. coli genome-scale metabolic model
were balanced under the pseudo-steady state assumption.
The balanced reaction model was almost always underde-
termined in calculations of the flux distribution due to in-
sufficient measurements of the extracellular fluxes. Thus,
the unknown fluxes within the metabolic reaction network
were calculated by linear programming-based optimization
using an objective function that maximized the growth rate,
subject to constraints pertaining to mass conservation and
reaction thermodynamics [33], This optimization problem
can be mathematically formulated as follows:
X
j2J

Sijvj ¼ bi

aj ≤ vj ≤βj

where Sij represents the stoichiometric coefficient for me-
tabolite i in reaction j, νj is the flux of reaction j, J is the set
of all reactions, and bi is the net transport flux of metabolite
i. If this metabolite is an intermediate, bi is equal to zero. αj
and βj are the lower and upper bounds of the flux of reac-
tion j, respectively. Herein, the flux of any irreversible re-
action is considered to be positive; a negative flux
indicates the reverse direction of a reaction.
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Grouping reaction (GR) constraints based on the genomic
context and flux-converging pattern analyses
The algorithm introduced in this study, FVSEOF with
GR constraints, starts with formulation of GR con-
straints, which are based on the genomic context and
flux-converging pattern analyses (Figure 1). Briefly,
genomic context and flux-converging pattern analyses
aim at grouping functionally related reactions. Such
functionally related reactions were constrained to be
on or off simultaneously (Figure 1) [28]. First, reac-
tions were grouped using STRING database that per-
forms genomic context analysis, including conserved
neighborhood, gene fusion, and co-occurrence [28,29].
Simultaneous on/off constraint (Con/off ) can be
described as follows:

y v1ð Þ ¼ y v2ð Þ
y v1ð Þ � α1≤v1≤y v1ð Þ � β1
y v2ð Þ � α2≤v2≤y v2ð Þ � β2

where y(v1) and y(v2) indicate binary variables (on or
off ) of a certain reaction 1 and 2, respectively.
Each reaction is then given a CxJy index, determined by

flux-converging pattern analysis. Cx and Jy denote the total
number of carbon atoms in metabolites that participate in
each reaction and the number of passing flux-converging
metabolites, respectively. Here, it should be noted that
cofactors were not considered because the flux scales are
controlled by the carbon number of primary metabolites,
not cofactors, according to 13C-based flux analysis [28].
For Jy, the flux-converging metabolites indicate metabo-
lites at which two pathways split by another metabolite
converge. Jy has four types, including JA, JB, JC, and JD,
depending on the characteristics of flux-converging meta-
bolites. Subscript of Jy denotes the passing number of flux-
converging metabolites, counting zero, one, two, or three
times for the flux coming from a carbon source. In some
cases, the subscript E is placed next to the subscripts of A,
B, C, or D to indicate the fluxes derived from pyruvate,
which causes more complex changes in flux distributions.
The values of CxJy for each reaction were assigned based
on possible flux routes reaching from glucose, and are
partitioned by a slash. Based on this analysis, another
constraint Cscale, indicating the flux scale of a reaction,
can be given to the metabolic reactions. First, terms
used to describe the flux scale of the reaction are as fol-
lows:

CxyJyj

xj ¼
NC;Rj

2

where Cxj indicates the carbon number involved in a re-
action j, Jyj the number of the passing of the flux
through the flux-converging metabolite near reaction j,
and NC,Rj the total number of carbon of primary meta-
bolites without cofactors in reaction j.
If reaction 1 and 2 were predicted to be in the same

functional unit according to the genomic context ana-
lysis, and their Cx1Jy1 and Cx2Jy2 are equivalent, Cscale is
applied to these two reactions, which is defined as
follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vn1j j � vn1j jþ vn2j j

2

� �2

þ vn2j j � vn1j jþ vn2j j
2

� �2

2

vuuut
≤ δ

where vn1 and vn2 are the normalized flux of reaction 1
and 2, obtained by dividing each reaction flux by the
carbon source uptake rate, such as glucose. δ is the
constant defining the flux level of reactions in this
functional unit; the value of δ is recommended as 0.3.

Flux variability scanning based on enforced objective flux
(FVSEOF) with grouping reaction (GR) constraints
Once grouping reaction constraints are defined, FVSEOF
with GR constraints is subsequently performed as follows
(Figure 2). First, the initial or theoretical minimum
(vinitialtarget product ) and theoretical maximum (vmax

target product ) of

the target product formation rates were calculated; these
were implemented by setting the objective function as
minimizing and maximizing the target product formation
rate using constraints-based flux analysis with GR con-
straints. This can be formulated as follows:

Min/Max Z vtarget product
� �

= vinitialtarget product or v
max
target product

Subject to
X
j2J

Sijvj ¼ bi

li ≤
X
j2J

Sijvj ≤ui

αj ≤ vj≤βj

βj ¼ 1000 mmol � g DCW�1 � h�1

αj ¼ �1000 mmol � g DCW�1 � h�1

vuptakecarbon ¼ 10 mmol � g DCW�1 � h�1

where vinitialtarget product indicates the initial or minimal point

of the flux value constrained for the target bioproduct,
while vmax

target product indicates the maximal flux value for

the bioproduct. li and ui are the lower and upper bound
for the net transport flux of metabolite i, respectively,

and vuptakecarbon is the carbon source uptake rate.



Figure 2 Framework of the FVSEOF with GR constraints for identifying gene amplification targets that enhance the production of a
target product. The FVSEOF method scans the changes in the metabolic flux variabilities in response to an enhanced flux toward a target
product. The method then selects amplification target reactions, the fluxes of which increase in response to the forced increase in the flux
toward the target bioproduct. (A) During the FVSEOF implementation, three types of intracellular flux profiles are typically identified: increased,
decreased, or unchanged, but oscillatory flux profiles can also be found in some cases. (B) To evaluate the gene amplification candidates, the
slope (qslope) was calculated based on a linear regression between the enforced production rate of a target product and the Vavg values of the
candidate reactions. The positive correlation in the slope indicates that the corresponding reaction may be a gene amplification candidate. On
the basis of the qslope values, we considered the sensitivities of the identified gene amplification candidates to the enforced production of a
target chemical. A large value of qslope indicates that the corresponding reaction may be more sensitive to the enforced production of a target
chemical, than reactions with smaller qslope values.
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Second, the cell growth rate, Z(vbiomass), was maxi-
mized while gradually increasing the target product for-
mation rate from its initial (or minimal) flux value to its

near theoretical maximum: venforcedtarget product ¼ vinitialtarget product þ k
n

vmax
target product � vinitialtarget product

� �
, K ¼ k k ¼ 1; 2;⋯; n� 1j gf

(n≥10 ) [23]. The venforcedtarget product is an additional constraint

provided during this stage of the constraints-based flux
analysis; it starts with the initial value vinitialtarget product plus one

nth of the difference between the vmax
target product and

vinitialtarget product , and is increased to a value adjacent to

vmax
target product in k steps.

Third, FVA was carried out with GR constraints by
maximizing or minimizing the fluxes of all intracellular
reactions, Z(vintracellular reaction), with additional con-
straints: the enforced production rate of the target
bioproduct, which varied from its initial to maximum
values in 10 steps, and 95% optimal cell growth rate,
vbiomass = 0.95 � Z(vbiomass)

opt, for each step. The attain-
able flux ranges of intracellular reactions for each step
were subsequently subjected to the targeting criteria
introduced in the following section.
FVSEOF with GR constraints was calculated using

mixed integer nonlinear programming with the DICOPT
solver, subject to the constraints including GR constraints,
mass conservation and reaction thermodynamics.

Flux bias, its slope and flux capacity as targeting criteria
Flux bias (Vavg), its slope (qslope) and flux capacity (lsol)
were employed as targeting criteria for the initial set of
gene amplification targets predicted from FVSEOF with
GR constraints (Figure 2 and 3). Among them, Vavg and
lsol were determined as follows in order to effectively



Figure 3 Nine types of changes in the flux patterns based on combinations of positive and negative changes in Vavg and lsol. Types 1, 2,
and 3 have the amplification candidates positively correlated with the production of a target chemical. Types 4, 5, and 6 were negatively
correlated with the target product. Types 7, 8, and 9 did not show unique patterns with the enforced fluxes towards the target chemical. Nine
possible combinations of flux bias (Vavg) and flux capacity (lsol) for each reaction were investigated, and displayed on the bottom of the figure.
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investigate the changes of flux variabilities for genetic
perturbations [28]:

Vavg ¼ V
0
max þ V

0
min

2

lsol ¼ V
0
max � V

0
min

The V 0
maxand V 0

min indicate the maximal and minimal
flux values for a reaction under the given condition. The
lsol indicates the difference between the maximal and
minimal flux values for a reaction. qslope was calculated
using linear regression of the flux values for a reaction to-
wards the gradually maximized product formation rate.

Bacterial strains and plasmids
The E. coli strains used in this study are listed in the
Additional file 1. The XQ52 strain, a putrescine produ-
cer, was used as a base strain [34]. E. coli TOP10 was
used for gene cloning studies. The plasmid p15SpeC
containing a strong tac promoter was used as an expres-
sion vector. The plasmid p15SpeC was constructed from
the pTac15K plasmid by cloning the speC gene (encod-
ing ornithine decarboxylase in the putrescine biosyn-
thetic pathway) into the site between the EcoRI and SacI
restriction enzyme sites of pTac15K. The plasmid con-
tained a kanamycin resistance selective marker. Cells
were grown in Luria–Bertani (LB) broth or on plates
containing appropriate antibiotics at 37°C for the con-
struction of strains and plasmids. Antibiotics were added
at following concentrations: 50 μg/mL ampicillin, 25 μg/
mL kanamycin, and 35 μg/mL chloramphenicol.
The plasmids used in this study are listed in the Add-

itional file 1. Polymerase chain reaction (PCR) primers
for the gene cloning studies conducted here are listed in
the Additional file 2. Pfu DNA polymerase was pur-
chased from Solgent (Daejeon, Korea). Restriction



Park et al. BMC Systems Biology 2012, 6:106 Page 7 of 11
http://www.biomedcentral.com/1752-0509/6/106
enzymes and T4 DNA ligase were obtained from New
England Biolabs (Ipswich, MA) and Roche (Mannheim,
Germany), respectively. The genomic DNA of E. coli
W3110 was amplified to overexpress the target genes
using the Pfu polymerase and PCR primers (Additional
file 2). The PCR product was then digested with SacI
and XbaI, and ligated into p15SpeC at the same restric-
tion sites downstream of the tac promoter.

Fermentation
Batch cultivation was conducted at 37°C in a 6.6 L jar
fermentor (Bioflo 3000; New Brunswick Scientific Co.,
Edison, NJ) containing 2 L R/2 medium supplemented
with 10 g/L glucose and 3 g/L (NH4)2SO4. The R/2
medium (pH 6.8) contained (per liter): 2 g (NH4)2HPO4,
6.75 g KH2PO4, 0.85 g citric acid, and 0.7 g
MgSO4�7H2O. In addition, 5 mL/L of a trace metal stock
solution [35] was added. The trace metal solution con-
tained per liter of 5 M HCl: 10 g FeSO4�7H2O, 2.25 g
ZnSO4�7H2O, 1 g CuSO4�5H2O, 0.5 g MnSO4�5H2O,
0.23 g Na2B4O7�10H2O, 2 g CaCl2�2H2O, and 0.1 g
(NH4)6Mo7O24. One milliliter of the overnight culture
was transferred into a 300 mL Erlenmeyer flask contain-
ing 50 mL of the R/2 medium at 37°C and spun at 220
rpm in a shaking incubator (JEIOTech. Co. SI-900R).
After obtaining an initial OD600 of 0.3, the seed cultures
(200 mL) were introduced into the bioreactor for batch
cultivation. The culture pH was maintained at 6.8 by the
addition of 6 M KOH. The dissolved oxygen concentra-
tion was maintained at 20% air saturation by automatic-
ally adjusting the agitation speed. Under the comparable
batch culture conditions, the single gene-overexpressing
strains based on the E. coli XQ52 strain harboring
p15SpeC, denoted as XQ52 (p15SpeC), with each target
gene were tested by flask cultivation in duplicate using
R/2 medium supplemented with 10 g/L glucose at 37 °C.

Analytical procedures
Cell growth was estimated by measuring the optical density
at 600 nm (OD600) using an Ultrospec 3000 spectropho-
tometer (Amersham Biosciences, Uppsala, Sweden). Glu-
cose concentrations were measured using a glucose
analyzer (model 2700 STAT; Yellow Springs Instrument,
Yellow Springs, OH, USA). The concentrations of glucose
and organic acids were determined by high-performance li-
quid chromatography (ProStar 210; Varian, Palo Alto, CA)
equipped with UV/visible light (ProStar 320; Varian, Palo
Alto, CA) and refractive index (Shodex RI-71, Tokyo,
Japan) detectors. A MetaCarb 87H column (300 by 7.8
mm; Varian) was eluted isocratically with 0.01 NH2SO4 at
60°C at a flow rate of 0.4 mL/min.
The putrescine concentration was determined by deri-

vatizing putrescine with o-phthaldialdehyde (OPA;
Sigma, St. Louis, MO), and the o-phthaldialdehyde
derivative was detected by high-performance liquid
chromatography (1100 Series HPLC, Agilent Technolo-
gies, Palo Alto, CA) with UV detection, as described pre-
viously [34]. The OPA derivatization reagent was
prepared as described previously [34,36,37]. Following
the addition of the OPA reagent, the mixture was fil-
tered through a 0.2 mm PVDF syringe filter (Whatman,
Maidstone, UK), and the filtrate was immediately
injected into the HPLC. A SUPELCO C18 column (cat#
504955; 5μm, 150 mm x 4.6 mm) was operated at 25°C
with a 0.8 mL/min mobile phase flow rate. The mobile
phase consisted of solution A (55% methanol in 0.1 M
sodium acetate, pH 7.2) and solution B (methanol). The
following gradient was applied (values given in vol%): 1–
6 min, 100% A; 6–10 min, linear gradient of B from 0%
to 30%; 10–15 min, linear gradient of B from 30% to
50%; 15–19 min, linear gradient of B from 50% to 100%;
19–23 min, 100% B; 23–25 min, linear gradient of B
from 100% to 30%; 25–28 min, linear gradient of B from
30% to 0% [34]. The derivatized putrescine was detected
at a wavelength of 230 nm using a variable wavelength
detector (G1314A, Agilent Technologies).

Results and discussion
FVSEOF with GR constraints
Functionally related reactions can be grouped by gen-
omic context and flux-converging pattern analyses [28].
Several reactions appeared to be related with one an-
other based on genomic context analysis of conserved
neighborhoods, gene fusions, and co-occurrence [28,29].
Flux-converging pattern analysis narrows the range of
plausible flux values for metabolic reactions by examin-
ing the number of carbon atoms in metabolites that par-
ticipate in reactions and the converging patterns of
fluxes from a carbon source [28]. By controlling the sim-
ultaneous on/off activity (Con/off ) and flux scale (Cscale)
of the metabolic reactions, based on FBA with GR con-
straints, the flux distributions in gene knockout mutants
were accurately predicted [28]. In this study, the GR
constraints were further applied to reactions related to
the biosynthesis of a target chemical to improve the
model accuracy (Figure 1 and the Additional file 3).
FVSEOF with GR constraints was implemented as fol-

lows (Figure 2). First, the theoretical minimal and max-
imal flux values for the target product formation were
calculated using constraints-based flux analysis by min-
imizing and maximizing the target product formation
rate with GR constraints. Second, again with GR con-
straints, the cell growth rate was maximized while grad-
ually increasing the constraint value for the target
product formation rate (our objective function which is
artificially enforced) from a minimal to a theoretical
maximum, as calculated from the first step. Finally, FVA
was conducted by maximizing and minimizing the fluxes



Park et al. BMC Systems Biology 2012, 6:106 Page 8 of 11
http://www.biomedcentral.com/1752-0509/6/106
of all intracellular reactions under additional constraints,
including GR constraints, the enforced production rate
of the target chemical varied from a minimal to a max-
imal value, and a 95% optimal growth rate constraint for
each step. The attainable flux ranges for the intracellular
reactions were calculated under the imposed constraints
for each of the three steps.

Criteria for selecting gene amplification targets
Initial simulation results for FVSEOF with GR con-
straints were filtered based on rational criteria in an ef-
fort to select only the most effective amplification
targets. The most important criterion was to identify
gene amplification targets, the fluxes of which increased
with the flux directed toward the target chemical. This
procedure was implemented with quantitative values of
qslope,Vavg, and lsol (Figures 2 and 3). The flux bias (Vavg)
and flux capacity (lsol) indicate an average value for the
maximal and minimal flux values and the length of the
attainable flux ranges for a reaction, respectively [28]. Fi-
nally, the gene amplification candidates were evaluated
by calculating the slope (qslope) of the Vavg flux for each
metabolic reaction using linear regression analysis
(Figure 2). Changes in the patterns of the reaction fluxes
in response to incrementally increasing fluxes toward a
target product were categorized into nine types based on
combinations of positive and negative changes in Vavg

and lsol in order to facilitate the identification of amplifi-
cation targets (Figure 3). Types 1, 2, and 3 displayed
positive correlations with the amplification candidates
for the production of a target chemical; types 4, 5, and
6 displayed negative correlations with the amplification
candidates. Finally, types 7, 8, and 9 displayed no clear
correlations with the production of a target chemical,
based on Vavg (Figure 3). The reaction sets that were
positively correlated (type 1, 2, and 3) were initially
selected as amplification candidates.
Reaction sets belonging to type 1, 2 and 3, showing

positive correlations with the enforced fluxes toward a
target chemical, can then be further divided into strongly
and weakly positive reactions (Figure 3 and Additional
file 4). This step also allows narrowing down the candi-
dates of gene amplification targets. The strongly positive
reactions display a continuously increasing Vavg and a
positive qslope in response to the enhanced production of
a target chemical, whereas weakly positive reactions
show the same pattern, except for the presence of a par-
tially negative qslope (Additional file 4). Certainly,
strongly positive reactions deserve primary attention as
potential gene amplification targets.
The potential gene amplification candidates were

prioritized by considering the lsol value, which indicates
the length between the maximal and minimal flux values
of a metabolic reaction. Among the reactions that were
positively correlated with the desired product, reactions
with smaller values of lsol received higher priorities be-
cause these reactions were more likely to display the
predicted flux values than reactions with larger values of
lsol. A final list of gene amplification targets obtained
from the above procedure was then selected based on
biological knowledge.

Implementation of FVSEOF with GR constraints for
shikimic acid production in E. coli
FVSEOF with GR constraints was employed to identify
gene amplification targets for the enhanced production
of an important aromatic chemical shikimic acid in E.
coli (Figure 2). Shikimic acid is a key metabolic inter-
mediate in the aromatic amino acid biosynthetic path-
way. Shikimic acid and its derivatives are industrially
important starting compounds for the production of sev-
eral chemicals, such as phenols, herbicides, antibacterial
agents, and the neuramidase inhibitor Tamiflu used for
the treatment of influenza infections [38,39]. FVSEOF
with GR constraints predicted that 11 reaction fluxes in
the glycolysis (glk and pps), pentose phosphate pathway
(rpi, talAB, and tktAB), and the shikimic acid biosyn-
thetic pathway (aroB, aroD, aroE, aroF, aroG, and aroH)
were potential amplification targets. The amplification of
aroB, aroD, aroE, aroF, aroG, aroH, talAB, tktA, glk, and
pps genes [38-46], which are the amplification targets
predicted by FVSEOF with GR constraints, was previ-
ously reported to enhance the production of shikimic
acid. The previous FSEOF method without FVA and GR
constraints could not identify pps gene as an amplifica-
tion target. FSEOF results without FVA and GR con-
straints did not show notable fluxes among metabolic
reactions controlled by the pps gene in response to the
enforced shikimic acid production rate; however, the
FVSEOF method with GR constraints correctly pre-
dicted the pps gene as one of the amplification targets
beneficial for the accumulation of phosphoenolpyruvate,
an important precursor for the production of shikimic
acid from pyruvate. This consistency partly demon-
strated the power of utilizing FVA and GR constraints
for predicting reliable amplification targets by FSEOF. In
practice, the overexpression of phosphoenolpyruvate
synthase encoded by the pps gene also increased the
yield of precursors for the production of shikimic acid
[43,45]. Thus, this strategy enabled the successful identi-
fication of gene amplification targets for the enhanced
production of a primary metabolite, shikimic acid, in E.
coli, in accordance with previous literature reports.

Implementation of FVSEOF with GR constraints for
enhanced putrescine production in E. coli
The general applicability of FVSEOF with GR con-
straints was examined by applying the method to
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putrescine production in E. coli. Putrescine (1,4-diami-
nobutane) is an important industrial precursor for the
synthesis of polymers, pharmaceuticals, surfactants, and
certain additives [34]. We confirmed the validity of the
newly predicted gene amplification targets by compari-
son with the genes engineered in the previously reported
putrescine-producing E. coli XQ52 (p15SpeC) strain
[34]. FVSEOF with GR constraints predicted potential
gene amplification targets among the reactions involved
in glycolysis (eno, pgm, gapA, fbaAB, tpiA, pgk, pykAF,
and glk), TCA cycle (icd, acnA, acnB, and gltA), putres-
cine biosynthesis (gdhA, argA, argB, argC, argD, argE,
speC, and speF), and other pathways (ackA and ppc).
The predicted amplification targets (argB, argC, argD,
argE, speC, and speF) involved in the putrescine biosyn-
thetic pathway were consistent with the mutations intro-
duced in the E. coli XQ52 (p15SpeC) strain, as described
in the previous report [34].
The genes predicted to be relevant to the putrescine

biosynthetic pathway were expected based on the
Figure 4 Batch cultivation of the control and engineered E. coli strain
(p15SpeC-Glk), (C) XQ52 (p15SpeC-AcnA), (D) XQ52 (p15SpeC-AcnB), (E) XQ
for putrescine production. The symbols indicate: cell concentration measur
concentration (▲) for the engineered strains in (A) to (F), and putrescine co
pathway knowledge, and were intuitively obvious; hence,
we focused on the effects associated with amplifying the
predicted gene targets involved in other metabolic path-
ways in order to more rigorously validate FVSEOF with
GR constraints. Accordingly, each of the predicted amp-
lification targets was examined one by one by amplifying
the gene dosage in the E. coli XQ52 (p15SpeC) strain
(see Methods). Among these genes, the glk, acnA, acnB,
ackA, and ppc gene, five out of the sixteen target genes,
were found to attain increased putrescine yield when
they were individually amplified in the E. coli XQ52
(p15SpeC) strain (Additional file 5). These strains, ini-
tially examined using flask cultivation, were further vali-
dated by batch cultivation at 37°C under aerobic
condition (Figure 4 and see the Additional files 1 and 2).
The recombinant E. coli XQ52 (p15SpeC) strain add-
itionally expressing the glk, acnA, acnB, ackA, and ppc
genes resulted in the production of 2.23, 1.90, 1.89, 2.04,
and 2.06 g/L of putrescine, respectively, which are 20.5
% more than that (1.68 g/L) produced by the control
s producing putrescine. (A) XQ52 (p15SpeC) (control), (B) XQ52
52 (p15SpeC-AckA), and (F) XQ52 (p15SpeC-Ppc) strains were tested
ed by OD600 (●), glucose concentration (■), and putrescine
ncentration (△) for the XQ52 (p15SpeC) (control) strain in (A).
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strain on average (Figure 4). The yields of putrescine
obtained with these strains were 0.223, 0.190, 0.189,
0.204, and 0.206 g putrescine per g glucose, which are
again higher than that (0.168 g putrescine per g glucose)
obtained with the control strain. Thus, FVSEOF with
GR constraints could be successfully used to identify
non-obvious gene amplification targets that enhance the
production of putrescine in E. coli.
Other gene amplification targets identified by FVSEOF

with GR constraints, which did not affect putrescine
production in flask cultivation, also deserve discussion.
These false-positive hits are most likely involved in bio-
logical processes that were not accurately captured in
the genome-scale metabolic model. These ineffective
genes, including eno, pgm, gapA, fbaAB, tpiA, pgk, and
pykAF genes in glycolysis, and icd and gltA genes in
TCA cycle might have been associated with transcrip-
tional and translational regulations because the direct
correlation between gene expressions and the metabolic
fluxes was not observed. The fact that some of obvious
gene amplification targets, such as icd gene responsible
for biosynthesis of α-ketoglutarate, seem to be resistant
to gene manipulations indicates that other biological
variables may affect the effects of the gene amplifica-
tions. Potential variables include the plasmid copy num-
ber, gene dosage, optimal gene expression, and the gene
expression method, either plasmid-based overexpression
or chromosomal integration [47]. Although we improved
the accuracy of the predicted gene targets by imposing
GR constraints, these factors should be carefully consid-
ered in any implementation of the FVSEOF method with
GR constraints [48].

Conclusions
FVSEOF with GR constraints, which is an upgraded ver-
sion of the FSEOF method, allows for the in silico identi-
fication of fluxes to be amplified for the enhanced
production of target products. This method was con-
ducted through the analysis of trends in reaction flux
variability in response to varying the flux of target chem-
ical production from initial to maximal flux values under
GR constraints. The confidence with which amplification
targets are identified may be increased by incorporating
physiological data. This approach involves grouping
functionally related reactions based on their genomic
context and flux-converging pattern analyses. The inter-
action data may be obtained easily from public data-
bases, and subjected to GR constraints. FVA was also
performed to overcome the problems associated with
multiple solutions for an optimal objective value.
FVSEOF with GR constraints was shown to suggest suc-
cessful metabolic engineering strategies (in particular,
gene amplification) for the production of shikimic acid
and putrescine in E. coli. In conclusion, the strategy
reported here should be generally useful for developing
industrial strains that display enhanced production of a
target chemical.
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